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Cancer metastasis is the dissemination of tumor cells to new sites, resulting in

the formation of secondary tumors. This process is complex and is spatially and

temporally regulated by intrinsic and extrinsic factors. One important extrinsic factor

is the extracellular matrix, the non-cellular component of tissues. Heparan sulfate

proteoglycans (HSPGs) are constituents of the extracellular matrix, and through their

heparan sulfate chains and protein core, modulate multiple events that occur during the

metastatic cascade. This review will provide an overview of the role of the extracellular

matrix in the events that occur during cancer metastasis, primarily focusing on perlecan.

Perlecan, a basement membrane HSPG is a key component of the vascular extracellular

matrix and is commonly associatedwith events that occur during themetastatic cascade.

Its contradictory role in these events will be discussed and we will highlight the recent

advances in cancer therapies that target HSPGs and their modifying enzymes.
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CANCER METASTASIS

Metastasis of a tumor is the systemic dissemination and colonization of tumor cells from the
primary tumor to a secondary site and is a major cause of cancer-related deaths (1). Cancer is
a global epidemic with an estimated 18.1 million new cases and 9.6 million deaths occurring
in 2018 (2). Metastasis is an inherently inefficient process, that involves spatial and temporal
regulation by both intrinsic and extrinsic factors. It is generally assumed that a cancer cell’s
genetic mutational burden compounds with advancing malignancy, resulting in the acquisition
of proliferative and invasive traits, and finally the capacity to metastasize and colonize, distant
organs. However, mutational burden alone does not fully explain the capacity of cells to invade,
disseminate, and metastasize to secondary sites (3–6). The role of the microenvironment is now
becoming appreciated as a key element in cancer progression, which is driven by interactions
between tumor cells and their microenvironment (7–9).

The extracellular matrix (ECM) is a non-cellular meshwork of crosslinked macromolecules
including collagens, proteoglycans, and glycoproteins, that form a dynamic, supramolecular,
scaffold. It provides cues, both physical and chemical, which influence cancer progression
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and metastasis. Biochemical and biomechanical cues present
in the ECM, such as sequestered growth factors, ECM
biomechanics and ultrastructural organization, are sensed by
cells and converted into downstream cellular responses. These
downstream cellular responses act in concert to alter malignant
progression. Modulation of ECM components, by way of
disrupted turnover, and aberrant or absence of post-translational
modification (10), are some of the changes common to many
diseases, including cancer (11, 12). Moreover, the ECM is a highly
ordered structure, and its functional properties are contingent
upon the precise assembly of ECM components (13). Subtle
changes in the stoichiometry of these components may have
downstream biological ramifications which affect tissue function.
Cancer associated fibroblasts (CAFs) are important stromal cells
within the tumor microenvironment that can be educated and/or
recruited by tumor secreted factors. The capacity of CAFs to
synthesize and remodel ECM components critically effects tumor
progression (14). Understanding the nature of the heterotypic
interactions between tumor cells, the ECM, and CAFs within the
tumor microenvironment will offer insights into the mechanisms
underpinning tumor progression and metastasis.

The process of metastasis is typically represented as a series
of interconnected, and overlapping events, whereby certain
conditions must be met before tumor cells transition to the next
stage (Figure 1). These events include invasion into adjacent
tissue, intravasation into the bloodstream and lymphatics,
cancer cell survival during transit and extravasation out of
vessels, and finally secondary organ colonization. The ECM is
a key component throughout this cascade of events, with its
involvement in modulating the behavior of both tumor and non-
malignant stromal cells at all steps along the metastatic cascade.

Epithelial-Mesenchymal Transition
Epithelial-mesenchymal transition (EMT) is one of the key
programs in cancer that is thought to facilitate the shift in
tumor cell behavior from a static epithelial phenotype to a
more migratory, invasive, and mesenchymal one (Figure 1, Box
1). EMT and its regulatory signaling pathways are influenced
by biochemical cues within the ECM. For instance, ECM
environments rich in the glycosaminoglycan (GAG) hyaluronan
(HA), transduce signals through the membrane receptor CD44,
triggering EMT (15–18). The glycoprotein tenascin C has also
been shown to be elevated in late stage mammary invasive
ductal carcinomas at the tumor-stromal border. Here, it induces
EMT through the proto-oncogene tyrosine-protein kinase Src
and focal adhesion kinase (FAK) axis (19, 20). Furthermore, the
shift in expression of the heparan sulfate proteoglycan (HSPG)
syndecan-1 from tumor cell expression to stromal cell expression
(viz. vimentin positive CAFs) has been shown to feed back onto
cancer cells and drive EMT in many solid tumors (21). However,
in contrast, Shen et al. (22) demonstrated that tubulointerstitial
nephritis antigen-like 1 (TINAGL1), an ECM protein which
competitively binds to integrins α5β1, αvβ1, and epidermal
growth factor receptor (EGFR), can inhibit fibronectin-mediated
FAK/EGFR signaling. This highlights how the balance between
multiple ECM molecules can regulate the same intracellular
signaling networks.

Invasion and Intravasation
Tumor cell invasion is initiated through the breakdown of
the interactions (i.e., cell-cell and cell-ECM) at the primary
tumor site, allowing cells to invade into the adjacent tissue
(Figure 1a), in conjunction with local remodeling of the adjacent
basement membrane (BM). As tumor cells pass through the local
microenvironment of the primary site, they are exposed to a
milieu of biomechanical cues within the ECM such as tissue
stiffness, density and porosity (23–25), which regulate tumor
cell fate. Seminal work demonstrated the ECM’s importance at
initial stages of metastasis, where interactions between tumor
cells and a fibrotic and stiff extracellular matrix induced a
malignant and invasive phenotype, which could be blocked
to re-establish tissue order (26). At the tissue organizational
level, the alignment of collagen fibers has been shown to
have prognostic value in breast cancer whereby collagen fibers
aligned perpendicular to the tumor periphery, known as tumor-
associated collagen signature-3 (TACS-3), are prognostic of
patient survival (27, 28).

Hydration of tumor tissue is strongly influenced by the
presence of specific glycosaminoglycans (GAGs) within
the tissue, due to their anionic structure and their ability
to attract water. As hydration increases, increased intra-
tumoral hydrostatic pressure rises and alters the biomechanical
properties of the tissue which is known to be crucial to
invasiveness (29, 30). Perfusion of nutrients, growth and
chemotactic factors are also affected leading to changes in
cancer cell invasion (31). Finally, matrix metalloproteinases
(MMPs) released from both tumor and stromal cells degrade
the ECM and facilitate local invasion (32, 33). The release
and activation of ECM-sequestered growth factors [e.g.,
transforming growth factor (TGF)-β, fibroblast growth
factors (FGFs)] may also play a part in this malignant
process (34).

Following local invasion at the primary site, tumor cells
typically spread around the body via the hematogenous or
lymphatic networks which requires traversing the vascular
and/or lymphatic BMs (Figure 1b, Box 2). However, tumors need
not be clinically advanced for this to occur, as dissemination has
been observed very early in tumor formation, even before clinical
symptoms of disease are evident (35, 36). BMs are specialized
tissues underlying epithelial and endothelial structures. BMs
are membrane like structures with low porosity and their
constituents are densely arranged together. Thus, for cells
to traverse BMs, known as intravasation, they require the
activation of specific protease-dependent and -independent
programs (37–39). BMs impart polarity and survival signals
to cells in contact with them, in addition to acting like a
molecular sieve for the perfusion of nutrients and molecules
from the blood through to the interstices. As such, the structural
integrity of vessels and their BMs presents a major obstacle
to invading tumor cells. However, in cancer, disruption of
BMs is commonly observed. A series of recent studies (40,
41) demonstrated that the ECM molecule hyaluronan and
proteoglycan link protein-1 (HAPLN1) decreased with aging of
the ECM. This resulted in disruption of the vascular BM and
increased vessel permeability, leading to subsequently enhanced
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FIGURE 1 | Role of the extracellular matrix in driving progression through stages of the metastatic cascade. (a) Primary tumor cells may undergo

epithelial-mesenchymal transition (EMT) (Box 1) and invade through basement membranes (BM) into the surrounding stroma. Tumor cell local invasion and metastatic

dissemination is often facilitated by cancer-associated fibroblasts (CAFs) or specific ECM components, which may enhance invasion or modulate the immune system.

(b) To disseminate to a secondary site, tumor cells must access the vascular system and intravasate through the endothelial BM. This occurs in part through the

release of proteases and heparanase, which disrupt BM integrity (Box 2). (c) The circulating tumor cells (CTCs) must then survive transit to secondary sites of

metastasis and can be assisted by platelet activation as well as accompanying CAFs. (d) To exit the vessel, cells extravasate into the surrounding tissue and seed at

distinctly different tissues from the primary tumor. Overt colonization of secondary sites by disseminating tumor cells (DTCs) is greatly enhanced through extravasation

at premetastatic niches. (e) Extravasated cancer cells typically have three fates, either colonize and proliferate to form overt metastases, enter a reversible state of

dormancy or, in most cases, die.

melanoma metastasis in mice. In addition, HA has been shown
to be important in the regulation of vascular endothelial barrier
permeability, through stabilization of cell-cell junctions (42, 43).
Furthermore, high molecular weight HA secreted by tumors has
been shown to negatively regulate hyaluronan binding protein
2 (HABP2), a serine protease, which is known to compromise
vessel integrity (44). Along with the release of proteases by
tumor cells, invasion through BMs can be affected by the
release of heparanase (45, 46), which degrades the HS chains
of HSPGs located in the BM and ECM, as reviewed by (47)
(Figure 1, Box 2).

Survival and Transit Through the
Circulatory System
Once tumor cells enter the circulation, their survival in
the absence of cell-cell and cell-ECM cues is a crucial
factor determining metastatic outcome (Figure 1c). Various
mechanisms have been uncovered which facilitate cancer cell
survival in the circulation. For example, circulating tumor cell
(CTC) clusters exploit mechanisms such as tropomyosin receptor
kinase B (TrkB) signaling to combat apoptosis induced by the
lack of cell-ECM interactions, termed “anoikis” (48, 49). In
addition, the close association of stromal elements with tumor
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cells in circulation, namely CAFs and their secreted factors (e.g.,
FGFs) enhance survival and facilitate metastasis (50). Platelet
derived TGF-β signaling also protects against the lack of cell-
ECM interactions present in circulation, through inducing a
mesenchymal-like phenotype (51). The activation of platelets
provides CTCs with fibrinogen (52) and tissue factor (53),
which protects against immune clearance within the circulation
and at secondary sites. The cues provided may temporarily be
substituting for the absence of correct tissue and ECM contacts,
and therefore likely provide survival signals that protect cancer
cells (7).

Extravasation
Tumor cells that survive within the circulation and lodge in
the vasculature of secondary organs, must extravasate into
the parenchyma in order to begin the colonization process
(Figure 1d). The site of extravasation may be determined to
some extent by the formation of “pre-metastatic niches” (54),
which can in part explain metastatic organotropism (55). Of
note, secreted factors from the primary tumor, such as MMP-3,
-9 and -10 (56, 57), can induce the production of vessel
destabilizing factors at secondary sites of future metastasis, which
act to enhance extravasation. Once extravasated into secondary
organs, tumor cells must adapt to the new local cues (i.e., ECM
molecules as well as locally secreted growth factors) in order
to persist and go on to form overt metastases (Figure 1e). At
this stage, the alternatives are entry into a dormant state, or
ultimately death. Therefore, this phase in the cascade relies
on the interaction between the extravasated tumor cells and
the characteristics of the host tissue microenvironment for the
successful establishment and outgrowth of overt metastases.

Secondary Organ Colonization
More recently, it has become increasingly apparent that
secondary sites may not simply be naïve recipients of
disseminated cells, and instead, the ECM and local
microenvironment may be remodeled prior to the arrival
of tumor cells. This concept has been termed the pre-metastatic
niche (54, 58–60), and encompasses the idea that primary tumors
were capable of remodeling the tissue microenvironment of
secondary organs prior to their arrival in order to facilitate
metastatic colonization (Figure 1). This was first demonstrated
by Kaplan et al. (60) who showed that bone marrow derived
hematopoietic progenitor cells, activated by secreted factors
from the primary tumor, are capable of remodeling secondary
lung tissue to produce a fibronectin-rich environment prior to
tumor cell arrival. This environment then acts to support overt
colonization by the seeding tumor cells. Cell-ECM interactions
not only supply an anchorage point for seeding, but also activate
survival and proliferative signaling programs transduced through
integrin complexes and their associated downstream signaling
(61–63). These cell-ECM interactions, and signaling networks
are potential targets for therapeutic intervention, such as has
recently been shown for ROCK inhibition (64, 65). CTCs arriving
in secondary organs typically initiate and drive ECM remodeling
at these sites. For example, breast cancer cells metastasizing to
the lung produce their own tenascin C that promotes survival

and macrometastatic outgrowth via NOTCH andWNT stem cell
pathways (66). This is further perpetuated by secretion of TGF-β
by cancer cells, which stimulates fibroblasts to secrete periostin
(POSTN), further activating WNT signaling (67). Additionally,
when secreted at elevated levels, bone morphogenic protein
(BMP)-4 and -7 have been demonstrated to cause cancer cell
dormancy in both lung (68, 69) and bone (70), which is driven
by secreted protein acidic and rich in cysteine (SPARC) in the
prostate cancer setting (71).

Another example of ECM induced dormancy has been
observed within the “perivascular niche,” which, in some
tissues, such as bone and lung, produce a source of quiescing
thrombospondin 1 (TSP1) (72). Upon vascular disruption,
in situations such as inflammation or wounding, TSP1
secretion is disrupted and the generation of a tumor-promoting
microenvironment ensues and facilitates metastatic outgrowth
(72–74). Additionally, vascular endothelial cell secretion of
perlecan has also been shown to influence lung cancer cell
dormancy in the perivascular niche (75). Perlecan has also
recently been shown to be upregulated in CAFs in pancreatic
cancer through secretion of TNFα from p53 gain-of-function
(but not p53 loss-of-function) cancer cells. Cancer cell education
of CAFs and the elevated secretion of perlecan was responsible
for the generation of a prometastatic microenvironment (76).

It is clear that the ECM is a key regulatory determinant of
tumor cell phenotype and behavior, which is dynamically
modified throughout the different stages of metastatic
progression. The inherent nature of a patient’s ECM and
the particular modifications accrued by the ECM throughout
tumorigenesis may be viewed as either necessary and/or
sufficient to enable malignant progression. Thus, the tumor ECM
represents a vast territory of underexploited therapeutic targets
in treating cancer and cancer metastasis.

PROTEOGLYCANS AND THEIR
GLYCOSAMINOGLYCAN CHAINS

Glycosaminoglycans (GAGs) are well-established regulators in
the metastatic spread of cancer (77–82). GAGs are negatively
charged glycan structures comprised of repeat disaccharide units
and belong to one of four subgroups: (1) heparin/HS, (2)
chondroitin/dermatan sulfate (CS/DS), (3) keratan sulfate, and
(4) hyaluronic acid or HA. All GAGs, other than HA, are
covalently attached to the core protein of proteoglycans (PGs).
HSPGs are ubiquitously expressed and consist of a protein core
to which HS chains are covalently linked. Biological activities
associated to HSPGs are mediated through interactions with
various ligands, via the protein core or the HS side chains,
where the specificity and affinity of these interactions is related
to the HS chain structure and position of sulfate groups (83, 84).
HSPGs are involved in multiple roles ranging from structural
development and maintenance, to organization of the ECM and
BM via binding with matrix molecules including collagen IV,
fibronectin, and laminin (85, 86). In particular, HS modulates
cell-cell interactions by acting as a co-receptor for different cell
surface receptors as well as influencing cell-ECM interactions.
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HS also mediates the sequestering of various growth factors,
chemokines, cytokines, morphogens, and enzymes by forming
protected “reservoirs” that upon release can promote receptor-
ligand signaling complexes to mediate crucial regulatory roles in
cellular processes to maintain tissue homeostasis (87). Structural
modification of HS can occur post-translationally by the actions
of sulfotransferases, sulfatases (Sulfs), heparanase. MMPs and
other proteolytic enzymes (e.g., plasminogen) can modify the
protein core of HSPGs and can therefore regulate HSPG-
dependent signaling pathways (88, 89). Heparanase is the only
mammalian derived enzyme that is capable of degrading HS
(90) as well as heparin (91). HSPGs regulate a myriad of
activities including; cell adhesion and migration, proliferation,
differentiation and morphogenesis, vascularization, cytoskeletal
organization, and tissue repair (92). These phenomena are
essential for metastasis onset and success.

Heparan Sulfate Proteoglycans
HSPGs have intracellular, cell surface, and ECM localizations,
including the BM (93). The BMPGs, perlecan, agrin, and collagen
XVIII are primarily substituted with HS GAGs. Endothelial,
epithelial, immune cells, and fibroblasts all synthesize these
HSPGs, though HSPGs produced by different cell types will
be decorated with HS chains that differ in structure, and thus
their biological interactions will also differ (94). Hence, HSPGs
have been reported to have both pro-angiogenic and anti-
angiogenic properties due to heterogeneous HS structures and
thus, their interactions with numerous growth factors differ (95).
Cell surface HSPGs belong to members of the transmembrane
syndecan (SDC) and the glycosylphosphatidyl-inositol (GPI)-
anchored glypican (GPC) families. There are four mammalian
SDCs (SDC 1-4) and six GPCs (GPC 1-6). The location of HS
chains on the PG protein core with respect to the cell surface
differs between SDCs and GPCs. The HS chains that decorate
GPCs are located close to the plasmamembrane. In the SDCs, the
HS chains are located at sites further away from the cell surface.
The SDC family members are differentially expressed on different
cell types, SDC-1 is found on epithelial cells, SDC-2 on fibroblasts
and endothelial cells, SDC-3 is on neural cells, and SDC-4 is
ubiquitously produced by most cell types but in relatively low
abundance (96). Shedding of cell surfaceHSPGs provides another
mechanism to control HSPG distribution, as SDCs can be
enzymatically released by MMPs, where GPCs are shed by GPI-
specific lipases (97, 98). While, HSPG shedding downregulates
their functions at the cell surface, the shed, and now soluble,
HSPGs may facilitate the transfer of bound ligands to signaling
receptors on neighboring cells conveying positive or negative
effects in cancer progression (99). Opposing roles for anchored
vs. shed GPCs have been demonstrated. Overexpression of GPC-
3 in hepatocellular carcinoma (HCC) promotes tumor growth via
WNT (100) and insulin-like growth factor (IGF) signaling (101).
However, soluble GPC-3 blocks WNT signaling and inhibits
HCC growth (102). Similarly, transmembrane GPC-1 promotes
proliferation and metastatic growth of pancreatic cancer cells
(103, 104), whereas, soluble GPC-1, inhibits the mitogenic
response to FGF-2 and heparin-binding EGF-like growth factor
(HBEGF) (104). Additionally, glycoproteins such as betaglycan

and CD44v3 are part-time HSPGs, and may have potential roles
in cancer (105, 106).

The strategic location of HSPGs in tissues are critical to
their functional roles. Localization of SDCs and GPCs in the
plasmamembrane regulates intracellular and cell-ECM signaling.
Localization of HSPGs in the BM regulates their barrier functions
and co-ordinates cell-cell/ECM-cell interactions. Localization of
perlecan at the interface of tissues and tissue layers, coupled with
their sequestered growth factors, has been hypothesized as on-site
“depots” that assist with the restoration of those borders when
compromised (107). Cell surface HSPGs can also act as docking
modules for MMPs (108, 109), which promote invadopodia and
enable cells to move in specific directions through the ECM
(110). MMPs secreted by invadopodia promote the invasion of
breast carcinoma cells into the ECM (111). Endothelial cells
also release granules containing MMP-2 and MMP-9 at focal
sites, and their focal MMP activation can contribute to directed
angiogenic events (112). It has been proposed that cell surface
HSPGs generate a tract in the ECM for the migration of cells.
Weak interactive properties between cells and HS allow the cell
to “walk” along the cell surface or ECM HS chains facilitating
cellular migration (108). Shed fragments of cell surface HSPGs
can also influence cell proliferation by amassing in intracellular
spaces and sequestering growth factors (86). Degradation of
HS, by heparanase, on SDC-1 produces heparin-like fragments
that activate FGF-2 mitogenicity (113). The biological role of a
HSPG therefore depends on the properties of its protein core,
the number of GAG chains attached, its localization in cells and
tissues, as well as the biosynthetic modifications its GAG chains
receive in situ.

The vast range of biological functions attributed to GAGs
in cancer metastasis, and numerous other biological events, is
due to their non-templated controlled, highly heterogeneous and
complex structure, which enables the regulation of tissue-specific
functions. Biosynthesis of GAGs is a sequential process that
occurs in the endoplasmic reticulum and the Golgi apparatus
(114). This process is governed by a large family of enzymes, and
while the function of these enzymes is known, the process that
controls specific GAG structure, as well as the degree and position
of sulfate motifs is not. HS, the major GAG discussed herein,
consists of a glucuronic acid-galactose-galactose-xylose-linker
region (GlcA-Gal-Gal-Xyl) which is initiated by the enzymatic
transfer of xylose to specific serine-glycine residues of core
protein sequences (115). HS assembly occurs by sequential
addition of N-acetyl glucosamine (GlcNAc) to the linkage
tetrasaccharide acceptor, then GlcA to form GlcA-GlcNAc
disaccharide repeats (Figure 2). As the chain polymerizes, HS
is also enzymatically modified by sulfotransferases and an
epimerase at various positions in a coordinated manner, with the
product of one modification serving as substrate for the next step
(116). The enzyme, N-deacetylase/N-sulfotransferase (NDST),
substitutes the N-acetyl group with a sulfate group in between
clusters of GlcNAc, leaving regions of the chain unmodified.
Further modifications include; epimerization of GlcA to iduronic
acid (IdoA) and 2-O-sulfation of IdoA, O-sulfation of GlcNS by
sulfotransferases at C6 or less commonly, at C3. Thus, sulfation
along HS chains is not uniform and contains highly sulfated
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regions (NS domains) and largely unmodified regions (NA
domains). Ligand binding to HS depends on the arrangements of
NS and NA domains, and on the modified residues within the NS
domains. The HS-FGF-2 interaction exemplifies a GAG-growth
factor interaction and demonstrates how specific HS structures
facilitate FGF-2/FGFR-mediated signaling. HSPGs play a vital
role in the FGF-2/FGFR interactions by assembling FGF-2 near
the receptor, which forms a ternary complex that stabilizes the
ligand-receptor complex, thereby promoting signal transduction
(117). HS chains require N-sulfated glucosamine and 2-O-
sulfated IdoA units to bind to FGF-2 (118). At the same time, for
HS chains to bind FGFR, they require 6-O-sulfated GlcN residues
along with 2-O-sulfated IdoA with N-sulfated GlcN residues also
reported to be involved in this interaction (119).

A number of studies have highlighted that HS dysregulation
in cancer can occur when the expression and behavior of
HS-synthesizing and HS-modifying enzymes are altered (120–
124). For instance, Weyers et al. reported on the structural
differences found in sulfation patterns between normal and
breast cancer tissues in addition to differences in sulfation
between patients with non-lethal and lethal cancer (121).
Specifically, patients with lethal cancer presented with decreased
levels of 6-O sulfation of HS, and increased levels of unsulfated
disaccharides. Furthermore, observed increases in HS chain
length suggested that the breast tissue underwent changes in
the HS polymerization pathway. A similar study assessing
transcriptional patterns in panels of breast, prostate, colon
cell lines, and isolated tumors confirmed that changes in HS
biosynthetic enzyme levels occurred in a tissue-specific manner
and particularly affected modification enzymes which undertake
HS sulfation (120); supporting previous studies in animal models
(125, 126). Interestingly, the authors also discovered that there
was no difference in the biosynthetic enzymes between normal
and metastatic cell lines and proposed that the cells maintain
relatively normal PG expression pattern at the cell surface in
order to avoid immune detection.

The two known human orthologs of sulfatases (HSulf-1 and
HSulf-2) are released as soluble enzymes capable of cleaving the
6-O sulfate on glucosamine (127). Despite similarities in their
structural organization and mechanistic action, these sulfatases
have been shown to have opposite roles in cancer progression.
HSulf-1 suppresses FGF-2-mediated tumor cell proliferation and
invasion, HSulf-2 augments these activities to progress disease,
as examined in HCC (128). HSulf-1 is downregulated in breast,
pancreatic, ovarian, head and neck cancers according to a
tumor suppressor effect (129). HSulf-2 has additional roles in
the pathogenesis of non-small-cell lung carcinoma (NSCLC),
pancreatic cancer and glioblastoma despite unaltered expression
levels (130, 131). In contrast, prostate cancer cells overexpressing
HSulf-2 present with reduced levels of the trisulfated disaccharide
UA(2S)-GlcNS(6S) in conjunction with an increase in EMT
markers and WNT signaling (132). In this regard, the role
of HS-modifying enzymes in regulating EMT is noteworthy,
given its important role in metastatic progression (133, 134).
For instance, Maupin et al. consistently found upregulation
of the HSulf-2 enzyme in various in vitro models mimicking
aspects of pancreatic cancer EMT (135). Furthermore, increased

methylation of the HSulf-1 promotor was found to be present
in samples from gastric cancer patients (55%) as compared
to healthy patients (19%) (136). This was measured using
cell-free serum samples taken from patients and the authors
advised that methylation-induced silencing of HSulf-1 showed
potential as an early diagnostic tool for cancer. Likewise, other
studies have proposed that specific biosynthetic trends for each
tumor type (121) or proteoglycan staining patterns based on
associated GAGs could serve as potential prognostic biomarkers
in various histological types (123). Certainly, this area of research
will continue to evolve as new analysis tools become available
to study GAG structure and identify key structure-function
relationships. Significantly, tumor cells have been reported to
actively manipulate the binding capacity of their HSPGs for FGF-
2 and other growth factors, by modifying the overall density
and sulfation pattern of their HSPGs (81). Since natural killer
(NK) cells recognize particular HS fine structural patterns,
explicitly 6-O-sulfonation and N-acetylation patterns, cancer
cells can change their HS patterns to evade NK cells and immune
surveillance (137, 138). Studies of breast and pancreatic cancer
cells that express increased extracellular heparanase and aberrant
HSulf activity have also been shown to affect recognition by NK
cells (139).

The Role of Perlecan in Cancer Metastasis
Among the various contributory factors so far identified to be
involved in the various stages of cancer progression, perlecan,
a modular HSPG stands out as an important player. Perlecan
contains multiple domains (Figure 2) which allows participation
in a variety of roles, as well as being a major structural
constituent of BMs (85, 107, 140–143). Perlecan is encoded by the
HGPS2 gene, and is predominately substituted with HS chains,
though depending on the cell type it originates from, it may be
substituted with CS, DS, a combination of HS, CS, and/or DS, or
as a GAG-free glycoprotein (144, 145). The N-terminal Domain
I is most commonly decorated with three HS chains, whereas at
the C-terminal, Domain V can also be substituted with HS and/or
CS chains (146). The protein core is divided into five domains,
with each domain involved in binding to various partners,
from classical ECM components such as collagen IV, nidogen-1,
and fibronectin, to growth factors, including FGF-2, -7, vascular
endothelial growth factor (VEGF) and platelet derived growth
factor (PDGF) (85, 147, 148). While it is present in the BM of
most endothelial and epithelial cells, perlecan also associates with
the cell surface via interaction with α2β1 integrin (149). The c-
terminal fragment of perlecan can exist as a separate fragment to
the perlecan protein core, known as endorepellin, though it is not
separately synthesized but rather is a result of proteolytic cleavage
of secreted perlecan by proteases (150).

Interestingly, the two otherHSPGs of BMs, agrin, and collagen
XVIII, do not share much structural homology with perlecan,
with the exception of Domain V of agrin (142). Although
Domain I is unique to perlecan (151), it does contain the
SEA (Sperm protein, Enterokinase, Agrin) module, which is
present within other ECM proteins. GAG decoration on perlecan
has been shown to be modulated by the presence of the SEA
module since its deletion results in a recombinant protein
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FIGURE 2 | Schematic diagram of the HSPG perlecan and HS. The different domains of perlecan are depicted by roman numerals. The insert depicts a schematic of

HS represented by the repeating disaccharide of N-acetyl glucosamine and glucuronic acid (or iduronic acid) and sulfate moieties that can occur. Enzymatic

modification of HS can occur via heparanase cleavage, resulting in smaller molecular weight fragments, or cleaving the 6-O sulfate on glucosamine via sulfatase.

with decreased HS content and an increase in CS (152). The
importance of GAG decoration on perlecan has been further
demonstrated in Hspg213/13 mice, whereby deletion of exon
3 of the Hspg2 gene removes the GAG attachment sites in
Domain I and the mice presented with impaired angiogenesis,
delayed wound healing, and retarded tumor growth (153). The
functions that perlecan Domain I plays in various cellular
functions cannot be overstated, most notably in angiogenesis
(141–143, 154) and is predominantly due to the GAG chains
that decorate this domain. The HS moieties of perlecan can
bind a variety of pro-angiogenic factors including FGF-1, -2,
-4, -7, -10, hepatocyte growth factor and TGF-β (85, 142,
154, 155). The pro-angiogenic activity of perlecan is achieved
primarily through the interaction between HS, that decorate
the protein core, FGF, and its corresponding receptors. These
interactions actively coordinate cell proliferation, motility and
adhesion (94, 156, 157). Conversely, and despite being a key
region within a pro-angiogenic parent molecule, endorepellin
is a potent inhibitor of angiogenesis (158, 159). Endorepellin,
via the protein core, binds to both VEGFR-2 and α2β1 on
endothelial cells triggering a signaling cascade that disrupts cell
actin cytoskeleton and inhibits cell motility (149, 158, 160).
Endorepellin is also reported to have transcriptional control
by suppressing HIF-1α, a key transcription factor involved in
promoting angiogenesis (159). Endorepellin is comprised of
three laminin-like globular domains (LG1-LG3) with most of
the biological activity attributed to LG3, cleaved from the parent
molecule by protease digestion (161, 162). Circulating LG3 levels
have been shown to be reduced in breast cancer patients and
are being explored as a biomarker for cancer progression and
invasion (163). The expression of perlecan has been investigated

in various cancer types both in vitro and in vivo (Table 1).
Although the findings are inconsistent, it is apparent that
perlecan controls cancer progression by regulating interactions
between cells and signaling molecules during the various stages,
including ECM dysregulation, angiogenesis and invasion, which
will be discussed in the following sections.

Extracellular Matrix Dysregulation

Cells interact with the ECM to regulate their activities and
behavior. This interaction can occur directly through cell
surface receptors, including integrins and discoidin domain
receptors, and indirectly, via the release of growth factors
and cytokines sequestered in the GAG chains (88, 178). ECM
remodeling is instrumental to these essential functions including
a fundamental role in angiogenesis (179). ECM remodeling
removes the restrictive physical barrier, liberating endothelial
cells to proliferate and migrate, which is coupled with the
release of sequestered pro-angiogenic growth factors from HS
chains of perlecan. The ECM is constantly deposited, remodeled,
and degraded during development through to maturity to
maintain tissue homeostasis (180, 181). Tissue inhibitor of
metalloproteinase 3 (TIMP-3) inhibits ECM turnover and
has been associated with cancer (182). This enzyme binds
to sulphated GAGs on perlecan; further highlighting the
significance of sulfation patterns in modulating protein activity
(183). The highly dynamic nature of the ECM plays a crucial
role in cancer progression and is the first barrier to developing
metastasis. ECM remodeling is hijacked by tumor cells and
invading stromal cells, resulting in dysregulated remodeling
and dynamics (184, 185). This alters the composition and
organization of the ECM and eventually leads to changes in its
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TABLE 1 | Summary of in vivo observations for perlecan expression in various cancer types.

Cancer type Assessment technique Observations References

Melanoma Immunohistochemistry Increased in BM at tumor-stroma interface and surrounding blood vessels

Increased levels in tissue

(164)

mRNA expression Increased levels in tissue (165)

Colon Immunohistochemistry Increased in stroma (166)

Lung Immunohistochemistry Decreased to undetected in BM at tumor-stroma interface (167)

mRNA expression Increased levels in tissue (165)

Breast Immunohistochemistry Decreased to undetected in BM at tumor-stroma interface (168, 169)

mRNA expression (in situ) Increased levels in tumor and stromal cells

Immunohistochemistry Increased in stroma (166)

Heptocellular carcinoma (HCC) Immunohistochemistry Increased in BM at tumor-stroma interface and blood vessels in stroma (170)

Immunoelectron microscopy Increased at BM at tumor-stroma interface

Intraheptatic cholangiocarcinoma (ICC) Immunohistochemistry Decreased to undetected in stroma (171)

mRNA expression (in situ) Increased levels in tumor cells and stromal fibroblasts

Ameloblastoma mRNA expression (in situ) Increased levels in stromal cells (172)

Prostate Immunohistochemistry Increased in stromal cells (173)

Ovarian Immunohistochemistry Decreased to undetected in BM at tumor-stroma interface

Unaltered in BM of surrounding blood vessels or stroma

(174)

Pancreatic Immunohistochemistry Increased in BM and stroma (175)

Oral squamous cell carcinoma (SCC) Immunohistochemistry Decreased to undetected in BM at tumor-stroma interface

Increased in stroma

(176)

Glioblastoma mRNA expression Increased levels in tissue (177)

essential properties (23, 25). However, the exact interactions and
the role of BM components such as perlecan in mediating the
abnormalities remain unstudied.

The breaching mechanism by which tumor cells invade
the BM has not been clearly determined but has been
proposed to involve a number of ECM-distinct and most
likely complementary mechanisms: proteolytic degradation of
the ECM in parallel with abnormal ECM synthesis (186).
Degradation of ECM is mediated by multiple proteases including
MMPs, ADAMs, and ADAM-TS (short for a disintegrin and
metalloproteinase, and a disintegrin and metalloproteinase with
thrombospondin motifs), in addition to heparanase, liberating
pro-angiogenic factors that in turn activate angiogenesis and
promote the proliferation of tumor cells (185, 187). Stromal
cells, including CAFs, along with infiltrating immune cells and
tumor cells, results in a sustained presence of these proteinases.
This situation overall leads to the progressive destruction of
normal ECM and establishment of the cancer-associated ECM.
Remarkably, it is the same set of proteins, in different structural
configurations and likely altered interactions with each other
and the surrounding environment, that results in the abnormal
ECM. Certain regions within the ECM have been identified to
be important for tumor cell proliferation and survival but can
be partially hidden or “cryptic;” only becoming unmasked upon
enzymatic digestion (142). At present, no cryptic epitopes have
been identified for perlecan but undoubtedly the fine structural
sequences of the HS chains may be accountable.

Angiogenesis

Angiogenesis is a key requirement for cancer growth and
progression (188); this multi-step process is dependent on ECM

remodeling and endothelial cell activation for the coordinated
differentiation into functional vessels. HSPGs have long been
acknowledged to control angiogenesis via the sequestering and
release of growth factors which regulate endothelial cells, smooth
muscle cells, and fibroblasts (189). The role of perlecan in pro-
angiogenetic and anti-angiogenic functions place it center stage.
Both tumor cells and host stromal cells synthesize perlecan;
confirmed by a series of early xenograft immunostaining and
transcriptional studies (166, 168, 190). The secretion of perlecan
by tumor cells was proposed by the authors to facilitate formation
of blood vessels during tumor expansion through the binding and
interaction between perlecan and angiogenic growth factors. The
incorporation of tumor perlecan into host blood vessels is likely
mobilized by proteases easing the recruitment and diffusion of
angiogenic growth factors into the tumor stroma (89). Gradients
of perlecan expression have been observed in tumor vessels with
the most reactive areas located at or around the sprouting edges,
suggesting that tumor-derived perlecan can favor or induce the
neovascularization of tumors (166, 190). Alternatively, host cells
are proposed to synthesize perlecan as a defensive mechanism,
with HS acting as a “sink” for growth factors by limiting their
diffusion (154). The HS chains may be key elements that direct
the intermolecular interactions that occur between perlecan and
other BM components. The diverse substructure of HS chains
might influence not only the growth factor-binding ability of
perlecan but mediate roles in adhesion that can affect cancer cell
proliferation and migration (86).

Tumor cells can also upregulate the production of several
angiogenic factors such as FGF and VEGF in order to support
their altered growth patterns andmetabolism (154). For example,
tumor vessels formed as a result of VEGF upregulation are
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abnormal; these vessels are variably fenestrated and leaky,
accompanied by a disorganized or loose BM (191) (Figure 1,
Box 2). These conditions typically lead to high interstitial
pressures, escalated tissue hypoxia and production of additional
VEGF (192). Human prostate cancer cells, depleted of perlecan
and grafted in mice, produced tumors of decreased size and
vascularization, where the effects were correlated to reduced
secretion of VEGF-A in the xenografts (193). The occurrence of
hypoxia during the early stages of tumor growth has been shown
to regulate a number of angiogenic growth factors and cytokines,
including VEGF (194). The expression of regulatory enzymes
responsible for HS chain synthesis is also subject to hypoxic
influence with preferential synthesis of HS resulting in increased
responsiveness of hypoxic endothelial cells to FGF-2 (195). The
release of heparanase from tumor cells into the ECM promotes
cleavage of HS fragments, which in turn liberates bound growth
factors that act to further support tumor angiogenesis (196).
Perlecan also plays a role in establishing cytokine gradients in the
ECM which are utilized by cells to migrate through tissues, as in
the case of angiogenesis (87, 197).

Invasion

Malignant tumors are characterized by their invasiveness into
nearby tissues, followed by metastasis to distal locations away
from the primary tumor site. In order for these processes to
take place, a series of signaling mechanisms contribute to the
breakdown of the surrounding ECM by activating or releasing
various proteolytic enzymes. A key enzyme involved in HSPG
processing is heparanase, which recognizes a HS sulfation motif
to hydrolyze the glycosidic bond between glucuronic acid and
glucosamine (198). Heparanase activity digests HSPGs, resulting
in increased endothelial permeability that enables the passage of
invading cells through established boundaries, and the release
of sequestered growth factors and soluble HS fragments that
support angiogenesis and tumor growth (196). It has also been
proposed that reduced adhesion of tumor cells to the underlying
ECM, as well as increased cell motility, is due to cleavage of cell
surface HS by heparanase produced by the tumor cell itself (108).
Notably, heparanase has also been recognized to participate in
some non-enzymatic activities, separate from its involvement in
ECM degradation and remodeling (199–201).

Upregulation of heparanase occurs in essentially all human
tumors and is closely correlated with an invasive phenotype in
experimental models and has been linked to worse outcomes in
cancer patients (196, 202, 203). A few examples are presented.
Lung metastatic melanoma cells overexpress heparanase isoform
1 (Hpa1) mRNA (up to 29-fold) compared to normal lung
tissue (204). Hpa1 enzyme was identified around vascularized
regions, as well as blood vessels near the invasion front in various
representative models (204, 205). Heparanase over-expressing
breast tumors are seven times larger and present significantly
more vascularization (206). Friedmann et al. presented high
levels of heparanase mRNA in lymph, liver, and lung tumor
metastases with the highest amounts of both mRNA and
enzyme detected in deeply invading colon carcinoma cells
(207). Heparanase activity is upregulated in lung and brain
cancers, with melanoma cells that are highly metastatic to the

brain overexpressing Hpa1 (208, 209). Specimens from breast
cancer patients showed that lymphocytes express heparanase and
when serum collected from these patients was introduced to
fresh lymphocytes, heparanase expression was stimulated in the
normal lymphocytes (210). Furthermore, a non-metastatic cell
type, transfected with the gene that encodes heparanase, acquired
a metastatic phenotype (211). Hypoxia was found to augment
heparanase activity and consequently invasion in ovarian cancer
cell lines (212). Inversely, anti-sense targeting of heparanase
weakens the invasive ability of carcinoma cells (213).

The importance of HSPG structure in tumor biology was
demonstrated in a study where Liu et al. injected bacterial
recombinant heparinase (Hep) I (which cleaves highly sulfated
regions) and Hep III (which cleaves unsulfated regions) into
melanoma challenged mice and found that the specificity of
the enzymes dictated whether tumors regressed (Hep III) or
advanced (Hep I) due to where the different enzymes cleaved
HS (214). This finding demonstrated both the heterogeneity
of HS and the fine control of biological function due to
these different HS structures. They found that the resulting
tumor cell GAG fragments were distinct following treatment
with the different heparinase isoforms, with Hep III digestion
causing up to 75% inhibition in tumor growth whereas
fragments as a result of Hep I digestion significantly enhanced
growth. Furthermore, the demonstrated effects were modulated
by FGF-2 signaling, as Hep I-generated fragments promoted
FGF-2 activity, whereas Hep III-generated fragments inhibited
signaling, with additional implication of MAP kinase and FAK
pathways. It should be noted that there is a difference in
the mechanism by which mammalian-derived heparanase and
bacterial-derived heparinase cleaveHS; heparanase is a hydrolase,
as opposed to heparinase which is an eliminase (215). In some
instances, the overexpression of heparanase is linked to other
enzyme activities. In addition to heparanase overexpression,
melanoma cells were reported to exhibit 3-O-sulfotransferase
gene hypermethylation and subsequent gene silencing (216). A
study by Ma and Geng, showed that the cell adhesion molecule
P-selectin, present on endothelial cells and activated platelets,
was still capable of binding to a HS-like molecule displayed
on melanoma cells despite the absence of its recognition motif
(217). Interplay between a series of enzymes including 3-, 6-O-
sulfotransferase and HSulf enzymes may transform HS to confer
P-selectin binding ability and hence promote the migration of
cells to secondary sites (81). Additionally, heparanase mediates
upregulation ofMMP-9, expressed from tumor cells, to indirectly
stimulate invasion (218). In addition to the biological effects
modulated by the HS chains of perlecan, perlecan-rich borders
can resist cell invasion and serve as tissue boundaries (107). These
borders include the glandular BM (219), the reactive stromal
compartment (173), the vasculature (220), and bone marrow
reticular matrix (221). Perlecan and MMP-7 co-localize at tissue
boundaries when surveyed in prostate cancer sections, with
MMP-7 proposed to act as a molecular switch by altering cancer
cell behavior to favor cell dispersion and invasiveness (222, 223).

While increased expression of perlecan is shown in a number
of tumor types (Table 1), its levels are also undetectable in other
instances. Several early studies reported strong mRNA levels of
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perlecan with the overexpressed perlecan protein deposited in the
ECM and in tumor cells at the invading front (164, 171, 172, 224).
These studies were supported by observations of inhibited tumor
growth and angiogenesis (193, 225) or reduced cell proliferation
and invasiveness (226) when perlecan was downregulated by
anti-sense targeting. This is contrary to the findings reported by
Mathiak et al. where anti-sense targeting of perlecan resulted in
stimulation of tumor cell growth in vitro and in vivo accompanied
with increased invasiveness in the ECM (227). It has been
suggested that the lack of perlecan in these cases could perhaps
be related to the tissue microenvironment preferentially favoring
the diffusion of growth factors, which encourages tumor growth
and metastasis (142, 154). Alternatively, Nerlich et al. reported
high levels of perlecan mRNA in both tumor and stromal cells
but then very low levels of perlecan protein present in tumor-
associated BM (168, 169). Similarly, differences were observed
between perlecan mRNA and secreted protein measured from
stably transfected anti-sense perlecan targeting subclones, with
reduction of >50% compared to the untransfected parental cell
line (193). A recent study exploring the localization of perlecan
in squamous cell carcinoma (SCC) reveals that perlecan and
its binding growth factors namely VEGF [binds to HS chains
(85)], Sonic Hedgehog (SHH) [HS and protein core (228)], and
FGF-7 [protein core (147)] co-localize within the epithelial layer
before invasion (176). Once the carcinoma cells started to invade,
perlecan and FGF-7 were identified in the stromal space while
VEGF and SHH remained at the epithelial layer. This correlates
with other studies that suggested biosynthesis of perlecan was
switched over from carcinoma cells to stromal cells (174, 190, 229,
230). The discrepancy between significantly enhanced mRNA
synthesis and loss in protein deposition may also point to the
activity of proteolytic enzymes or a post-translational block of
protein synthesis or both (154).

Overexpression of perlecan in prostate cancer stroma has
been linked to TNFα-mediated transcriptional induction (173).
This suggests that perlecan transcription could be a part of
cytokine-mediated innate immune response to cancer invasion.
Perlecan has also been implicated in regulating prostate cancer
progression via the SHH pathway (231). Franses and colleagues
explored the role of endothelial cells in regulating cancer cell
behavior, where perlecan silencing eliminated the ability of
endothelial cells to suppress cancer invasiveness in both in
vitro and in vivo models of breast and lung cancer (75). These
findings indirectly contrast with the early work (discussed above)
showing that perlecan depletion (albeit in cancer cells) slows
tumor growth and reduces metastasis (193, 225, 226). The fact
that perlecan acts in a cell context-specific manner could be a
consideration for the contradicting data (142). It is important
to note that perlecan derived from different cellular sources
carries different HS structures and as such different growth factor
binding and functional capabilities (94, 157). For example, Lord
and colleagues have shown that the GAG chains differ between
perlecan enriched from human coronary artery smooth muscle
or endothelial cells and this influences their roles in mediating
cell adhesion and proliferation, as well as FGF binding and
signaling (157). Therefore, it can be summarized that tumor
subtype, stage, degree of tumor differentiation, and/or various

histological location and identifying reagent (i.e., primer region
of interest or antibody epitope) may result in the different
distribution of perlecan across the reported studies.

THERAPEUTIC TARGETING OF HEPARAN
SULFATE PROTEOGLYCANS AND THEIR
FUNCTION IN CANCER METASTASIS

Therapies that target HSPGs in cancer metastasis cover a range
of modalities, highlighted in Table 2. Most therapies that target
metastasis and the role of HS revolve around the inhibition of
heparanase. The inhibition of heparanase eliminates the cleavage
of HS chains and the release of bioactive molecules such as,
FGFs, and VEGF, to disrupt the downstream events that are
associated not only with the progression of cancer but also with
cancer metastasis. Given the prevalence of cancer and the role
of HSPGs in multiple events there is an extensive amount of
literature, including a number of recent reviews (203, 247, 248),
that detail the mechanisms of action of the range of therapeutics
that are being developed. The following section will review the
most recent advances in the field.

The first reports of heparanase inhibitors in an anti-cancer
or anti-metastatic activity, stemmed from the use of heparin
and low molecular weight heparins (LMWHs) (249). As heparin
has a similar structure to HS, though a higher sulfated version,
it competes with endogenous HS for both heparanase binding
and substrate activity. However, the risk to patients regarding
bleeding due to anticoagulant activity of heparin has limited
their use as therapeutics for cancer and cancer metastasis,
particularly as a long term therapeutic. Given the potential of
both heparin and LMWHs, much effort has been directed toward
either modifying or mimicking the structure heparin/LMWHs
to remove the anticoagulant activity whilst retaining the ability
to inhibit heparanase. The success of HS mimetics is clear
through the number of these materials that have made it through
to clinical trials. Modification of heparin through desulfation
and glycol splitting has seen the development of roneparstat
(250) and its investigation in a Phase I trial as a therapeutic
for myeloma (232). In addition to roneparastat, HS mimetics
muparfostat (PI-88) (233), neuparanib (N-402) (234), piixatimod
(PG545) (251), have been, or are currently in clinical trials for
use as a therapy targeting metastasis of melanoma or pancreatic
cancer. More recent reports have detailed the use of these HS
mimetics not only in the development of therapeutics, but the
development of more representative models for testing anti-
cancer/anti-metastatic therapeutics including patient-derived
xenografts (237) and organoid models (238). Neuparanib has
been shown to reduce tumor cell proliferation and invasion in
an organoid model, and plasma levels of patients within a clinical
trial cohort reported increased levels of tissue inhibitor of MMP-
3 (238). The attempt at mimicking the structure of HS has seen
the development of glycopolymers with well-defined sulfation
patterns and the ability to optimize disaccharide length for peak
heparanase inhibition (252), which reduced metastasis of breast
cancer in a rodent model. The ability to design and synthesize
HS mimicking structures that eliminate anti-coagulation activity
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TABLE 2 | Summary of therapeutics that target heparan sulfate proteoglycans.

Therapeutic Results or observations (specific

compound reported in brackets)

References

HS mimetic/

heparanase

inhibitor

In a Phase I clinical trial demonstrated safety

though anti-myeloma efficacy was minimal

(Roneparstat)

(232)

Demonstrated safety in a Phase I clinical trial

for melanoma [Muparfostat (PI-88)]

(233)

Acceptable safety and encouraging signals of

activity in patients with metastatic pancreatic

cancer in Phase I clinical trial [Neuparanib

(N-402)]

(234)

Anti-metastatic effects in murine models of

melanoma and lung cancer

(235)

Inhibition of primary tumor growth and reduced

metastasis in murine breast cancer model

(236)

Acceptable safety and encouraging signals of

activity in patients with metastatic pancreatic

cancer in Phase I clinical trial

(234)

Inhibition of metastasis from primary tumor in a

lung cancer patient derived xenograft model

(237)

Reduced MMP1 expression and increased

TIMP3 expression in pancreatic cancer patients

(238)

LMWH Reduced primary tumor and pulmonary

metastasis in a murine melanoma model.

LMWH was incorporated into a hydrogel

system

(239)

Heparanase

inhibitor

Benzoxazole derivatives demonstrated

anti-metastatic potential via reduced

expression levels of FGF-1, FGF-2, VEGF, and

MMP-3 in a fibrosarcoma derived cell line

(240)

Sulfatase

inhibitor

Inhibition of TGFβ1/SMAD and Hedgehog/GL1

pathways in hepatocellular carcinoma cell lines

(241)

Reduced tumor size in mice implanted with

xenograft pediatric glioblastomas

(242)

Immunotherapy GPC-2 targeting antibody-drug conjugate

reduced proliferation of GPC-2 expressing cells

derived from neuroblastomas

(243)

Monoclonal antibody that binds to GPC-3

demonstrated safety in a Phase I clinical trial for

hepatocellular carcinoma

(244)

GPC-3 CAR-T cells eliminated GPC-3 positive

tumors in murine model of hepatocellular

carcinoma.

(245, 246)

and target heparanase has more recently been facilitated with
use of computational modeling to predict the anti-cancer/anti-
metastatic potential (253–255).

In addition to the issues associated with anticoagulant activity,
heparin also has a short half-life which can mean when
administered intravenously that high dosages are required for a
therapeutic effect or that there is the need for multiple injections.
More recent reports have demonstrated the therapeutic use of
heparin via incorporation or tethering to a substrate for targeted
delivery. Reduction of metastasis in a lung cancer model was
achieved with incorporation of heparin into a hydrogel system
for local administration of the therapeutic (256). Tethering
heparin to oligonucleotides via a cleavable linker that is pH

sensitive (239), has also been demonstrated as a method of
targeted delivery and the reduction of pulmonary metastasis in
a melanoma model. Furthermore, delivery of LMWH, through
tethering to micelles, reduced pulmonary metastasis in a breast
cancer model, which was further reduced by using a delivery
system that facilitated targeted co-delivery of the LMWH with
the chemotherapy agent doxorubicin (257).

Despite their anti-metastatic properties, HS mimetics and
polysaccharide derivatives have limitations due to their relatively
high molecular weights, and rather heterogenous structures.
More recently, there has been the exploration of small molecular
inhibitors of heparanase, that overcome these limitations, for
example benzimidazole and benzoxazole derivatives (258–260).
Benzimidazole and benzoxazole derivates have been long studied
in medicinal chemistry (261). Most recent advances in these
derivatives include the synthesis of symmetrical analogs that
demonstrated superior anti-heparanase activity as compared to
non-symmetrical analogs (240), with the ability to not only
inhibit heparanase, but also bind and sequester HS interacting
growth factors and chemokines that modulate angiogenesis.

In addition to heparanase, sulfatases can modify HS via the
removal of 6-O-sulfate groups and as such have been investigated
as a targeting molecule. The compound designated OK-007,
2,4-disulfophenyl-N-tert-butylnitrone, inhibits the enzymatic
activity of Sulf2. This compound was initially explored as a
treatment for acute ischemic stroke (262), though has since
been investigated as a potential therapeutic for HCC (241) and
glioblastoma (242). Coutinho de Souza et al. (242) demonstrated
the ability for OKN-007 to reduce cell proliferation and the
expression of the receptor for platelet derived growth factor,
and the authors speculated potential anti-angiogenic properties
of OKN-007.

More recently, monoclonal antibody therapy, a form
of immunotherapy, has been explored as a route to
target HSPGs. Though, these therapies have been mainly
focused toward targeting primary rather than secondary
tumors. Monoclonal antibodies targeting GPC-2 have
been developed as a therapeutic for neuroblastoma (243),
and antibodies targeting GPC-3 have progressed to phase
I trials in HCC (244). More recently GPC-3 in HCC
has been used as a target in chimeric antigen receptor,
or CAR T-cell therapy (245, 246, 263), with the therapy
demonstrating the ability to reduced HCC tumors in a xenograft
model (245).

CONCLUSIONS

The role of HSPGs in cancer metastasis is through the
interaction of the HS chains or PG protein core with key
biological molecules associated with metastatic events. The
non-templated heterogeneous structure of HS modulates these
specific interactions between mediators, influencing events in
the metastatic cascade. Furthermore, the increase in heparanase
expression in multiple cancer types results in the cleavage
of HS chains and release of mediators involved in these
events. HSPGs, including perlecan, have antithetic roles in
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cancer and metastasis through the interaction with biological
molecules. The subtle differences in HSPG structure, particularly
that of HS, results in a family of molecules that behave
as both pro- or anti-metastatic factors. Thus, due to the
structure specific interactions between HS and mediators of
metastatic events, future therapeutics that target HSPGs and
their cleaving enzymes need to target specific HS or heparanase
binding structures, and ideally have targeted delivery, to ensure
both efficacy and reduced off-target effects to truly improve
patient outcomes.
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