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ABSTRACT

Massively-parallel single-cell and single-nucleus
RNA sequencing (scRNA-seq, snRNA-seq) requires
extensive sequencing to achieve proper per-cell
coverage, making sequencing resources and avail-
ability of sequencers critical factors for conduct-
ing deep transcriptional profiling. CoolMPS is a
novel sequencing-by-synthesis approach that relies
on nucleotide labeling by re-usable antibodies, but
whether it is applicable to snRNA-seq has not been
tested. Here, we use a low-cost and off-the-shelf
protocol to chemically convert libraries generated
with the widely-used Chromium 10X technology to
be sequenceable with CoolMPS technology. To as-
sess the quality and performance of converted li-
braries sequenced with CoolMPS, we generated a
snRNA-seq dataset from the hippocampus of young
and old mice. Native libraries were sequenced on an
Illumina Novaseq and libraries that were converted
to be compatible with CoolMPS were sequenced
on a DNBSEQ-400RS. CoolMPS-derived data faith-
fully replicated key characteristics of the native li-
brary dataset, including correct estimation of ambi-
ent RNA-contamination, detection of captured cells,
cell clustering results, spatial marker gene expres-
sion, inter- and intra-replicate differences and gene
expression changes during aging. In conclusion, our
results show that CoolMPS provides a viable alter-
native to standard sequencing of RNA from droplet-
based libraries.

INTRODUCTION

Next generation sequencing has accelerated biomedical re-
search and diagnostics alike, particularly the sequence-
by-synthesis approach (1–3). Applications of this tech-
nology for sequencing cDNA libraries generated from
RNA molecules (RNA-seq) have seen tremendous advance-
ments and yielded a wide range of applications that are
continuously expanded (3). Illumina sequencers are the
most frequently used instruments, and several commercial
and/or customized RNA-seq methods generate exclusively
Illumina-compatible sequencing libraries (3). These se-
quencers rely on PCR-based clonal amplification of cDNA
fragments and use dye-labeled nucleotides to monitor the
synthesis reaction. Interestingly, an alternative method,
called CoolMPS, has been recently commercialized by BGI
(4). This method uses circularized libraries that are am-
plified in a rolling-circle, and therefore, PCR-free, manner.
The results are ‘DNA nanoballs’, that are then sequenced
through application of four fluorescently labeled antibodies.
These antibodies recognize and distinguish the four bases
A, T, C, G, thereby allowing sequence-by-synthesis with
label-free nucleotides (4). Given its distinct chemistry, se-
quencing libraries must either be generated with CoolMPS-
compatible reagents or Illumina-compatible libraries must
be chemically converted to induce circularization.

Single-cell sequencing technologies have significantly im-
pacted life sciences and permitted genetic, epigenetic and
transcriptomic profiling at previously unprecedented reso-
lution (5). Single-cell and single-nucleus RNA-sequencing
(scRNA-seq, snRNA-seq) in combination with droplet-
based technologies such as the Chromium 10X platform
(6) are among the most widely used approaches (5). These
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assays have been applied in efforts to map the transcrip-
tomes of all cell types of whole organisms (5,7,8), as well
as identification of changes in cell composition and gene
expression under perturbations such as disease and aging
(7,9–11). Previous studies have demonstrated that single-
cell libraries derived via the Smart-seq2 and Chromium
10X (version 2 chemistry) protocol can be converted and
sequenced using the conventional MGISEQ technology
(12,13). However, the performance of DNA nanoball-
conversion and subsequent sequencing of single-libraries
with CoolMPS has not been assessed yet. Additionally, the
Chromium 10X version 2 chemistry has been recently dis-
continued and updated significantly (to so-called ‘version
3′), and the changes allow for far more complex libraries
yielding almost twice the number of detectable genes and
transcripts per cell (14). Finally, conversion assessments
have been limited to live cells in suspension. snRNA-seq
from frozen tissues holds the promise of sequencing crit-
ical tissues that either cannot be easily dissociated or were
biobanked with a protocol that does not allow for single-cell
dissociation after thawing (15). This excludes a wide range
of relevant tissues, many of them from human patients.

The brain, arguably the most complex tissue in mam-
malian anatomy, is herein a prime example of how the gran-
ularity of droplet-based single-cell assays has significantly
contributed to our understanding of its plasticity and func-
tion in aged individuals and in age-related diseases (9,16–
21). One region of interest in the aging brain is the hip-
pocampus, which is generally considered as a key center for
learning and short-term memory formation, and both func-
tions are known to decline with age (22). The hippocam-
pus consists of diverse canonical cell types at varying abun-
dance, such as neurons, oligodendrocytes and astrocytes,
which undergo distinct and common transcriptional shifts
during aging (19). Furthermore, each cell type can have
multiple sub-populations of different anatomical origin or
functional roles, e.g. the pyramidal neurons of the trisynap-
tic loop (CA1, CA2, CA3) and the granule neurons of the
dentate gyrus (DG) (23).

In this study, we assessed the performance of Chromium
10X snRNA-seq libraries that were chemically converted
to be compatible with and sequenced using CoolMPS. Us-
ing hippocampi of young and old mice as input tissue,
we comparatively analyse data generated from native and
CoolMPS-compatible libraries (sequenced on an Illumina
and BGI sequencer, respectively) across a range of param-
eters, such as overall read distribution, barcode recovery,
detection of contaminants, cell clustering, cell type identi-
fication and differential expression. We report remarkably
consistent performance between native and converted li-
braries. Thus, we consider sequencing droplet-based single-
cell RNA-seq libraries that are converted to be compatible
with the CoolMPS method to be a viable alternative to the
current standard.

MATERIALS AND METHODS

Animals

Old C57BL/6J male wild-type mice (18 months) were ob-
tained from the National Institute on Aging, and young

C57BL/6J males (2 months) were purchased from The Jack-
son Laboratory. Throughout the whole manuscript we re-
fer to these samples––and the libraries generated from their
tissues––as ‘Y1’, ‘Y2’ (young males replicate 1 and 2, re-
spectively), ‘O1’ and ‘O2’ (old males replicate 1 and 2, re-
spectively). Mice were housed under a 12-h light–dark cycle
in pathogen-free conditions in accordance with the Guide
for Care and Use of Laboratory Animals of the National
Institutes of Health.

All animal procedures were approved by the VA Palo
Alto Committee on Animal Research and the institutional
administrative panel of laboratory animal care at Stanford
University. Male mice were used for all experiments.

Nuclei isolation and Chromium 10X library generation

Nuclei were isolated as described previously in (15). Per
replicate, we isolated nuclei from the flash-frozen, whole
hippocampus of the right hemisphere. All reagents were
placed on ice. Frozen tissue was placed on a lab dish on
ice and covered with 1 ml lysis buffer from the Nuclei EZ
Prep Kit (Sigma-Aldrich, St. Louis, USA). Tissue was cut
into 2 mm-small pieces and the tissue-buffer mix was trans-
ferred on a 2 ml tissue grinder placed on ice. 1 ml of fresh
lysis buffer was used to rinse the lab dish and then loaded
on the tissue grinder as well (2 ml total volume). Tissues
were homogenized with 25 strokes with pastel A followed
by 15 strokes with pastel B. Tissue homogenate was trans-
ferred to a fresh tube on ice. The tissue grinder was rinsed
with 2 ml of fresh lysis buffer, and then transferred to the
same tube holding the homogenate (4 ml total). The tube
was incubated on ice for 5 min. Nuclei were pelleted with
5 min centrifugation at 500 × g, and then the pellet was re-
suspended with 4 ml fresh lysis buffer. Following one more 5
min centrifugation at 500 × g, lysis buffer was removed, and
the pellet was washed with 4 ml PBS. Nuclei were pelleted
and resuspended in 500 �l PBS containing 2 U/ml Protec-
tor RNase Inhibitor (Sigma-Aldrich, St. Louis, USA). Nu-
clei solution was parsed through a 40 �m mesh. Nuclei were
counted and concentrations adjusted to ∼1 mio nuclei/ml.

Reagents of the Chromium Single Cell 3′ Library &
Gel Bead Kit v3 (10X Genomics, Pleasanton, USA) were
thawed and prepared according to the manufacturer’s pro-
tocol. Nuclei/master mix solution was adjusted to tar-
get 7,500 nuclei per sample and loaded on a standard
Chromium Controller (10X Genomics, Pleasanton, USA),
according to the manufacturer’s protocol. All reaction and
quality control steps, including library construction (using
Chromium Single Cell 3′ Library Construction Kit v3) were
conducted according to the manufacturer’s protocol and
with recommended reagents, consumables and instruments.
Quality control of cDNA and libraries was conducted using
a Bioanalyzer (Agilent, Santa Clara USA) at the Stanford
Protein and Nucleic Acid Facility (http://pan.stanford.edu/
index.html).

Illumina sequencing

Illumina sequencing of 10X snRNA-seq libraries was per-
formed by Novogene Co. Inc. (Sacramento, USA; https:
//en.novogene.com/). Multiplexed libraries were sequenced
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with 2 × 150-bp paired-end (PE) reads in a single S4 lane on
a Illumina Novaseq S4 (Illumina, San Diego, USA), target-
ing 215 million reads per library. Base calling, demultiplex-
ing and generation of FastQ files was conducted by Novo-
gene.

snRNA-seq data for the native and converted libraries
are available under GEO ID GSE150284 (https://www.ncbi.
nlm.nih.gov/geo/query/acc.cgi?acc=GSE150284).

Library conversion and CoolMPS sequencing

Libraries generated using the Chromium 10X Single Cell
3′ (version 3) kit require a conversion step using the
MGIEasy Universal Library Conversion kit (Part Num-
ber: 1000004155, MGI Tech Co., Ltd, Shenzhen, China) be-
fore DNA nanoballs (DNBs) can be generated. For each
library, 50 ng of final 10X library product was amplified
using 5 cycles of PCR to incorporate a 5′ phosphoryla-
tion on the forward strand only. Purified PCR product was
then denatured and mixed with a ‘splint’ oligonucleotide
that is homologous to both P5 and P7 adapter regions of
the library to generate a circle. A ligase reaction was then
performed to create a complete ssDNA circle of the for-
ward strand. Then an exonuclease digest was performed
to remove single stranded non-circularized DNA molecules
and splint oligonucleotide. DNBs were then prepared using
the DNBSEQ-G400RS High-throughput Sequencing Set
(FCL PE100––Part Number 1000016950, MGI Tech Co.,
Ltd, Shenzhen, China), according to the manufacturer’s
protocol https://en.mgitech.cn/download/files/hao id/2/p/2.
Rolling circle replication time for DNB preparation was
set to 25 min. DNBs were loaded onto DNBSEQ-G400 4-
lane flowcell provided with the PE100 sequencing set by
manual pipetting of DNBs mixed with loading buffer into
flowcell lanes using the MGIDL-200H DNB loader as de-
scribed in the CoolMPS High-throughput Sequencing Set
User Manual provided with the kit. Sequencing primers
in the MGI CoolMPS PE100 kit were replaced with the
primers provided in the High-Throughput Pair-End Se-
quencing Primer Kit (App-A) (Part Number 1000004156,
MGI Tech Co., Ltd, Shenzhen, China) according to the in-
structions described in the Primer Kit manual. Sequencing
was performed on a DNBSEQ-G400 (MGI Tech) using a
customized program with 28 sequencing cycles (cell bar-
code) for the 1st strand and 98 cycles of cDNA followed
by eight cycles of the sample barcode reading for the sec-
ond strand. Whereas the standard sequencing-by-synthesis
approach relies on incorporation of labeled nucleotides, the
CoolMPS method sequences via the incorporation of un-
labeled, reversibly terminated nucleotides. The fluorescent
signal to detect the incorporated bases is generated by using
base-specific 3′ block-dependent fluorescently labeled anti-
bodies. After each cycle, the bound antibodies are removed
and 3′ blocking moiety on the sugar group of the nucleotide
regenerates the natural nucleotides. This procedure has the
advantage not leaving a mark on the base and making the
current sequencing cycle independent on the previous one.
A more detailed description of the CoolMPS method and
procedures is available under (4). Base calling and genera-
tion of FastQ files on the DNBSEQ-G400 was performed

using the software release for CoolMPS (BasecallLite ver-
sion 1.0.7.84).

snRNA-seq data for the native and converted libraries
are available under GEO ID GSE150284 (https://www.ncbi.
nlm.nih.gov/geo/query/acc.cgi?acc=GSE150284).

snRNA-seq mapping, nuclei calling and quality filtering

Throughout the whole manuscript we refer to the index
read––containing cell barcodes––as ‘read 1’, while the read
containing the information of the actual cDNA fragment as
‘read 2’.

Raw sequence reads for each sample and dataset were
downsampled to 2 × 200 million PE reads in a PE read-
sensitive manner using the seqtk toolkit (v1.3, parameters:
sample -s100 <fwd reads.fq.gz> 200000000) before map-
ping reads using the mapping software zUMIs (24) (v2.5,
relevant parameters: sequence files: file1: base definition:
-BC (1–16) -UMI (17–27) file2: base definition: -cDNA(1–
91); filter cutoffs: numb bases:1 phred: 20 UMI filter:
num baes: 1 phred: 20; barcodes: barcode num: 40000
barcode file: null automatic: yes BarcodeBinning: 1
nReadsperCell: 100 counting opts: introns:yes downsam-
pling: 0 strand: 0 Ham Dist: 0 write ham: no primaryHit:
yes twoPass: yes read layout: SE). We supplied the cur-
rent version of the mm10 reference genome and gencode
annotation (vM22) for the mapping. We targeted for each
sample and dataset the top 40 000 cell barcodes, and
counted reads in introns and exons, given the considerable
amount of intronic reads in nuclear transcripts (following
the official 10X guidelines).

https://support.10xgenomics.com/single-cell-gene-
expression/software/pipelines/latest/advanced/references).
Read duplication levels were computed with FASTQC
0.11.8. The error rate per base was estimated with the
average mismatch per base reported by STAR (2.7.3a).

Data visualization and analysis were performed us-
ing SeqMonk (http://www.bioinformatics.babraham.ac.uk/
projects/seqmonk/), custom RStudio (https://www.rstudio.
com/) scripts and the following software packages: SoupX
(v1.2.1) (25), muscat (26), Deseq2 (27), Seurat (v3.1)
(28), Singlecellexperiment (29), DropletUtils (30) and
org.Mm.eg.db.

For analyzing the distribution of reads in 10X libraries,
we pooled mapped reads within each sample to gener-
ate four ‘pseudobulk’ .bam files. Genes were binned into
100 bins each, with the bin-size being adjusted so each bin
has the same size for a given gene. We counted the number of
reads mapping to each bin and calculated for each gene the
relative enrichment of reads falling into the last bin versus
a random bin from within the same gene. For each sample,
we repeated this analysis 1000 times to estimate the average
count enrichment over the last bins.

Cells/nuclei were called using the defaultDrops func-
tion (parameters: expected = 7000, upper.quant: 0.98,
lower.prop = 0.1), and the non-called droplets were pro-
vided to SoupX for estimation of contaminating ambient
RNA (parameters: soupRange = c(0, 1100)). For visualisa-
tion of ambient RNA contamination (Supplementary Fig-
ure S6c, d) we conducted a cell embedding using Seurat’s
standard workflow. Data normalization, scaling and iden-
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tification of variable genes was performed using Seurat’s
built-in vst method with 2000 features to select. A shared-
nearest-neighbours graph was constructed based on the first
10 Principal component (PC) dimensions before clustering
cells using Seurat’s built-in FindClusters function with a
resolution of 0.4 and default parameters. SoupX requires
a set of reference genes specific to cell types to estimate the
present contamination (25). Using our knowledge of well-
established cell marker genes and SoupX’s visualization
tools to help with marker selection, we selected a short list
of gene sets and provided these to SoupX’s estimateNonEx-
pressingCells function (Mature Oligodendrocytes = Plp1,
Mog, Pde4b, St18, Slc24a2, Pcdh9; choroid plexus cells
= Ttr, Htr2c; Astrocytes = Apoe, Slc1a2, Slc1a3, Prex2,
Cst3, Gabrb1, Gpc5; Neurons = Lsamp, Kcnip4, Tenm2,
Nrg3, Celf2, Grin2a). SoupX was used to estimate and re-
move ambient RNA contamination for every sample indi-
vidually and the results were verified using SoupX’s visual-
isation tools.

Finally, after inspecting sample-wise distributions of
number of genes, number of UMIs and mitochondrial read
proportions, we excluded cells expressing fewer than 600 or
>3500 genes, as well as cells exhibiting mitochondrial read
proportions higher than 0.5%.

Cell embedding, clustering and cell type identification

For the native and converted dataset separately, we in-
tegrated all four sample-wise datasets (two from young
and two from old mice), using Seurat’s built-in SCTrans-
form and integration workflow (28) (vars.to.regress =
c(‘nCount RNA’, ‘nFeature RNA’), with 3000 genes set as
integration features. Integrated datasets were then used as
input for cell embedding and clustering. A shared-nearest-
neighbours graph was constructed using the first 12 PC di-
mensions before clustering cells using Seurat’s built-in Find-
Clusters function with a resolution of 0.4 and default pa-
rameters. Umaps and tSNEs were calculated using Seu-
rat’s built-in functions, based on the first 12 PC dimen-
sions. Count data was subsequently normalised and scaled
to allow for visualisation of expression values and differen-
tial gene expression analysis. Seurat’s FindAllMarkers func-
tion was run with default parameters to identify cluster
markers.

For the integrated dataset (Figure 4), we repeated the
analysis with the aforementioned workflow and parameters,
using all eight sample-wise datasets (from each library type,
two young mice and 2-old mice).

Annotating anatomical origin of neuronal clusters

Marker genes for neuronal clusters were ranked by fold
change and we obtained normalized expression data from
publicly available bulk RNA-seq datasets for the top 30
markers for each cluster (23). The reference dataset was
generated from pyramidal and granule cells of distinct
anatomical regions of the hippocampus (dorsal/ventral
DG, dorsal/ventral CA1, dorsal CA2, dorsal/ventral CA3),
and contains three biological replicates for each population
and region. Gene-wise scaled expression data was used as
input for the hierarchical clustering. We annotated clusters

depending on the enrichment of marker genes for a given
brain region. This way, we were able to annotate clusters 0,
3, 5, 8 and 11.

Pseudobulk and replicate-sensitive differential gene expres-
sion analysis

Current differential gene expression methods implemented
in Seurat cannot account for biological replicates. Bulk
RNA-seq methods, such as Deseq2, take replicate informa-
tion into account and can perform with three or even two
replicates (26,27,31). Therefore, we summarized the expres-
sion matrices for each cell type separately using muscat’s ag-
gregateData function with default parameters (26). Due to
the relatively low sample power and overall shallow cover-
age of pseudobulk data, we decided to call differentially ex-
pressed genes at adjusted P-values <0.1, which is consistent
with the muscat manuscript and original Deseq2 publica-
tion (26,27).

RESULTS

Generating CoolMPS compatible snRNA-seq libraries

We aimed to assess the quality and usability of Illumina-
compatible, single-cell gene expression libraries that were
chemically converted to be compatible with CoolMPS tech-
nology. To this end, we generated snRNA-seq libraries us-
ing standard Chromium 10X Single Cell 3′ reagents (version
3 chemistry) and protocols. To compare the platforms in a
challenging experimental setting, we generated snRNA-seq
data from frozen whole hippocampus tissues of two young
and 2-old mice (3 and 18 months of age, respectively; target-
ing 7500 nuclei/sample) (Figure 1A). To increase the level
of difficulty, we used a nuclei isolation protocol with min-
imal cleanup steps, which ensured an encompassing sam-
pling of the broad population of hippocampal cells while
accepting higher levels of debris and ambient RNA as a
tradeoff. Thus, we generated a high-complexity dataset that
we then used to assess the performance of CoolMPS across
criteria like sample-wise signal-to-noise ratios, the ability to
resolve finer distinction of cells and the detection of inter-
and intra-replicate differences.

Aliquots of the libraries were sequenced as-is on an Il-
lumina S4 Novaseq system, within a single lane (herein re-
ferred to as ‘native libraries’). Different aliquots of the same
library stock were pooled and converted to be CoolMPS-
compatible (see Materials and Methods for details) be-
fore sequenced across four lanes of a single flow cell on a
DNBSEQ-G400 system (herein referred to as ‘converted’ or
‘CoolMPS-compatible’ libraries). Data from both sequenc-
ing runs were downsampled to 200 million reads per sample,
trimmed and mapped with identical settings.

CoolMPS-compatible libraries maintain distinct hallmarks
of droplet-based sequencing assays

Droplet-based RNA-seq methods such as 10X rely on cap-
turing mRNA molecules through their polyA-tail, thus en-
riching predominantly fragments derived from the 3′ end
(6). Indeed, we observed an enrichment of reads at the 3′
end of genes (exemplified by C4b, Figure 1B). We binned
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Figure 1. Performance of native and CoolMPS-compatible snRNA-seq libraries. (A) Experiment outline. Four 10 × 3′ snRNA-seq libraries were gener-
ated, derived from hippocampi of two young (3 months) and two old mice (18 months). Libraries were sequenced directly using an Illumina Novaseq or
chemically converted and sequenced using CoolMPS technology on a DNBSEQ-400RS. Each library was down-sampled to contain 200 mio. paired-end
reads per sample and library type. (B) Distribution of aggregated reads from the converted libraries dataset over C4b gene locus, separated by sample. Ar-
rows indicate gene orientation; merged mRNA structure is depicted below. (C) Aligned read distribution of aggregated reads from the converted libraries
dataset over the last kilobase pair of all expressed genes (n = 11 132 genes with rpkm > 1 in two or more samples). (D) Venn diagrams depict the number of
cells detected in each dataset, split by samples (Y1, Y2, O1, O2). Cells of the same sample exhibiting identical cell barcodes in both datasets are considered
identical cells detected by both Illumina and CoolMPS sequencing. Number of cells detected only in the native or converted libraries are colored in green
and ochre, respectively. (E) Knee plot of sample Y1, showing UMI counts per cell barcode. Black points represent cells, with cells called only in one library
type colored in red. The regions at the cutoff between called cells and empty droplets (labelled ‘background’; marked by the dashed box) are visualized
at larger scale in Supplementary Figure S1b. (F, G) Scatterplot showing the cell-wise number of (F) detected UMIs and (G) genes by either library type.
Insert shows the zoomed region with Deming regression line, showing a mild offset from the diagonal. Abbreviations: Y1, Y2, young male replicates 1 and
2; O1, O2, old male replicates 1 and 2; Eot, end of transcript; a.u., arbitrary unit; mbp/kbp/bp, megabase pair/kilobase pair/base pair.

each gene into 100 bins and observed that the last bin prior
the 3′ end exhibited an average 5-fold enrichment over any
other bin of the same gene (native libraries: mean 5.4-fold ±
0.8 standard deviation; converted libraries: mean 5.2-fold ±
1 standard deviation). Fifteen percent of all reads mapping
to genes (native libraries: mean 15.6% ± 0.8% standard de-
viation; converted libraries: mean 14.6% ± 0.3% standard
deviation) fell within a 300–350 bp region located at the
annotated end of transcripts, where we observed the high-
est read densities (Eot, Figure 1C; Supplementary Figure
S1a). Consistently, data from both native and converted li-
braries exhibited a 98% overlap of detected cells (Figure
1D), merely differing by a few hundred cells at the end of the
count-barcode distribution (Figure 1E; Supplementary Fig-
ure S1b). Furthermore, commonly detected cells were cor-
related with respect to the number of detected UMIs and
genes (R2 = 0.98 and R2 = 0.97, respectively) (Figure 1F,
G), although Deming regression indicated a small offset of
∼50–80 genes per cell for converted libraries. This might be
related to a slightly lowered fraction of reads with a mean

Q30 value, which we observed to drop from 98% to 95% and
96% to 91% on reads 1 and 2, respectively (Supplementary
Figure S2a–k). However, we found no evidence that any par-
ticular group of transcripts, genes or pathways was affected.
Furthermore, we performed analysis of conventional met-
rics including mapping rate (Supplementary Figure S2j),
error rate (Supplementary Figure S2k), duplication levels
(Supplementary Figure S3a–h), GC content (Supplemen-
tary Figure S4a–i) and base composition per cycle (Sup-
plementary Figure S5a, b). We noted that the estimated er-
ror rate was twice as high among the converted libraries,
increasing from an average of 0.19% (native libraries) to
0.41% (converted libraries). This level of error rate is not
expected to notably affect the overall results for single-cell
transcriptomics. The remaining quality metrics provided no
further evidence that DNB-conversion and sequencing with
CoolMPS had other negative impacts on overall library
quality. Thus, the conversion reaction preserved the overall
structure and composition of a droplet-based snRNA-seq
dataset.
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Detection and removal of known contaminants is unaffected
by conversion reaction

scRNA-seq data is known to be affected by contaminants
such as damaged cells (characterized by high mitochondrial
read proportions) or ambient, cell-free RNA, which can
compromise the transcriptome of intact cells and falsely in-
dicate expression of non-endogenous genes in a given cell
population (5,25). Considering this, we asked if the conver-
sion reaction would negatively impact our analysis’ ability
to distinguish nuanced biological signals from noise. Given
that our libraries were generated from single nuclei, only 8%
of the nuclei detected from the native libraries and 7% from
the converted libraries, exhibited mitochondrial read pro-
portions higher than 0.5%, and were excluded from further
analyses (Supplementary Figure S6a). As expected, there
was a highly significant (P-value < 10−3), 66% overlap of ex-
cluded nuclei among the native and CoolMPS-compatible
libraries (Supplementary Figure S6b). Among many of the
cells passing this first filtering step, we detected low lev-
els of transcripts usually unique to choroid plexus, such
as transthyretin (Ttr; Supplementary Figure S6c, d). This
phenomenon is due to RNA derived from damaged cells,
that is included in droplets of intact nuclei. We detected
that this contamination––sometimes referred to as ’soup’
(25)––varied among samples but was not statistically differ-
ent across library types (Supplementary Figure S6e). After
correcting the expression matrices for ambient RNA con-
tamination, we still found high correlation between native
and converted libraries with respect to the number of UMIs
and genes per nuclei (R2 = 0.979 and R2 = 0.972, respec-
tively) (Supplementary Figure S6f, g). Taken together, the
library conversion did not affect accurate differentiation be-
tween signal and noise.

Equivalent identification of cell populations across library
types

We next asked if clustering and detection of cell types would
be affected by the conversion reaction and/or subsequent
sequencing with a different instrument. Using identical pa-
rameters for the analysis, both datasets yielded consistent
results; 23 clusters were identified for each dataset and the
clusters could be unambiguously associated across datasets
by simply intersecting their respective top 50 marker genes
(Figure 2A–C). Interestingly, we discovered in both datasets
multiple clusters of neuronal cells that were located adjacent
to one another when visualized via umaps. Following recent
publications deriving spatial origin of neurons from bulk
and single-cell transcriptomes (23,32), we performed hier-
archical clustering of the top 30 marker genes for each pop-
ulation using publicly available RNA-seq data of anatomi-
cally distinct neurons in the hippocampus (23). The anal-
ysis revealed five clusters that could be clearly identified:
granule cells of the ventral and dorsal DG, and pyramidal
neurons of dorsal and ventral CA1 and dorsal CA3 (Fig-
ure 2D). There were also three clusters of pyramidal cells,
which we could not clearly anatomically identify and were
thus labelled as CA1/3.

While we could not identify any significant impact of the
library conversion or sequencing method on cell clustering,
i.e. on the scale of cell populations, we next asked whether

the transcriptomes of individual cells might have been com-
promised. To this end, we calculated for every nucleus, in
each dataset separately, the 500 highest expressed genes.
We then identified the overlap of these 500 genes for nu-
clei present in both datasets (‘pair of identical cells across
platforms’), thus representing technical reproducibility of
the single-nuclei transcriptome across library types. As a
comparison, we chose the biological reproducibility, i.e. the
similarity of single-nuclei transcriptomes from two random
cells of the same cell type/cluster within the native library
dataset (‘pair of random cells of same platform’). Across
every sample and cluster, the technical reproducibility out-
performed the biological reproducibility (represented by the
five largest clusters; Figure 2E). We thus found no evidence
that the conversion reaction significantly altered the single-
nucleus transcriptome.

Finally, we annotated all detected clusters, and found all
major cell types and cell populations previously detected
in the hippocampus among both datasets (Figure 2F–H)
(15). (Figure 2F–H). Interestingly, cells detected only in
the CoolMPS-compatible libraries were significantly under-
represented in neuronal cell populations, but enriched in
oligodendrocytes, microglia and endothelial cells (Figure
2I, J). Non-neuronal cells tend to express overall fewer
transcripts, which can be visualized by ranking individual
cells by their total number of UMIs and plotting the dis-
tribution of cell types along this ranking (Figure 2I, J).
Given that cells detected only in the CoolMPS-compatible
libraries were enriched toward the end of this count-barcode
distribution (compare Figure 1E), their overrepresentation
among non-neuronal cells is expected.

In summary, the selected nuclei isolation protocol al-
lowed sampling and identification of multiple neuronal and
non-neuronal cell populations at fine resolution. Moreover,
library conversion followed by sequencing using antibody-
based nucleotide labeling did not affect the ability to resolve
even fine distinction of cells.

Conversion reaction preserves inter-replicate variance

In order to determine the robustness of the conversion pro-
tocol across multiple samples, we next analyzed if differ-
ences within and between sample replicates of the same
age group would be unaffected in CoolMPS-compatible li-
braries. First, we inspected possible differences in cellular
composition with age. We detected an increased proportion
of pericytes and cells of the choroid plexus in older animals
(Figure 3A–C). Given that the choroid plexus is an anatom-
ically distinct region of the brain and not part of the hip-
pocampus, we assumed that the higher abundance of these
cells result from increased fibrosis (33), ultimately lower-
ing tissue dissociation quality (34). Data from CoolMPS-
compatible libraries corroborated higher levels of choroid
plexus cells. Moreover, we observed that relative cell abun-
dance levels across cell types and replicates were close to
identical in both datasets (Figure 3D), confirming that the
conversion reaction yielded robust performance across sam-
ples.

One of the key analyses in RNA-seq benefiting from
biological replicates is the detection differential gene ex-
pression (DGE) (31). Consistent with multiple studies that
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Figure 2. Cell clustering performance across libraries. (A, B) UMAP representation of cells and clustering results of (A) n = 29 945 cells (native libraries)
and (B) n = 30 360 (converted libraries), respectively. (C) Heatmap depicting the number of common top 50 genes per cluster as detected in either sequencing
run. (D) Identification of spatial origin of five neuronal clusters. We performed hierarchical clustering of the top 30 marker genes (rows) of clusters 0, 3, 5,
8 and 11 as identified in the native dataset. For those marker genes, expression is plotted as measured in a publicly available RNA-seq data of anatomically
distinct neurons (columns; n = 3 replicates per neuronal population). Cells within the heatmap are colored to represent row-wise z-transformed expression
of given gene across all anatomically distinct neurons. Marker genes are annotated by the row-side color bar, with each marker gene colored by cluster.
Expression data was derived from (Cembrowski et al. 2016). (E) Cluster and sample-wise distribution of common top 500 expressed genes between two cells.
Cluster number corresponds to the clusters found in the native dataset in (A). Gray violins represent overlaps from cells of the same cluster (biological cell
replicates); blue violins represent overlaps from cells with the same barcode, sequenced in both datasets (technical replicates). Means ± SEM. (F) Relative
expression of top 30 cell marker genes as found in native library dataset. Each column represents n = 50 of randomly selected cells per cell type. (G, H)
UMAP representation of cells with annotated cell types in (G) native and (H) converted library dataset, respectively. (I, J) Analysis of depletion (I) and
enrichment (J) of cells found only in the CoolMPS-compatible dataset among neuronal and non-neuronal cell populations. Left-hand panels: Distribution
of cell types among all cells, ranked by their total UMI count in descending order (converted libraries only; cell with the highest total UMI count has rank
0). Rank of cells for given cell types that were found only in the CoolMPS-compatible dataset are indicated along the x-axes. Right-hand panels: Y-axis
indicates for each cell type the observed-over-expected values for cells that were found only in the CoolMPS-compatible dataset. Absolute number of cells
found only in the CoolMPS-compatible dataset are indicated in the bubble. Cell types exhibiting no statistical enrichment or depletion for CoolMPS-
unique cells are not shown. ***Padj < 0.001, **Padj < 0.01, *Padj < 0.05, two-sided Fisher’s exact test, adjusted for multiple testing. Abbreviations: Y1,
Y2, Young male replicates 1 and 2; O1, O2, Old male replicates 1 and 2; DG dors., granule neurons of dorsal dentate gyrus; DG vent., granule neurons
of ventral dentate gyrus; CA1 dors., pyramidal neurons of dorsal CA1; CA1 vent., pyramidal neurons of ventral CA1; CA3 dors., pyramidal neurons of
dorsal CA3; CA1/CA3 Neur., pyramidal neurons that could not be clearly allocated to CA1 and CA3; GABA interneuron, Gabaergic interneurons; Mat.
Oligos, mature oligodendrocytes; OPCs, oligodendrocyte precursors; MGs, microglia; Chor. Plx., choroid plexus cells; ECs, brain endothelial cells; a.u.,
arbitrary unit; obs./exp., observed over expected.
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Figure 3. Inter- and intra-replicate differences are unaffected by conversion reaction. (A, B) UMAP representation of cells (CoolMPS-compatible dataset)
with annotated cell types split by replicates across (A) young and (B) old. Circles highlight differential abundance of choroid plexus-derived cells and
Pericytes. (C) Relative cell composition across replicates and datasets. (D) Sample-wise correlation of cell fractions as detected in the native and converted
libraries dataset. ***P < 0.001, **P < 0.01, *P < 0.05, Spearman rank correlation test. (E, F) Expression levels of C4b and Fos per cell colored on
UMAP as detected in (E) the native dataset and (F) the CoolMPS-compatible dataset, respectively. Expression of both genes changes significantly with
age across all cells. ***Padj < 0.001, **Padj < 0.01, *Padj < 0.05, Two-sided Wilcoxon rank-sum test, adjusted for multiple testing. (G) Pseudobulk-level
Multidimensional Scaling (MDS) plot for both datasets. Each point represents one cell population in a given sample. Points are colored by cell population
and shaped by age. (H) Pseudobulk-level MA-plot for Astrocyte population (CoolMPS-compatible dataset). Genes showing differential expression (Padj <

0.1) between old and young are marked in red. *Padj < 0.1, two-sided Wald test, adjusted for multiple testing. (I) Cross-platform correlation of pseudobulk-
level, gene-wise log2-transformed expression ratios between young and old samples. Detected DEGs (Padj < 0.1) common and distinct to either dataset are
colored. (J) Distribution of pseudobulk-level gene-wise expression changes between old and young animals, resolved by cell population. Genes showing
differential expression (Padj < 0.1) between old and young in given cell type are marked in red. (K) Total number of detected DEGs per cell population
using either the native or converted libraries (grey heatmap) and per-cell population overlap of common DEGs relative to total DEGs, split by up- and
down-regulated genes. % overlap is indicated by color scale. ***Padj < 0.001, **Padj < 0.01, *Padj < 0.05, two-sided Fisher’s exact test, adjusted for multiple
testing. Abbreviations: Y1, Y2, young male replicates 1 and 2; O1, O2, old male replicates 1 and 2; DG dors., granule neurons of dorsal dentate gyrus;
DG vent., granule neurons of ventral dentate gyrus; CA1 dors., pyramidal neurons of dorsal CA1; CA1 vent., pyramidal neurons of ventral CA1; CA3
dors., pyramidal neurons of dorsal CA3; CA1/CA3 Neur., pyramidal neurons that could not be clearly allocated to CA1 and CA3; GABA interneuron,
GABAergic interneurons; Mat. Oligos, mature oligodendrocytes; OPCs, oligodendrocyte precursors; MGs, microglia; Chor. Plx., choroid plexus cells;
ECs, brain endothelial cells; Astroc., astrocytes; n.s., not statistically significant; a.u., arbitrary unit; obs./exp., observed over expected.
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performed bulk and single-cell DGE analyses of the ag-
ing brain, we observed in both datasets increased expres-
sion of inflammatory markers such as C4b, and decreased
levels of Fos, an indicator of neuronal activity (Figure 3e)
(19,35–37). Current software packages for DGE analyses
of single cells are not replicate-sensitive, but this limitation
can be overcome by pseudobulk (PB) analyses (26). Across
cell types, PB DGE analyses using the DESeq2 software
package (27) resulted in highly consistent results in both
the native and CoolMPS-compatible dataset (Figure 3G–
K). As such, we observed a strong correlation of expres-
sion fold changes (exemplified by Astrocytes; Figure 3I),
and a highly significant overlap of common differentially
expressed genes (Figure 3I–K). On average, 65% of the sig-
nificantly down-regulated genes and 60% of significantly
up-regulated genes were detected in both datasets. We ob-
served the highest overlap among neurons of the CA3 re-
gion (79%) and the lowest among neurons of the ventral
CA1 region (52%). Consistent with a previous single-cell
RNA-seq analyses of aged brain tissues of mice (19), we
found genes with significant up-regulation across most cell
types, such as C4b, Tpt1, and Actb, and up-regulation in sev-
eral genes coding for ribosomal proteins, including Rpl38.

Taken together, we found that chemical conversion of
Illumina-compatible libraries followed by sequencing on a
DNBSEQ-G400 system yielded robust results across multi-
ple samples and preserved replicate-sensitive differences of
biologically relevance.

Data of native and CoolMPS-compatible libraries can be in-
tegrated

Finally, we bioinformatically pooled both snRNA-seq
datasets to test if nuclei from both library types would form
coherent clusters (herein referred to as ‘integrated dataset’).
To this end, we used standard dataset integration algo-
rithms and workflows (28) and performed embedding and
clustering of the nuclei similar to the analyses conducted
on each dataset individually (compare Figure 2A–D). Vi-
sualized in 2D space using umaps, we observed that nuclei
from both datasets clustered without any detectable techni-
cal bias (Figure 4A, B). Each of the resulting 29 clusters
was equally composed of nuclei from both datasets, and
the per-replicate abundance was unaffected (tested using
cluster-wise paired Wilcoxon rank sum tests; Figure 4C).
Most nuclei clusters found in the integrated dataset could
be directly associated to clusters found in the native libraries
dataset via their top 50 marker genes, with small clusters
being the exception (Figure 4D). After completing nuclei
annotation, we found that the integrated dataset yielded a
cell composition profile with remarkable similarity to both
the native and CoolMPS-compatible dataset (Figure 4E).
Split by replicates, we also found that the integrated dataset
maintained relevant features previously identified in each
dataset separately, including increased levels of pericytes
and choroid plexus-derived cells in the aged samples (Figure
4F). Thus, native and CoolMPS-compatible libraries yield
highly consistent sequencing results that can be analyzed
both interchangeably and combined.

DISCUSSION

The process of sequencing has experienced little innova-
tion in recent years compared to the explosion of its ver-
satile applications, with the exception of long read sequenc-
ing (1,38). While overcoming several of its early limitations,
long read sequencers do not yield the same throughput of
current short-read sequencers (2). We have therefore taken
an interest in the release of CoolMPS and corresponding
conversion kits, as this technology could provide a possi-
ble addition to the existing set of sequencing platforms. The
application of fluorescently labeled antibodies is a consid-
erable novelty that could streamline the efficiency of the se-
quencing process since antibodies could potentially be re-
used. Furthermore, sequencing via nucleotide-sensitive an-
tibodies could eventually yield reads beyond the current
150–300 bp limit, since dye-free nucleotides are less likely
to interfere with subsequent sequencing cycles (i.e. reduced
‘scarring’). However, we are not aware of peer-reviewed
studies assessing the performance of chemically converted
droplet-based libraries sequenced with CoolMPS.

For this study, we chose to assess the performance of con-
verted libraries generated with the Chromium Single-cell ‘3
reagent kit (version 3), as it is currently among the most
widely used droplet-based technologies, and several single-
cell and single-nucleus atlas datasets have been generated
with it (7,9,11,17,39,40). Conventional MGISEQ chemistry
has been successfully applied to Smart-seq2 and Chromium
10X (version 2 chemistry) single-cell libraries (12,13), yet se-
quencing via antibody-labelled bases is fundamentally dif-
ferent to the classical sequencing-by-synthesis approach.
Additionally, the currently distributed Chromium 10X ver-
sion 3 chemistry yields significantly more complex tran-
scriptome, doubling the number of detectable genes and
transcripts per cell (14). Whether the biological and techni-
cal complexity of 10X v3 libraries is maintained during the
DNB conversion process and properly resolved by sequenc-
ing with CoolMPS, is thus not evident until experimentally
tested and verified. However, we acknowledge that multi-
ple other single-cell RNA-seq technologies exist (14) and
we have not assessed whether chemical conversion and se-
quencing with CoolMPS is applicable to these. In addition,
we only tested the performance of the conversion kit for
droplet-based RNA-seq libraries but not for other single-
cell assays such as single-cell Atac-seq (5). Given the re-
sources required for generating and sequencing single-cell
libraries from multiple technologies and assays, we consider
this to be beyond the scope of this study but expect more
studies to explore the performance of CoolMPS-compatible
libraries for other sequencing assays.

To test the performance of converted libraries, we gen-
erate snRNA-seq libraries from hippocampus tissue, given
its diverse composition of cell types and anatomical com-
plexity. We elected to use a previously published nuclei iso-
lation protocol (15) that involves little physical or chem-
ical filtering (e.g. no removal of myelin or application of
density gradients) to obtain a diverse sample of present
cell populations while accepting significant amounts of de-
bris and ambient RNA. Indeed, the dataset contained all
cell types associated with hippocampal adult mouse tissue
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Figure 4. Integrated native and CooMPS-compatible snRNA-seq datasets show no separation by library type. (A, B) UMAP representation of cells and
clustering results of n = 60,0720 cells integrated from both datasets. Cells are colored by (A) cluster or (B) library type. Cells were split by library type
to improve visibility. (C) Relative abundance of each cluster normalized to total cells. Relative abundances are split by library type to gauge conversion-
dependent composition of clusters. n = 4 per dataset. Means ± SEM. ***Padj < 0.001, **Padj < 0.01, *Padj < 0.05, two-sided Wilcoxon rank-sum test,
adjusted for multiple testing. Adjusted P-values for paired, two-sided Wilcoxon test probing differential abundance per cluster are shown in red. (D)
Heatmap depicting the number of common top 50 genes per cluster as detected in either integrated or native dataset. (E, F) UMAP representation of
cell populations from integration dataset when (A) collapsed or (B) split by dataset and age. Circles highlight differential abundance of choroid plexus-
derived cells and Pericytes. Abbreviations: DG dors., granule neurons of dorsal dentate gyrus; DG vent., granule neurons of ventral dentate gyrus; CA1
dors., pyramidal neurons of dorsal CA1; CA1 vent., pyramidal neurons of ventral CA1; CA3 dors., pyramidal neurons of dorsal CA3; CA1/CA3 Neur.,
pyramidal neurons that could not be clearly allocated to CA1 and CA3; GABA interneuron, gabaergic interneurons; Mat. oligos, mature oligodendrocytes;
OPCs, oligodendrocyte precursors; MGs, microglia; Chor. Plx., choroid plexus cells; ECs, brain endothelial cells; a.u., arbitrary unit; obs./exp., observed
over expected; Padj, adjusted P-value.

(15) and contained neurons with transcriptional signatures
of distinct anatomical origin (23). CoolMPS-compatible li-
braries recapitulate these biological features of our dataset
in every aspect and detail, including cell type diversity,
fine differences between cells from distinct hippocampal re-
gions and expression changes with age. Similarly, we found
no evidence that the library conversion caused a blurring
between biological signal and background contaminants.
Since this study focuses on the comparison of native and
converted libraries, we did not examine the biological valid-
ity of cell composition or expression shifts with age. How-
ever, findings from previous single-cell studies in aged mice
do align with some of the most pronounced changes found
in our analyses, such as increased expression of complement
protein C4b across cell types (19) and astrocytes adopt-
ing an activated state marked by higher expression of Gfap

(18). We anticipate that future studies will demonstrate that
the consistency between native and CoolMPS-compatible
scRNA-seq libraries is not dependent on the tissue or stud-
ied perturbation.

The main difference we identified was a slightly reduced
single base call quality in the CoolMPS-compatible libraries
compared to native. We cannot resolve here whether this
drop in per-base Q30 values is a consequence of the se-
quencer or the conversion. Preliminary sequencing data
of libraries generated with CoolMPS-compatible reagents
(i.e. no conversion was required) have suggested that the se-
quencing platform itself results in base call errors similar
to those seen with dye-labeled nucleotides (4). In addition,
conventional MGISEQ-sequencing after DNB-conversion
of droplet-based libraries also reported a drop of Q30 bar-
codes, Q30 UMIs and Q30 RNAs by 4–6 percentage points,
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compared to sequencing of native libraries on an Illumina
NovaSeq (12). This may indicate that the conversion re-
action, which involves five extra PCR cycles, could indeed
lower the libraries’ per-base quality. However, only a direct
sequencing comparison of the identical libraries between all
three technologies (Illumina, MGISEQ and CoolMPS)––or
a conversion-free approach––would definitely resolve this
issue. In addition, lowering the number of PCR cycles could
thus represent a possible optimization of the protocol.

Interestingly, our analyses demonstrated that the lowered
Q30 values were largely inconsequential, given the perfor-
mances of native and converted libraries across all tested
features. One explanation for this could be that the aver-
age base calling quality of the converted libraries was still
>80%, comparable to the industry-reported performance
of HiSeq 2500 instruments (41), which have been widely
accepted and used in studies such as the 1000 Genomes
Project (42). Furthermore, trimming of low-quality bases
is common practice prior to mapping, and effective reads
of only 25 bp length yield transcriptome data largely identi-
cal to the one generated with longer reads (31,43). Finally,
RNA-seq libraries generated with the 10 × 3′ platform cover
only a fraction of the exome (fragments of app. 350 bp at the
3′ end), which allows for quantification of gene expression
but has limited usability beyond that (no splicing or geno-
typing analyses). Therefore, a mild reduction in base calling
quality may thus be tolerable.

In conclusion, our study provides the first line of evidence
that CoolMPS is a robust method for sequencing single-
cell/single-nucleus RNA-seq libraries from droplet-based
assays.
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