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Abstract

Genome-wide and phenome-wide association studies are commonly used to identify impor-

tant relationships between genetic variants and phenotypes. Most studies have treated dis-

eases as independent variables and suffered from the burden of multiple adjustment due to

the large number of genetic variants and disease phenotypes. In this study, we used topic

modeling via non-negative matrix factorization (NMF) for identifying associations between

disease phenotypes and genetic variants. Topic modeling is an unsupervised machine

learning approach that can be used to learn patterns from electronic health record data. We

chose the single nucleotide polymorphism (SNP) rs10455872 in LPA as the predictor since

it has been shown to be associated with increased risk of hyperlipidemia and cardiovascular

diseases (CVD). Using data of 12,759 individuals with electronic health records (EHR) and

linked DNA samples at Vanderbilt University Medical Center, we trained a topic model using

NMF from 1,853 distinct phenotypes and identified six topics. We tested their associations

with rs10455872 in LPA. Topics enriched for CVD and hyperlipidemia had positive correla-

tions with rs10455872 (P < 0.001), replicating a previous finding. We also identified a nega-

tive correlation between LPA and a topic enriched for lung cancer (P < 0.001) which was not

previously identified via phenome-wide scanning. We were able to replicate the top finding

in a separate dataset. Our results demonstrate the applicability of topic modeling in explor-

ing the relationship between genetic variants and clinical diseases.
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Introduction

Elucidating associations between genetic variants and human diseases creates new avenues for

disease prevention and enables precise identification and treatment of diseases [1,2]. During

the past two decades, genetic studies have uncovered thousands of genetic variants that influ-

ence risk for disease phenotypes [3], e.g., the discovery of a variant in proprotein convertase

subtilisin/kexin type 9 (PCSK9[4]) associated with low plasma low-density lipoprotein, which

led to a new therapeutic drug class that was approved by the US Food and Drug Administra-

tion in 2015. Many of these discoveries come from large-scale association analyses. The two

most notable approaches are genome-wide (GWAS) and phenome-wide association studies

(PheWAS) [2, 5]. For a given phenotype, GWAS scans hundreds of thousands to millions of

single nucleotide polymorphisms (SNPs) across the genome in a hypothesis-free approach.

PheWAS, conversely, analyzes thousands of disease phenotypes compared to a single SNP. In

a GWAS, the outcome variable is a disease phenotype and predictor variables are SNPs. In a

PheWAS, the outcome variable is a SNP and predictor variables are disease phenotypes.

Although the output is different, these techniques share many commonalities.

In particular, association analyses test many predictors at one time and assume that each

predictor has an independent effect. Nevertheless, diseases often occur as a group of comor-

bidities, e.g. hyperlipidemia (HLD) and cardiovascular diseases (CVDs). Conventional associa-

tion analyses may not capture the inter-connections among variables such as phenotypes and

thus may not be sensitive to identify important genotype-phenotype relationships. Moreover,

association analyses also face the challenge of scaling to an increasing number of phenotypes.

Previously, we have described a “networked PheWAS” approach which can address intercon-

nectivity but still requires a degree of supervised interpretation [6].

This study tested the feasibility of topic modeling, an unsupervised machine learning

method, for identifying relationships between genetic variants and disease phenotypes. Topic

modeling was initially introduced as a text mining technique [7,8]. It extracts latent topics or

themes from documents and thus facilitates the understanding of data [9,10]. Each document

can have multiple topics. Each topic can be represented by related words (or other inputs).

Topic modeling has achieved notable applications in text mining [11,12], social networks [13]

and computer vision [14]. Recently, it has been brought into the biomedical research field, pri-

marily focusing on clinical text mining [15–17]. A few studies applied this technique to mining

EHRs’ events [17–21] and capturing their relationship with the genetic information [15,22,23],

e.g. McCoy et al. used latent Dirichlet allocation to find disease clusters and examined their

associations with the polygenic risk scores of depression [20].

Our study utilized non-negative matrix factorization (NMF), a topic modeling method to

one of the largest biobanks in the U.S. We hypothesized that topic modeling could identify dis-

ease clusters among the phenome, which can help replicate known findings and uncover

unidentified relationships between genetic variants and disease phenotypes. We used NMF

[24,25] to identify latent topics (e.g. disease clusters or relevant comorbidities) from EHR data.

We then tested associations between the EHR-derived topics and a lipoprotein(a) (LPA) SNP

(rs10455872). We chose this LPA SNP because previous studies have shown that high levels of

the LPA protein product, Lp(a), are associated with increased risks of developing HLD and

CVD [26]. Specifically, the LPA SNP (rs10455872), as a single variant, explains 20–30% of the

variation in circulating Lp(a) levels, which makes it an ideal candidate for this study [27]. To

demonstrate the benefit of using topic modeling, we compared our result with a traditional

PheWAS approach.
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Materials and methods

Study cohort

We used data from BioVU, the de-identified DNA biobank at Vanderbilt University Medical

Center (VUMC), to conduct this study. BioVU contains DNA samples from>250,000 individ-

uals linked with de-identified EHRs, including diagnostic and procedure codes, clinical notes,

laboratory values and medications. We limited our study within a group of selected individuals

who received regular, longitudinal care at Vanderbilt to avoid the incomplete data issue. We

identified 12,759 adult individuals of European ancestry (Female/Male: 6,018/6,741; mean age:

70.3±12.3) who had both EHRs and genotyped data of rs10455872.

rs10455872 Genotyping

We extracted individual’s rs10455872 information from available genotype data. All genotyp-

ing was previously conducted using commercially available genome-wide SNP arrays with

quality control criteria for variants. Genotype imputation was conducted on the Michigan

Imputation server[28] with minimac3[29], using the Haplotype Reference Consortium refer-

ence panel, version r1.1[30].

Among the cohort of 12,759 individuals, we observed 85.2% AA, 14.2% AG, 0.6% GG. The

minor allele frequency (MAF) of the rs10455872 G allele is 7.7% in our cohort, consistent with

the 7% MAF in the European population [31]. We used 0, 1, and 2 to represent the number of

LPA rs10455872 G alleles that each individual carries.

Disease phenotypes

Following established protocols used in past studies [32], we grouped each individual’s Inter-

national Classification of Disease, 9th edition (ICD-9-CM) codes into disease “phecodes” [33].

There were 1853 phecodes extracted from 12,759 individuals. For each phecode, we labeled

individuals with the phecode with a ‘1’, and those having no such phecode with a ‘0’.

Topic modeling via non-negative matrix factorization (NMF)

We use topic modeling via NMF to extract a set of topics (i.e. clusters of disease) from individ-

uals’ phenotypes data (Fig 1). In this study, we used a data matrix X of dimensions n×m to rep-

resent the input data, where n denotes the number of an individual (e.g. n = 12,759), and m
denotes the size of the phecodes (e.g. m = 1853). The entry of the matrix Xij2X was a binary

value (0 or 1) indicating whether ith individual had the jth phecode.

NMF is based on assumption that a n× m sparse data matrix X of with n samples and m
dimensions, which can often be represented by a small sets of k basis vectors. The linear com-

bination is a n× k coefficients matrix W, which is a lower-dimensional representation for X.

To be more specific, the input data matrix X can be approximately represented by the prod-

uct of two non-negative matrices W and H, such that

minW�0;H�0kX � WHk2

F þ lRðW;HÞ; ð1Þ

where kX � WHk2

F is a Frobenius norm to measure the error between approximation and the

original data, that is, kX � WHk2

F ¼
P

i;jðX � WHÞ2ij: lRðW;HÞ is a regularization term,

where λ is the parameters of the regularization term.

H is a k×m topic–phenotype matrix with k rows and m columns, where k denotes the size of

topics and m is the size of phenotypes. It is useful to view each row vector in H as a disease
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topic represented by a set of phenotypes, where each cell value defines the phenotype’ rank in

the topic.

W is an n×k individual-topic matrix, with n individuals and k topics. We can view the row

vector of W as an individual’s EHR document with a cell value indicating the individual’s rele-

vance to a disease topic. W is then used for the association analysis between the topics and

rs10455872.

R(W, H) is the regularization term that combines L1 and L2 norms, which is defined as:

R W;Hð Þ ¼ g kWk1 þ kHk1ð Þ þ
1

2
1 � gð Þ kWk2

F þ kHk
2

F

� �
; ð2Þ

where γ is the ratio for L1 penalty. The regularization term is not necessarily included in NMF,

but adding the regularization term may help balance the sparsity of the topics, as we assume

that each individual may have a small set of diseases.

Topic evaluation

To evaluate topics results, we asked domain experts (authors with clinical background) to view

the words describing a topic to determinate if the topic is semantically meaningful. In addition,

we used two objective measures, which were also commonly used in topic modeling evalua-

tion—topic dependency and topic coherence (S1 Text) in [34,35]. Topic dependency reflects

the overlapping between topics by calculating mean pairwise Jaccard similarity between the

Fig 1. Illustration of topic modeling on EHRs using NMF.

https://doi.org/10.1371/journal.pone.0212112.g001
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topic descriptors (i.e. top-ranked words in a topic). A higher number of similar terms between

topics suggest that topics are overlapped (less useful) [34]. Topic coherence reflects if a topic

can represent a single theme or similar concepts by measuring the co-concurrency of the topic

descriptors in the whole documents. Topics with higher topic coherence are usually easy to

interpret.

Since pre-set values of parameters such as γ and λmay impact the results, we tuned the

parameters and used agreement scores to measure the stabilities of topics. We calculate the sta-

bility of topics using Jaccard similarity and Hungarian method [36]. A higher agreement score

indicates a higher stability, i.e., the concepts in a topic remain consistent regardless of the

parameter values.

To visualize the topic results, we employed word clouds to present top-ranked phenotypes

in a topic. We used 2-dimensional (2D) visualizations to visualize the disease clusters of the

cohort by using t-Distributed Stochastic Neighbor Embedding (t-SNE) [37].

Statistical analysis

We tested the association between each extracted topic and LPA SNP variation by applying

Pearson correlation coefficient (PCC) and logistic regression (LR). PCC measures the strength

of a linear association between two variables, and generates a correlation coefficient denoted

by r2[−1,1], showing correlation direction. To compute PCC, we used each topic vector of

individual-topic matrix W in NMF as the predictor variable x, where each cell defines the rele-

vance scores on each individual. We used the vector of LPA SNP, where each cell represents

the number of risk allele, as the variable y. For LR, we used the topic vector as the predictor,

and LPA SNP as the outcome variable (counts of alleles > 1 is treated as 1), adjusting for age

and sex (i.e. 1 represents female; 0 represents male). We reported the coefficient and p-value

for each predictor.

To compare the results, we also conducted a conventional PheWAS in our cohort (i.e.

12,759 individuals) to test the association between for LPA SNP with 1853 phenotypes. Phe-

WAS is a systematic approach to replicate and discover relationships between targeted geno-

types and multiple phenotypes [5].

Validation Cohort

To demonstrate the generalizability of this approach, we also repeated the process using the

data from a separate cohort and tested whether or not we can replicate our findings. The data

was collected from another project to study stains. All individuals are European ancestry and

under statin treatment. The cohort had 3889 adult individuals with more percentage of males

and similar age as the study cohort (Male/Female:2,473/1,416 [63.6% vs 52.8%]; mean age:

71.9±11.3 [71.9 vs 70.3]). The study cohort and the validation cohort were mutually exclusive.

Results

We applied a topic modeling algorithm using NMF on the dataset of 12,759 individuals and

obtained six topics. Topics are reviewed by a clinician to ensure clinically meaningful, and

labeled with a major disease (Fig 2). The topics were coherent and consistent with the comor-

bidities associated with the phenotypes that is most prevalent in the cohort. For example, topic

#2 defined diseases related to CVD (e.g., HLD, hypertension, and chronic ischemic heart dis-

ease), topic #3 represented phenotypes relevant to lung cancer and its treatment.

We plot the distribution of the numbers of topics in the cohort in Fig 3. Topic #2 was the

most prevalent (33%) topic in the cohort. Topics #1 and #3 were the second and third most
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prevalent topics in the cohort. We also plotted the scores of individual-phenotypes matrix (W)
with boxplot in S1 Fig.

We present the visualization of topic modeling results by t-SNE in Fig 4. Each data point

represented an individual. We labeled each individual with the assigned topic. We used princi-

pal component analysis (PCA) for t-SNE embedding initialization. PCA is a feature reduction

method to project high-dimensional data into a lower dimensional space that can explain the

most variance of the input data. PCA initialization is more globally stable than random initiali-

zation[38]. Consistent with our clinical observation, the topic #2 contains the largest number

of individuals in the cohort.

The PCC association test suggests that topic #2 and #3 were significantly associated with

rs10455872 (Table 1). Topic #2, a group of lipid and cardiovascular diseases, had a weak but

significant positive correlation with rs10455872 (r = 0.072, p = 5.8e-16). We also found that

topic #3, a group of phenotypes relevant to lung cancer, had a weak but significant negative

correlation with rs10455872 (r = -0.039, p = 8.5e-6). Although the r coefficient is weaker than

the topic#2, these correlations are highly statistically significant.

The LR analysis achieved a similar result in the direction and significance for most topics

(Table 2). Particularly, topic #2 (CVD) had a positive correlation with rs10455872 (coeffi-

cient = 2.789, p = 3.42E-13), and topic #3 (lung cancer) vary inversely with rs10455872 (coeffi-

cient = -1.101, p = 0.009), which was consistent with PCC test.

PheWAS results on the same data (Fig 5) suggested a significant association between

rs10455872 and phenotypes including coronary atherosclerosis, unstable angina, hyperlipid-

emia and myocardial infarction. Most of these phenotypes were present in topic #2.

Fig 2. Word clouds for six topics. The size of the words (phecode) in each cloud indicates the weights of the phenotypes on the topic. Phenotypes with larger-sized

words have greater influence on the topic compared to phenotypes with smaller-sized words. For each word cloud, we listed the top 60 words.

https://doi.org/10.1371/journal.pone.0212112.g002
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Phenotypes about neoplasms had the second higher associations. However, the association (p-

value = 7.209713e-05) did not cross the Bonferroni.

We also validated the approach using data from a separate cohort, without any patient over-

lap with the study’s original cohort. The replicated cohort contains 3889 adults of European

ancestry with a larger percentage of males (63.6% vs 52.8%) and similar age (71.9 vs 70.3). The

results suggested one positively associated topic containing similar diseases including Coro-

nary atherosclerosis, Essential hypertension, Hyperlipidemia, Nonspecific chest pain, Atrial

fibrillation (S6 and S7 Figs, S1 and S2 Tables). We were not able to validate the lung cancer

topic, which may due to the smaller data set and limited statistical power.

Discussion

In this paper, we applied topic modeling to explore associations between disease phenotypes

and genetic variants. We assumed that some disease phenotypes found simultaneously in EHR

have correlated semantic meanings and thus can be learned as topics. We examined the associ-

ations between an LPA variant (rs10455872) and the six topics derived from EHRs. We

observed the expected association between rs10455872 and a topic representing CVD/HLD.

We also found a novel association, as of this writing [39], between the LPA variant and a lung

cancer topic.

The LPA gene encodes lipoprotein (a), a major component of the Lp(a) particle. Individuals

with elevated Lp(a) levels are more likely to develop CVD compared to those with normal or

low Lp(a) level [27,40]. Approximately 70% of Lp(a) variation can be attributed to variants at

Fig 3. Topic distribution in the cohort. To visualize the prevalence of each topic in the cohort, we assigned an individual to the topic with the maximum score.

https://doi.org/10.1371/journal.pone.0212112.g003
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the LPA locus [41–43], and rs10455872 alone explains ~25% variation in circulating Lp(a) lev-

els [27]. Further, a previous genetic study suggested that LPA variants were strong predictors

for CVD risk [27]. In a more recent study of>10,000 patients taking statins, we found that

rs10455872 predicted residual CVD risk while on lipid-lowering treatment [44]. This study’s

finding of a significant association between rs10455872 and the CVD/HLD topic demonstrates

the feasibility of topic modeling as a critical tool for uncovering genotype-phenotype

relationships.

We also observed a negative correlation between the LPA variant and the cancer/lung can-

cer topic, i.e., possessing this variant is protective. Previous epidemiological studies have

reported that individuals with low Lp(a) levels had increased risk of all-cause and cancer-

related mortality [45]. Mieno et al. found that hypolipoproteinemia(a) is a risk factor for can-

cer except for lung cancer. Nevertheless, there are few reports on a relationship between cancer

and LPA polymorphism or expression levels. Our PheWAS analysis on the same cohort

−60

−30

0

30

−60 −30 0 30 60

X

Y

Topic_index

0

1

2

3

4

5

Fig 4. t-SNE plot of visualizing the patient clusters in a projected 2D metric map (The perplexity was set to 30).

https://doi.org/10.1371/journal.pone.0212112.g004
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identified an association between rs10455872 and secondary malignancy of lymph nodes with

borderline p-value (10e-5) but insignificance. To further explore this association between

rs10455872 and the cancer/lung cancer topic, we queried gene2pheno (https://imlab.

shinyapps.io/gene2pheno_ukb_neale/), which is a publicly available database for testing asso-

ciations between predicted gene expression levels and phenotypes using data from the UK Bio-

bank. Genetically predicted LPA expression levels were associated with death from T cell

lymphomas (p = 6.9e-5, Underlying [primary] cause of death: ICD10: C84.5 Other and

unspecified T-cell lymphomas). Given that lung cancer is strongly mediated by environmental

exposure and that tobacco use disorder was also part of topic #4, it is possible that the SNP is a

marker for propensity to smoking, e.g., similar to what was shown for rs16969968 [46]. Further

genetic and epidemiological studies are needed to elucidate the relationship between Lp(a) lev-

els and cancer incidence.

Compared with traditional PheWAS, we identified the most significant associations–

between rs10455872 and CVD related diseases, consistent with PheWAS. We also identified a

significant association between rs10455872 and cancer/lung cancer, which did not cross the

Bonferroni in PheWAS. Besides, our approach automatically identified comorbidities and the

interconnections between phenotypes, which cannot be easily identified by PheWAS. We con-

ducted an association test of the comorbidities as a whole instead of each independent

Table 1. Pearson correlation coefficient testing between LPA variant for each topic.

Topic Top phenotypes in this topic r P-value

#0 Respiratory failure, Pneumonia, Pleurisy, Pulmonary collapse; interstitial/compensatory

emphysema, Hypotension NOS, Tachycardia NOS, Other dyspnea, Hypopotassemia,

Sepsis, Septicemia

0.011 0.199

#1 Pain in joint, Other tests, Back pain, Pain in limb, Malaise and fatigue, Cough, Nonspecific

chest pain, Essential hypertension, Osteoarthrosis NOS, Abdominal pain

-0.008 0.358

#2 Coronary atherosclerosis, Essential hypertension, Hyperlipidemia, Congestive heart failure

NOS, Nonspecific chest pain, Atrial fibrillation, Chronic ischemic heart disease, Shortness

of breath, Nonrheumatic mitral valve disorders, Cardiomegaly

0.072 5.8e-

16

#3 Chemotherapy, Tobacco use disorder, Lung cancer, Other diseases of lung, Malaise and

fatigue, Secondary malignancy of lymph nodes, Secondary malignancy of lung, Nausea

and vomiting, Nonspecific chest pain, Shortness of breath

-0.039 8.5e-6

#4 Type 2 diabetes, Hypertensive chronic kidney disease, Chronic renal failure, Insulin pump

user, Type 2 diabetic neuropathy, Chronic Kidney Disease, Stage III, Type 2 diabetic

nephropathy, Type 1 diabetes, Polyneuropathy in diabetes, Acute renal failure

0.002 0.783

#5 Ascites (nonmalignant), Abdominal pain, Cirrhosis of liver without mention of alcohol,

Thrombocytopenia, Liver abscess and sequelae of chronic liver disease, Portal

hypertension, Chronic nonalcoholic liver disease, Disorders of liver, Esophageal bleeding,

Nausea and vomiting

-0.02 0.021

https://doi.org/10.1371/journal.pone.0212112.t001

Table 2. Logistic regression analysis between LPA variant for each topic.

Predictor Coefficient P-value

Age -0.003 0.079

Sex 0.145 0.005

topic_0 0.542 0.166

topic_1 -0.07 0.820

topic_2 2.789 3.42E-13

topic_3 -1.101 0.009

topic_4 -0.446 0.275

topic_5 -0.695 0.131

https://doi.org/10.1371/journal.pone.0212112.t002
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phenotype. For example, hyperlipidemia often presents with hypertension, as co-occurred in

our topic #2. PheWAS can identify the significant association between the genetic variant and

hyperlipidemia but cannot automatically identify the cluster of hyperlipidemias and test the

relationship between the variant and the cluster.

Compared with existing work on using topic modeling on EHR events [19,20], we explored

the choice of number of topics, evaluated the quality of the topics and tested on replicated

cohorts.

Choice of number of topics

Topic modeling approaches require pre-specification of the number of topics k. In this study,

we set k = 6, because we focused on capturing the most prevalent diseases such as CVD for

quantifying the association. Larger k may allow the discover associations between rare diseases

and genetic variants, but increases the risk of fracturing common phenotype clusters.

It can be seen that (Fig 4), except for topic #4 (diabetes), the learned topics formed distinct

clusters, indicating a good quality of topic modeling. Some of points in topic #4 (diabetes)

were close with topic #2 (CVD), which was expected, because type II diabetes is an important

risk factor that increases the risk of developing CVD. Compared to the other topics, #1 (Pain),

#2 (CVD), and #3 (Lung Cancer) have more concentrated clusters.

For optimal selection of k , common approaches includes looking at the error in optimiza-

tion or having domain experts review the topics to identify which set of topics are most mean-

ingful, and have estimated k using singular value decomposition (SVD) to look at the decay of

singular values [47–49]. We showed the decay of eigenvalues of the input data using the scree

plot (S2 Fig). The top 5–6 components can explain the most variance of the input data.

Fig 5. PheWAS results of rs10455872 on 12,759 individuals adjusted by sex and age.

https://doi.org/10.1371/journal.pone.0212112.g005
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Therefore, we chose k = 6 in this study. Additionally, we also tried k = [10, 20,30]. Topics such

as CVD and Lung cancer remained associated (S1 Appendix).

We evaluated the topic dependency and average topic coherence by varying k from 5 to 50

in S3 and S4 Figs [34]. The topic dependency drops when k increases from 5 to 15, and then

became stable. The average coherences of topics kept dropping as k increases, which means

that as the number of topics increases, it becomes difficult to interpret the meaning of the

topics.

Stability evaluation

We evaluated the impact of the parameters values (i.e. number of topics k, regularization

parameters λ and γ in equations [2] and [3]) on the topic modeling results and the correlation

study. In the study, we used λ = 0.2 and γ = 0.5 as the default setting. We compared the agree-

ment scores of topics generated on different settings of λ and r with their default values. Results

in S5 Fig indicated that λ and γ did not impact the consistency of the topic meaning. We also

listed top-ranked phenotypes for each topic and statistical analysis results by using different

combinations of λ and γ on k = [10, 20, 30] (S1 Appendix). CVD and lung cancer topics were

present in all parameter’s settings, and their correlations with LPA from PCC and LR analysis

were consistent with topics at k = 6 and the default values of λ and r.

Limitations

There are several limitations in this study. First, we tested only one genetic variant in one gene.

Rs10455872 explains approximate 25% change in circulating Lp(a) levels according to previous

studies; however, it would be interesting to generate a genetic risk score for Lp(a) levels and

test its association with disease phenotypes in the future. Second, we used a binary value to

indicate if an individual had a diagnosis code. A method accounting for disease severity (e.g.,

counts of diagnosis codes) could be used in future studies. Finally, the current study was lim-

ited to using billing codes to phenotype individuals. We did not include other information,

e.g. laboratory test and medications, to assign more accurate phenotypes. This problem can be

solved in the future using more sophisticated “deep” phenotyping methods that include more

features from EHRs.

Conclusion

In summary, unlike traditional PheWAS that have treated each disease phenotype as a distinct

variable, topic modeling via NMF generates more abstract latent factors from disease pheno-

types and significantly reduces the number of multiple tests. Our results demonstrate the

power of topic modeling in the detection of disease clusters and previously unexplored geno-

type-phenotype relationships among a large cohort.

Supporting information

S1 Text. Topic evaluation algorithms.

(DOCX)

S1 Appendix. Topic modeling and correlation study results with topic k = 10, 20,30 and
various settings of λ, γ.

(XLSX)
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S1 Fig. Boxplot of individual-phenotypes matrix W (after l2 normalization) to visualize

the topic distribution in the cohort.

(EPS)

S2 Fig. Scree plot of topics for k2[1, 20]. This scree plot shows that the eigenvalues start to

form a straight line after the sixth principal component. Therefore, the remaining principal

components account for a small proportion of the variability and may be less important.

(EPS)

S3 Fig. Topic dependency measured by mean pairwise Jaccard similarity for different k.

(EPS)

S4 Fig. Topic coherence for different k.

(EPS)

S5 Fig. Topic stability with tuning parameters λ2[0, 2] and γ = [0.5, 1] on k = [6, 10, 20, 30] A:

Topic stability for varying λ2[0, 2] on γ = 0.5; Topic stability for varying λ2[0, 2] on γ = 1.

(EPS)

S6 Fig. Scree plot of topics for k2[1, 20] on replicated cohort. This scree plot shows that

between the second and third eigenvalues, a straight line starts to form after the third principal

component. Therefore, we chose to use 3 topics in the validation study, as the remaining prin-

cipal components account for a small proportion of variability in the data, and thus may be

less important.

(EPS)

S7 Fig. Word clouds for three topics on replicated cohort.

(TIFF)

S1 Table. Pearson correlation coefficient testing between LPA variant for each topic on

replicated cohort. � indicates significant association (p<0.05).

(DOCX)

S2 Table. Logistic regression result between LPA variant for each topic on replicated

cohort. � indicates significant association (p<0.05).

(DOCX)
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