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Background: Low back pain (LBP) is a common health problem — sitting on a chair

for a prolonged time is considered a significant risk factor. Furthermore, the level of LBP

may vary at different times of the day. However, the role of the time-sequence property of

sitting behavior in relation to LBP has not been considered. During the dynamic sitting,

small changes, such as slight or big sways, have been identified. Therefore, it is possible

to identify the motif consisting of such changes, which may be associated with the

incidence, exacerbation, or improvement of LBP.

Method: Office chairs installed with pressure sensors were provided to a total of 22

office workers (age = 43.4 ± 8.3 years) in Japan. Pressure sensors data were collected

during working days and hours (frommorning to evening). The participants were asked to

answer subjective levels of pain including LBP. Center of pressure (COP) was calculated

from the load level, the changes in COP were analyzed by applying the Toeplitz inverse

covariance-based clustering (TICC) analysis, COP changes were categorized into several

states. Based on the states, commonmotifs were identified as a recurring sitting behavior

pattern combination of different states by motif-aware state assignment (MASA). Finally,

the identified motif was tested as a feature to infer the changing levels of LBP within a day.

Changes in the levels of LBP from morning to evening were categorized as exacerbated,

did not change, or improved based on the survey questions. Here, we present a novel

approach based on social spider algorithm (SSA) and probabilistic neural network (PNN)

for the prediction of LBP. The specificity and sensitivity of the LBP inference were

compared among ten different models, including SSA-PNN.

Result: There exists a common motif, consisting of stable sitting and slight sway. When

LBP level improved toward the evening, the frequency of motif appearance was higher

than when LBP was exacerbated (p < 0.05) or the level did not change. The performance
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of the SSA-PNN optimization was better than that of the other algorithms. Accuracy,

precision, recall, and F1-score were 59.20, 72.46, 40.94, and 63.24%, respectively.

Conclusion: A lower frequency of a common motif of the COP dynamic changes

characterized by stable sitting and slight sway was found to be associated with the

exacerbation of LBP in the evening. LBP exacerbation is predictable by AI-based analysis

of COP changes during the sitting behavior of the office workers.

Keywords: motif-aware state assignment, probabilistic neural networks, social spider algorithm, low back pain,

sitting behavior

1. INTRODUCTION

Low back pain (LBP) is a highly common issue (Boisson et al.,
2019) among people of all ages (Kamper et al., 2011; Hoy et al.,
2012; Swain et al., 2014), and is generally described as pain,
muscle stiffness, or rigidity located below the costal margin and
above the lower gluteal folds, with or without leg pain (sciatica)
(Koes et al., 2006). LBP is a common ailment that affects a large
percentage of the population, with a lifetime incidence of 58–84%
(Airaksinen et al., 2006; Hoy et al., 2012; for Health Statistics,
2014). Even among adolescents, 37% of the participants reported
experiencing LBP monthly or more frequently (Swain et al.,
2014). In the coming decades, the global burden of LBP is
anticipated to rise even more (Hartvigsen et al., 2018). LBP
affects function, societal participation, and personal financial
well-being in various biophysical, psychological, and social ways.
LBP causes the most disability in working-age people worldwide,
especially in low-and middle-income countries where informal
employment is common, and job-change options are limited
(Hartvigsen et al., 2018). As one of the most common chronic
health problems, LBP causes more people to leave the workforce
than heart disease, diabetes, hypertension, neoplasm, respiratory
disease, and asthma combined (Schofield et al., 2008). People who
suffer from this disorder have less wealth than those who do not
(Deborah et al., 2015) — when comorbidities are present, this
effect is amplified (Deborah et al., 2015). Older people who retire
early because of LBP have approximately 87% less total wealth
and income-producing assets than those who remain in full-time
employment (Schofield et al., 2011).

LBP could be a result of many factors. Its emergence could
be attributed to several psychosocial and physical factors. A
systematic review showed that structural changes identified by
MRI, such as disc bulge, disc extrusion, and spondylolysis, were
strongly associated with LBP (Brinjikji et al., 2015a). However,
in most cases, the causes of LBP could not be identified and
were described as nonspecific (Balagué et al., 2012; Maher et al.,
2017). Many imaging (radiography, CT’ scan, and MRI) findings
in people with LBP were also present in people who did not
have LBP (Brinjikji et al., 2015b). Furthermore, LBP risk factors
include obesity, age, smoking, and psychosocial factors (such as
depression and stress; d’Hemecourt et al., 2000; Deyo et al., 2015).
In addition to the above-mentioned causes, static loading in the
office environment may worsen LBP (Chou and Shekelle, 2010),
and prolonged static sitting was associated with an increased risk
of LBP and an increase in LBP over the last 40 years (Anne and

Walker, 2002; Eifell et al., 2006; Nidhi et al., 2015; Vos et al., 2017;
Baker et al., 2018).

Sedentary behavior is a separate class of behaviors
characterized by little physical activity or activities that
require low energy consumption of <1.5 metabolic equivalent
units (Pate et al., 2008). A study on adult sedentary behavior
found that sedentary time spent increased with age, full-time
employment, and higher education (Leitzmann et al., 2017).
A study of 27,637 people aged 15–98 years from 32 European
countries showed that the average recorded weekday sitting
period was 5.2 h/day (SD 184 min/day) (Bennie et al., 2013).
Research conducted in Australia and the UK reported that office
staffs spent 68–70% of a workday and 60–63% of a non-workday
(Thorp et al., 2012; Clemes et al., 2014). Japanese office workers
spent 63% of a workday and 60% of a non-workday sedentary
(Kurita et al., 2019). A study of 1,329 sitting workers shows that
201 (15.1%) acknowledged experiencing LBP during the recent
week of the survey (Inoue et al., 2015).

However, there exists conflicting evidence regarding the
relationship between sedentary behavior and LBP. A system
review revealed that LBP was not consistent with a sedentary
lifestyle. They have identified eight high quality studies including
cohort studies and case-control studies. Except for one cohort
study, none of the studies have identified a statistically significant
association between sedentary work or sitting at work and LBP
(Chen et al., 2009). Sitting for a longer period may result in the
development of LBP, but the incidence rate of LBP development
largely varied among the studies ranging from 19.19 to 43.59%
(Harkness et al., 2003; Yip, 2004). It is believed that this variability
may be due to the dynamic nature of LBP. Even for chronic LBP,
patients do not suffer from pain all day long.

Researchers have attempted to identify if a subject had
chronic LBP during sitting behavior using several techniques,
including artificial intelligence (AI). Three studies compared
electromyography (EMG) recordings from trunk muscles, spinal
positions, and trunk range of motion between chronic LBP
patients and control participants (Liszka-Hackzell and Martin,
2002; Gal et al., 2014; Mohammed, 2018). Several other studies
have examined the classification of people with chronic LBP and
focused on EMG and trunk motion data to identify chronic LBP
(Oliver and Atsma, 1996; Magnusson et al., 1998; Hung et al.,
2014; Caza-Szoka et al., 2015, 2016; Olugbade et al., 2015; Ashouri
et al., 2017; Du et al., 2018; Hu et al., 2018). Although many
previous studies analyzed static traits during sitting (O’Sullivan
et al., 2012; Boerema et al., 2020), it has been pointed out that the
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dynamic nature of LBP had not been considered. It was possible
that chronic LBP patients were not suffering from LBP at the time
of measurement. LBP does not persist all day long or every day—
even the same individual at different times of the day has different
levels of LBP. The majority of LBP episodes are brief and have
little or no consequences. Still, recurrent episodes are common,
and LBP is increasingly recognized as a long-term condition with
a variable process, not a series of unrelated events (Hartvigsen
et al., 2018). LBP in daily life may differ from that reported by
the laboratory measures, where most of the research used EMG
and body movement in laboratory settings. Measurement and
evaluation over prolonged time periods is almost impossible.
Therefore, the currently available non-invasive, unobtrusive and
contactless method, capable of collecting data from the sensors
on the chair may be suitable in a “real-life” setting.

Another limitation in the previous studies focusing on
sedentary behavior may be in the assessment of sitting behavior
in an aggregate basis, as to determine sitting behavior as a whole.
Typically, the evaluation was commonly determined by the total
sitting time (Boerema et al., 2020). This conventional approach
conceptualizes sitting activity as a person’s static characteristics
in a single day. Conversely, some studies that have tried to obtain
a sitting posture using pressure sensors placed under a chair,
armrests, and chair backrests (Cheng et al., 2013; Griffiths et al.,
2014; Huang et al., 2017), merely describe the sitting posture,
without providing insight into the nature of sitting behaviors.
Such approaches to characterize sitting behavior overlook the
fact that sitting is a highly complex process. As shown in
many studies that sitting behavior contains slight sways and
big sways (Makhsous et al., 2009; Sondergaard et al., 2010;
O’Sullivan et al., 2013; Chun-Ting et al., 2014). Interestingly,
two previous studies reported less frequent postural shifts in
individuals with LBP than in healthy individuals (Dunk and
Callaghan, 2005; Akkarakittichoke and Janwantanakul, 2017),
with just counting postural shifts above a determined threshold
level of displacement. A better characterization of sitting behavior
in daily life when most of the LBP episodes occur considering
the time sequence property of sitting behavior may give us a
better understanding of the physiological nature of LBP. Thus, we
hypothesize that sitting behavior can be characterized by constant
sequences of states derived from various postural changes during
sitting. The term “state” refers to an interpretable template that
is repeated frequently. In this study, a “state” was calculated by
subsequent time-series clustering of changes of center of pressure
(COP), representing a specific action during sitting. The term
“motif ” consists of multiple states, defined as patterns that have
similar shape, and yet exhibit nontrivial variability (Saria et al.,
2011), which may be able to determine the sitting behaviors on a
more granular basis: identifying the definition and nature of each
motif, consisting of different states.

There also remains an issue in the complexity of data derived
from long term human behaviors, namely sitting in this study.
To understand these complex data, each measurement must be
labeled as one of the different states. These states are not present
as independent events, and the sequence in which they occur
is essential. While traditional multiple time-series repetition
methods produce several segments of time (Clarkson et al., 2000;

Leonardi and Bühlmann, 2016; Nystrup et al., 2016; Hallac et al.,
2019), motifs are anticipated to produce multiple cycles of data
in multiple time steps. Thus, it is crucial to determine a motif
indicating the recurrent events or a sequence of state changes.
To this end, we begin by using Toeplitz inverse covariance-based
clustering (TICC) (Hallac et al., 2017) to split the sitting data into
different states. Further, we defined each motif by motif-aware
state assignment in noisy time-series data (MASA) (Jain et al.,
2018). MASA iterates by re-assigning the original measurement
to the updated states using motifs, thereby allowing previously
noisy sequences to make a correlation to match a given motif.
This makes MASA even more robust as it allows previously
non-correlated sequences to correlate.

In the prediction step, we use a probabilistic neural network
(PNN) as the classifier (Specht, 1990), which is a special
type of radial basis function that is significantly faster than
backpropagation networks (Georgiou et al., 2008). PNN is based
on the probability density function (PDF) and Bayesian classifier
(Specht, 1990). However, there are two limitations in PNN. (1)
Relative inaccuracy when training with a small sample size and
(2) lack of evaluation of the importance of the input variables.
Therefore, to address these limitations, this study adopts an
optimized PNN with two parameters: one is the smoothing
parameter, representing the spread of the distribution, and the
other is the weight of the input variable, which changes the
shape of PDF so that the contour line is no longer circular,
but elliptical.

Furthermore, it is crucial to find an optimal value for the
weight and the smoothing parameter to enhance the performance
of the model. Earlier, trial and error methods were commonly
used to select the parameters; however, these methods were time-
consuming. Recently, reinforcement learning algorithms have
become one of the methods for computing parameter selection
(Kusy and Zajdel, 2014). Meanwhile, this parameter estimation
problem was shown to be solved by nature-based computing
algorithms. With the rapid growth in the size and complexity
of modern optimization problems, nature-based computation
has gained an increasing attention as an effective tool for
optimization. When compared to the traditional optimization
techniques, these algorithms were shown to perform well,
especially when solving non-convex optimization problems
(Hajela, 1990; Mallipeddi et al., 2011). As a population-based
metaheuristic algorithm, the social spider algorithm (SSA), a
state-of-the-art nature-inspired swarm intelligence algorithm
based on social spiders, exhibited excellent global optimization
performance on benchmark tests (Yu and Li, 2015). Therefore,
whenever the algorithm can locate a relatively small region near
the global optimum, SSA was found to be capable. Thus, we used
SSA as the optimizer of PNN and inferred the change in LBP
using SSA-PNN.

This study aimed to determine whether the motif consisting
of different states identified in the COP changes during sitting
behaviors may affect LBP exacerbation. We optimized PNN and
used SSA as the optimizer, so that we could be able to predict LBP
exacerbation based on the COP data collected. Previous studies
have established that sitting behaviors may exhibit particular
states; thus, we hypothesized that (1) there is a common motif
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consisting of more than two states, and (2) the motif is related to
LBP.

2. METHOD

2.1. Study Design
This study is an observational study of office workers to identify
daily exacerbation of low back pain occasionally experienced
during their work through the analysis of features in sitting
behavior by means of time-series recording of changes in the
center of pressure using load cells installed on office chairs. The
subjective level of low back pain was checked four times daily
at the office during the workdays by means of presenting an
electronic questionnaire using a tablet PC. The study participants
were recruited at a company, the office of which was located
at down-town Tokyo, in July 2017 after the approval of the
study protocol by the Ethical Committee of Tohoku University
School of Medicine. The measurement and data collection
were performed from October to December 2017 at the office
in a restriction-free environment where the study participants
worked according to their real assignment in the company.

2.2. Participants
In order to ensure the safety of procedures and to avoid bias
on results, the following inclusion criteria were used: healthy
office workers who are between 20 and 59 years old when
they gave their informed consent were eligible. The exclusion
criteria were those who had serious psychiatric, neurological, or
musculoskeletal diseases (musculoskeletal disorders) and have
been prohibited by doctors from exercising.

2.3. Smart Chair
Conventional office chairs equipped with load cells andWiFi data
transfer units were provided to the study participants who gave
full informed consent to the study protocol. The dimension of
the conventional office chair purchased was 52 cm wide, 58.5
cm in length, and 88.5 cm in height with a single column. Four
load cells were fixed on a metal plate of 260 mm wide and 250
mm in front-back direction and 3.2 mm thick, in a rectangular
formation of 215 mm wide and 200 mm front-back direction
so that the geometric center matches that of the metal plate.
The bottom surface of the seat frame was firmly attached to the
load cells. Each load cell had a capacity of 50 kg driven and was
powered by 5 volts (D.C.). The calibration of the “smart-chair”
was performed in three steps to ensure validated output signals.
Signals obtained without any weight on the seat were used to
define the zero level. This was followed by placing round metal
plates of either 40 or 80 kg at the geometric center of the seat. A
linear relationship was confirmed within the range of zero to 80
kg. The load cells were wired to a Rasberry Pi processor and the
data was transferred to through a WiFi unit at a transfer rate of
100 Hz, and the data was stored online at Amazon Web Server.
The seat height was adjusted for each study participant so that
both feet could stably be placed on the floor with the legs upright
in a comfortable position without extra stretching.

2.4. Assessment of Sitting Behavior
In order to assess sitting behavior, spatio-temporal changes in the
distribution of pressure across the participants’ sitting interface
were monitored by the smart chair. The sitting behaviors of office
employees, such as leaning in various directions, leaving the chair,
and swaying, can be adequately represented by COP. Therefore,
we use COP to identify the sitting behavior, calculate as the
Equation (1):

COP(x, y) =
A1(−1, 1)+ A2(−1,−1)+ A3(1, 1)+ A4(1,−1)

4
,

(1)
here, the A1 (Front-Left), A2 (Back-Left), A3 (Front-right), and
A4 (Back-Right) indicates the values from the sensors. Since this
study aimed to identify the motif of sitting behavior instead of the
details of physical activities, therefore data were downsampled to
1 Hz, i.e., we cut the sampling rate based on the first timestamp
to 1 sample per second.

2.5. Assessment of Subjective Symptoms
This study focused on changes in the subjective levels of LBP,
neck pain, the feeling of fullness after breakfast, and sleepiness.
All the subjective levels were determined using a modified
Likert scale of 0 to 10 where 0 represented no pain, hungry, or
not sleepy, and 10 represented the worst pain, full, or sleepy.
Questionnaires were automatically delivered at regular times
every day (9:00, 11:30, 14:00, 17:00) on a tablet PC provided
in this study for each participant. Whenever the participants
arrived at the office after 9:00, they were asked to answer the
questionnaire whenever they started working. Whenever they
had to stay in the office after 17:00, they were asked to answer the
questionnaire before they left the office. The change in the level
of LBP was defined by subtracting the end-of-day score from the
morning score. A negative value indicated LBP exacerbation, 0
no change, and a positive value indicated improvement of LBP.
The levels of other subjective symptoms were also assessed in a
similar manner.

2.6. Relevant Features
Thus, in this study, sex, sitting time, motif occurrence rate,
level of sleepiness, and satiety after breakfast were selected to
classify changes in LBP. These features were shown to be sensitive
to shifts in LBP. Previous studies have identified that gender
(Grimmer andWilliams, 2000), the degree of sleepiness (Miranda
et al., 2008; Alsaadi et al., 2010; Kelly et al., 2011), and the feeling
of fullness after breakfast is (Kristjansdottir and Rhee, 2002)
potentially affect the level of LBP of the participants.

2.7. Data Analyses
In the aforementioned time-series, TICC performs simultaneous
segmentation and clustering on the siting behavior data, the
motifs were discovered by MASA and prediction by SSA-PNN
(Figure 1). The broad collection of time-series data can be
represented by a small number of sitting behaviors after these
motifs are recognized.

Frontiers in Physiology | www.frontiersin.org 4 September 2021 | Volume 12 | Article 696077

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Wang et al. Predict Low Back Pain Exacerbation

FIGURE 1 | The framework of the feature exaction and the prediction.

2.7.1. Clustering by TICC
TICC is a model-based subsequence clustering technique
for multivariate time-series to discover recurring patterns in
temporal data. It assumes that each state (cluster) has a
multilayer correlation network, or a Markov random field
(MRF) that contains both intra-layer and inter-layer edges,
which is specified for each cluster. MRF is a probability
distribution model which emphasizes the correlation instead
of the distance. Therefore, TICC is not affected by the
sitting position. In this study, the states are described as the
interrelationships between observations of COP, which can find
accurate and interpretable structures of sitting behaviors without
the constraint of temporal consistency.

As defined by TICC, the time series of T sequential
observations,

xorig =





| | | |

x1 x2 x3 . . . xT
| | | |



 , (2)

where xi ∈ Rn is the multivariate i-th observation. The objective
is to cluster these T observations into K clusters. TICC focuses
on clustering of a short size series w ≪ T which ends at t.
The xt−w+1, ..., xt observations are built into an nw-dimensional

vector Xt . Therefore, a new sequence from X1 to Xt is created,
which is a helpful medium for each of the T observations to
provide proper context. The TICC approach therefore does not
cluster the observations directly, but clusters these subsequences
with Xt , ...,Xt . Specifically, TICC constrains the 2i’s, the inverse
covariances, to be block Toeplitz. Thus, each nw× nwmatrix can
be expressed in the following form,

2i =



















A(0)
(

A(1)
)T (

A(2)
)T

· · · · · ·
(

A(w−1)
)T

A(1) A(0)
(

A(1)
)T . . .

...

A(2) A(1)
. . .

. . .
. . .

...
...

. . .
. . .

. . .
(

A(1)
)T (

A(2)
)T

...
. . . A(1) A(0)

(

A(1)
)T

A(w−1) · · · · · · A(2) A(1) A(0)



















,

(3)
where A(0), A(1),......, A(w−1) ∈ Rn×n. A(0) sub-block indicates
the intra-time partial interdependencies, so that A

(0)
ij defines

the interrelationship between concurrent values of sensor i and
sensor j (e.g., the change of COP in two directions). TICC’s
purpose is to solve the K inverse covariances 2 = {21, ...,2K}

and get the corresponding point assignment sets P = {P1, ..., PK}

(Pi ⊂ {1, 2, ...,T}). This leads to an optimization problem in
which the following function is to be minimized, as (Equation
4):

argmin
2∈T ,P

K
∑

i=1






sparsity
︷ ︸︸ ︷

‖λ ◦ 2i‖1 +
∑

Xt∈Pi

(

log likelihood
︷ ︸︸ ︷

−ℓℓ (Xt ,2i)+

temporal consistency
︷ ︸︸ ︷

β {Xt−1 /∈ Pi} )




 ,

(4)
here, T is the set of symmetric block Toeplitz nw × nw matrices
and || λ ◦2i ||1 is an ℓ1-norm penalty of the Hadamard (element-
wise) product to incentivize a sparse inverse covariance (where
λ ∈ Rnw×nw is a regularization parameter). Additionally, ℓℓ

(Xt ,2i) is the log likelihood that Xt came from cluster i, β is a
parameter that enforces temporal consistency, and {Xt−1 /∈ Pi}

is an indicator function that checks whether neighboring points
are assigned to the same cluster. The TICC problem is solved by
alternating minimization using a variation of the EM algorithm.

2.7.2. Discovering Motif by MASA
In noisy time-series results, MASA is used for discovering
common motifs and leveraging those motifs to assign states
to measurements more robustly. It aims to (1) discover motifs
in time-series data that recognize important recurring and
length-varying trends and (2) assume that these trends require
consecutive measures of time. MASA defines a motif as a
sequence of corresponding state assignments and provides a
sequence of consecutive measurements, where all neighboring
occurrences of the same state are combined into one [MASA
defines a time-varying hidden Markov model (HMM) to model
the entire sequence of measurements X]. Therefore, states are
ordered in the motif; however, the number of consecutive
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occurrences of each state can differ between the motif instances.
To this end, each motif is represented by a pair (m, q), where m
is the motif, and q is a related list of instances of the motif. In the
dataset, a motif instance implies the occurrence of the motif. In
our system, we implement the following motif constraints:

(1) The m motif must contain at least three states: |m| > 2.
(2) At least L times must appear for a motifm: |q| > L.
(3) Motif instances that do not overlap at most one motif can

only belong to each measurement.

As motifs with two or fewer states are not very insightful
outside the clustering, MASA encourages the first restriction.
The runtime is supported by the second constraint—we can save
time by exploring motifs that are more frequent. Because we are
only interested in frequent patterns, we do not need a motif for
every measurement.

Since the states of sitting may occur in a particular sequence
(like a motif), MASA is sufficient to obtain the motif from states
of sitting behaviors. MASA seeks to solve for 2 (in this method,
the state model is defined using the TICC model), S and M,
by optimizing the following objective (subject to the constraints
above) as (Equation 5):

max
2,S,M

T
∑

i=1

(

log P2 (Xi | Si) − β {Si−1 6= Si} + log γ {Si /∈ M}
)

+9(M)− R(2), (5)

here,Xi is the measurement at time i, which has the assigned state
Si, and MASA defines the probability P2 (Xi | Si). The β term
is a hyper-parameter that encourages neighboring measurements
to be assigned to the same state. The γ parameter, 0 ≤

γ ≤ 1, defines the cost of not assigning a measurement to
a motif instance. Lower γ values indicate a harsher penalty
for a measurement that does not conform to any motif. The
term 9 refers to a scoring metric that measures the strength
of our motifs based on how often they appear in the dataset.
R(2) is a regularization penalty on the state model parameters
2,which formulated the problem of motif discovery as a major
optimization problem, which was solved using an expectation-
maximization approach.

Considering the interpretability of results and the time of
maintaining the state, we set the window size as 5 s (five samples).
Refer to the paper about the TICC (Hallac et al., 2017) and
MASA (Jain et al., 2018). As an empirical criterion for assessing
the optimization model and the relevant clustering outcomes,
we used the Bayesian Information Criteria (BIC) which is to
characterize the information loss of these models relative to the
“real model” as (Equation 6):

BIC = −2 ln(L)+ k ln(n), (6)

here, L is the maximum likelihood under this model, n is the
number of data points, and k is the number of parameters in
the model. Finally, we used strict rules to obtain the states, the
number of clusters was 4, the penalty factor β was selected as 50,
and the regularization parameter λ was selected as 0.001.

2.7.3. Prediction by SSA-PNN
We proposed an optimized PNN. First, a set of random real
numbers is generated for the weights and smoothing parameters
from SSA (Yu and Li, 2015). The weights change the shape
of PDF so that the contour line is no longer circular, but
elliptical. A larger weight indicates that the variable is more
important, and the radius of the ellipse in the direction of
the variable is smaller. Meanwhile, the performance of the
PNN classifier is highly dependent on the smoothing parameter.
Second, data were split into six sets — five sets were used as
training sets for training the model, and one set of the test
dataset was used to evaluate the accuracy and classification
effectiveness of the model. In the training set, we further used
four of the five sets for training and one set for validation. This
process fits five models on different but partially overlapping
training sets and applies a set of parameters generated by SSA
to these five models simultaneously. Subsequently, it evaluates
them on the non-overlapping validation set and uses the cross-
entropy from the validation set as loss functions. Compared
to a straightforward training/test split, the main benefit of this
approach is the built-in cross-validation to obtain parameters
with more generalization power capability, and thus, less bias
at smaller sample sizes. However, the disadvantage is that it can
significantly increase the training time of the model. Finally, SSA
obtains the optimal tuning parameter values that can be applied
to a fully independent test set to assess the model in an unbiased
manner. In addition, if the smoothing parameter of PNN is
lower than 0.1, overfitting becomes likely. Therefore, we set a
penalty for the smoothing parameter. When the cross-entropy is
minimum, we can use the weight and smoothing parameters to
obtain the best model.

Therefore, we use the social spider algorithm as an optimizer
(Yu and Li, 2015) to search the smoothing parameters and
weights in a modified PNN and tune PNN automatically,
demonstrating the applicability of a PNN-based model for
decision-making in the classification process. We sought to solve
for ω and σ by optimizing the following objective subject, as
shown in (Equation 7):

ω∗
i , σ

∗ = argmin
1

K

K
∑

k=1

Lk, (7)

here, ωi represents the i-th input variable weight, σ is the
standard deviation of Gaussian function that is equivalent to
smoothing parameter in PNN, K is the number of folds in
training set, Lk represents the loss function of k-th fold. Cross-
entropy is a better measure than MSE for classification, as
the decision boundary in a classification task is substantial
(in comparison with regression); therefore, we used categorical
cross-entropy as the cost function, as (Equation 8):

L =
1

N

∑

i

−

M
∑

g=1

yig log
(

pig
(

xi | cg
))

, (8)

where x represents the testing data vectors; yig represents the
indicator variable (0 or 1), if the category is the same as the
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category of sample i, it is 1, otherwise it is 0. M is the number
of clusters. The general classification problem is to determine
the category membership of a multivariate sample data (i.e., a p-
dimensional random vector x) into one of g possible groups Cg ,
g = 1, 2, ........., g, based on a set of measurements. Generally, the
probabilistic density function is the normal probabilistic density
function, as shown in (Equation 9):

pig
(

xi | cg
)

=
1

(2π)n/2σ n
exp




−

(

xj − x
(g)
ij

)2

2σ 2




 , (9)

shows that the only manipulating parameter is smoothing
parameter. In this study, for smoothing parameter and multi
weights, and as we tested,if σ is smaller than 0.1, the training set
was over-fitting, then Equation (9) is developed in the form of the
Equation (10):

pig
(

xi | cg
)

=
1

(2π)n/2σ n
·
1

lg
·

lg
∑

i=1

exp




−

n
∑

j=1

(

ωjxj − ωjx
(g)
ij

)2

2σ 2




 ,

(10)
here, n is the dimension of the input data, that is, the number
of attributes, where xj represents the value of j-th input variable

in the testing sample; and x
(g)
ij represents the j-th input variable of

the i-th sample of Category g in the sample base. Determining the
class number of new input data is based on the results of Parzen
window. Parzenwindow is the average probability of input data xj

related to all training samples in each class x
(g)
ij for n attributes. lg

is the number of training samples that belongs to class g. Finally,
the fourth layer determines class of unknown input data with
regard to the highest pig

(

xi | cg
)

.
Furthermore, nine commonly used models (Ridge

Regression, Linear Discriminant Analysis, Logistic
Regression, Support Vector Machine, K Nearest Neighbors,
Extreme Gradient Boosting, Adaptive Boosting, Random
Forest, Gradient Boosting) were trained to compare the
performance. Because of the small sample size, after tuning
the hyperparameter, we set fixed hyperparameters for each
model (Supplementary Materials, listing 1) and repeat stratified
six-fold cross validation 200 times. The surrogate dataset was
subjected to the modeling procedure to confirm whether the
performance is significantly better than the chance level.

To identify which feature contributed most to predict the
change of LBP level, we calculated SHAP (SHapley Additive
exPlanations) values (Lundberg and Lee, 2017). SHAP is a
game theoretic approach to explain the output of any machine
learning model, SHAP values can quantify the contribution that
each feature brings to the prediction made by the model, as
(Equation 11):

φj =
∑

SF⊆F\{j}

|SF|!(|F| − |SF| − 1)!

|F|!

[

fSF∪{j}
(

xSF∪{j}
)

− fSF
(

xSF
)]

,

(11)
where x is the values of the input features, j is a certain feature
(out of total features F), SF indicates all possible subsets without

feature j, |SF| is the dimension of SF . To compute this effect,
a model fSF∪{j} was trained with feature j present, and another

model fSF was trained with feature j withheld. In this study, the
SHAP “TreeExplainer” algorithmwas used to determine themost
important feature in predicting the change of LBP level.

2.8. Statistical Analyses
The occurrence rate of the common motif in three categories
of LBP change was checked for normal distribution and
homogeneity of variance. A non-parametric method for
comparing two or more independent variables (Kruskal–Wallis
test) was applied. When significant differences were detected, the
post-hoc comparisons (Dunn’s test) were performed. The level of
significance was determined as p-value < 0.05.

In this study, all of the processing, feature engineering,
analysis, and visualization were implemented in Python 3.7.1.

3. RESULTS

The total number of study participants was 22, and the
participants’ demographic profile is presented in Table 1. Total
number of days recorded was 90 days. Each participant provided
records for 4.09 days in average.We classified participants in four
categories according to the changes in the levels of LBP in the
recorded days. Three subject (13.64%) experienced exacerbation
of LBP in all the recorded days, eight participants experienced
no change in the level of LBP, six participants experienced
both exacerbation of LBP, and no change, five participants
experienced exacerbation, no change and improvement of LBP
in the recorded days. as shown in Table 2. Furthermore, Table 3
shows the changes in LBP for all samples, revealing that when
LBP exacerbated, sitting time is longer than other groups. There
is a clear trend of increasing the common motif from LBP. For
both level of sleepiness and the feeling of fullness after breakfast,
the no-change group exhibited the highest score.

The results obtained from the preliminary analysis of BIC
are shown in Table 4, where the penalty factor β was 50, and
the regularization parameter λ was 0.001. To reiterate, previous
research found that there are more than three states from sitting
behavior; thus, we set K from 4 to 10.We can infer that 4, with the
smallest BIC value, indicates the best number of states. Therefore,
in this study, the states of sitting behavior of the office workers
were determined to be 4. Otherwise, it may undermine sensitivity
and physiological interpretability.

The states of COP are used to reflect the specific pattern from
sitting behavior, such as leaving the chair, stable sitting, slight
sway, and big sway (Figure 2). Although the states vary slightly
among state 1, state 2, and state 3, showing the characteristics of
different states of sitting behavior. State 1 indicates stable sitting
behavior. State 2 implies slight sway; in general, it is similar to
many small actions, such as small stretch or rotation. State 3
indicates big sway. In state 3, the participants moved significantly
in both directions. State 4 indicates the participants left the chair.
Furthermore, as the figure shows, the common motif consists of
state 1 (stable sitting) and state 2 (slight sway), and we found that
91.11% (82/90) of days had this motif. This indicates a series of
complex actions that have a specific sequence.
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TABLE 1 | Demographic characteristics.

Subject (n) 22

Total records, days 90

Records/participants, days 4.09 ± 3.57

Gender (male), % 50.00

Age, year 43.41 ± 8.36

Weight, kg 65.06 ± 9.97

Sitting, hours 5.58 ± 1.93

Motifa, frequency/30 min 2.00 ± 1.71

Sleepiness (score from 0 to 10) 6.56 ± 1.96

The feeling of fullness after breakfast (score from 0 to 10) 4.27 ± 3.63

Eb, n of participants, % 13.64

NCc, n of participants, % 36.63

IMd, n of participants, % 0

E and IM e, n of participants, % 0

E and NCf, n of participants, % 27.27

E and NC and IMg, n of participants, % 22.73

aThe common motif identified in this study.
b In recorded days, how many participants LBP exacerbated.
c In recorded days, how many participants LBP did not change.
d In recorded days, how many participants LBP improved.
e In recorded days, how many participants LBP exacerbated and improved.
f In recorded days, how many participants LBP exacerbated and did not change.
g In recorded days, how many participants LBP exacerbated, did not change and

improved.

E, Exacerbated; NC, did not change; IM, improved.

TABLE 2 | Characteristics by the change of LBP in each subject.

E NC E and NC E, NC, and IM

(n = 3) (n = 8) (n = 6) (n = 5)

Gender (male), % 33.33 25.00 83.33 60.00

Sitting, hour 5.72 ± 1.55 4.94 ± 1.78 6.60 ± 1.71 5.01 ± 1.82

Motif, times/30

min

1.56 ± 0.30 2.08 ± 1.72 1.57 ± 1.30 2.44 ± 2.05

Sleepiness (score

from 0 to 10)

6.67 ± 2.36 7.77 ± 2.04 5.75 ± 1.60 6.34 ± 1.62

The feeling of

fullness after

breakfast (score

from 0 to 10)

8.67 ± 0.47 6.73 ± 3.08 2.28 ± 3.32 3.79 ± 2.86

E, Exacerbated; NC, did not change; IM, improved.

The sitting behavior data were labeled as four states, and a
common motif consists of two states. Subsequently, we used the
occurrence rate of the motif, sitting time, and other features such
as gender, sleepy degree, and how full breakfast was to infer
the change of LBP from the morning to night. The output class
of the confusion matrix represents the prediction of the PNN-
SSA model, enabling it to quickly distinguish confusion between
different classes of changes in LBP (Figure 3). In this study, the
normalized confusion matrix and confusion matrix were used
to achieve a more visual representation. Each matrix column
indicates the predicted label at an inference level of LBP, and each
row indicates the actual class. The values of the diagonal elements

TABLE 3 | Characteristics by the change of LBP in each day from all participants.

Ea NCb E and NCc

(n of events = 40) (n of events = 43) (n of events = 7)

Gender (male), % 60.00 27.91 71.43

Sitting, hour 6.19 ± 1.79 5.09 ± 1.79 5.11 ± 2.43

Motif,

frequency/30 min

1.61 ± 1.25 2.07 ± 1.92 3.71 ± 1.59

Sleepiness (score

from 0 to 10)

6.20 ± 1.63 6.93 ± 2.21 6.29 ± 1.48

The feeling of

fullness after

breakfast (score

from 0 to 10)

3.45 ± 3.61 5.37 ± 3.50 2.14 ± 1.96

a In all of the 22 participants, there are total 40 days that their LBP exacerbated.
b In all of the 22 participants, there are total 43 days that their LBP had no change.
c In all of the 22 participants, there are total 7 days that their LBP improved.

E, Exacerbated; NC, did not change; IM, improved.

TABLE 4 | The BIC values corresponding to each K-values (window size = 5, β =

50, λ = 0.001).

K 4 5 6 7 8 9 10

BIC for states (×105) 12.28 12.67 13.60 13.19 13.25 12.79 12.72

BIC for motifs (×105) 5.45 8.32 8.06 7.88 8.93 8.44 8.71

BIC, Bayesian information criterion.

represent the proportions of correct inference levels. Figure 3A
shows the number of predictions that are correct, the condition
of no change has the highest probability of misclassification.
Figure 3B shows the accuracy of SSA-PNN at three levels. SSA-
PNN yielded average accuracies of 65, 81, and 14% for worse, no
change and better, respectively. The performance of predicting
LBP improved was not as good as the other two conditions.
This might be attributed to we defined the change of LBP by
using the morning score of LBP minus the night score. Most
of the differences were very close to 0 which indicates LBP did
not change. We hypothesize that the physical conditions of no
change and improved are similar, therefore, the accuracy of LBP
improved is low.

The results of the performance of the proposed algorithms
show a more detailed interpretation, which were evaluated
by mean accuracy, weighted precision, weighted recall, and
weighted F1 score, as shown in Table 5. Based on data,
cross-validation was performed by applying the six-fold cross-
validation model for 200 times. In essence, the SSA-PNN and
Extreme Gradient Boosting yielded better overall performance
on most optimization problems than other algorithms. However,
the other methods exhibited very poor classification rates. For
this small dataset, SSA-PNN had high levels of classification
performance. However, Support Vector Machine had the best
recall results compared with the other algorithms (44.32%).
Furthermore, we assessed the accuracy (40.74 ± 11.82%) of the
surrogate dataset, the performance of SSA-PNN was significantly
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FIGURE 2 | The common motif. We used MASA to extract the most common motif from sitting behavior. LR, the change of COP in left and right; FB, the change of

COP in forward and backward; MLR, the change of COP in left and right during the motif; MFB, the change of COP in forward and backward during the motif.

FIGURE 3 | The confusion matrix of SSA-PNN. (A) The confusion matrix. (B) The normalized confusion matrix. The plots revealed the performance of identifying

various levels of LBP, Among them, “did not change” had a better result.

better than the chance level. In general, SSA-PNN exhibits the
best adaptability for small datasets.

The contributions of the features for prediction, as measured
by SHAP values, are presented in Figure 4. The SHAP scores
in this figure display the contribution to each condition (LBP
level did not change, LBP exacerbated, and LBP level improved).
The motif occurrence rate had the highest contribution in each
condition, demonstrating the best predictive utility.

Figure 5 shows the performance of SSA with 10 epochs.
It was used as the validation set to obtain σ and ω. In this

figure, the smaller the value of the performance, the better the
performance of the neural network. There is a considerable gain
in performance until the 2nd iteration.

Figure 6 presents the results obtained from the preliminary
analysis of sitting behavior. The data did not follow a normal
distribution, and the variance was not homogeneous. Significant
differences were observed between the three groups (p = 0.027;
Kruskal-Wallis test), the occurrence rate of the common motif
identified in LBP improved was higher compared with worse (p
= 0.019; Dunn’s test) and no change ( p= 0.061; Dunn’s test).
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TABLE 5 | Model performance comparison with fixed hyperparameters.

Model Accuracy (%) Precision (%) Recall (%) F1 (%)

SSA-PNN 59.14 ± 10.84 71.82 ± 13.32 41.30 ± 10.89 63.01 ± 10.51

Extreme gradient boosting 58.27 ± 11.67 65.47 ± 13.59 43.73 ± 12.18 60.15 ± 12.14

K neighbors classifier 57.43 ± 11.59 64.44 ± 13.60 43.96 ± 12.81 59.12 ± 12.04

Gradient boosting classifier 57.71 ± 11.82 66.62 ± 14.31 43.44 ± 13.05 60.04 ± 11.98

Random forest classifier 56.99 ± 11.72 66.10 ± 15.00 43.04 ± 12.98 59.32 ± 11.90

Ada boost classifier 56.97 ± 11.69 66.71 ± 14.42 42.25 ± 12.64 59.61 ± 11.78

Ridge classifier 56.69 ± 10.94 64.29 ± 12.48 39.65 ± 9.95 59.22 ± 11.15

SVM—linear kernel 56.51 ± 11.55 62.79 ± 13.44 44.32 ± 13.71 57.88 ± 11.98

Linear discriminant analysis 56.18 ± 11.24 63.24 ± 12.74 41.27 ± 12.72 58.47 ± 11.42

Logistic regression 55.44 ± 11.47 61.71 ± 13.56 43.44 ± 12.91 56.68 ± 11.97

FIGURE 4 | A summary plot of the SHAP values for each feature. The vertical axis indicates the variable names, in the order of importance from top to bottom. The

horizontal axis shows the mean absolute SHAP values. The motif occurrence rate contributed the most for predicting the change of LBP level.

FIGURE 5 | Validation error of SSA-PNN. The plot shows the experimental results of validation with 10 epochs. The best validation performance was attained at

epoch 2.

4. DISCUSSION

This study used cross-validation in a new way. In contrast to
evaluating the model performance, this study used five-fold to

evaluate the generalization of parameters and fixed each set of
parameters obtained from SSA to find a set of smoothing and
weighting parameters with the best generalization performance
on the k sub-dataset. Therefore, the parameter had the best
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FIGURE 6 | Differences in occurrence rate of motif at three LBP conditions,

the figure is the scatter plot with the addition of a rotated kernel density plot on

each side. The occurrence rate was higher in the improved group. *p <0.05.

generalization in the five folders. Thus, we used this model
to predict the exacerbation of LBP during sitting behavior in
real life.

Although no previous studies have examined the motif
in sitting behavior, many previous studies have examined
the association of sitting behavior with LBP. Recently, ideal
workplace sitting posture and sitting behavior have been widely
discussed in the literature. The long-standing doctrine of an
optimal seating posture that is “as upright as possible” has been
highly disputed. The principle of “dynamic sitting” has been
slowly substituted, where sitting positions were identified as
to continuously change (Dieen et al., 2001; Pynt et al., 2001).
However, O’Sullivan in his systematic review concluded that
dynamic sitting approaches are not effective as a stand-alone
management approach for LBP (O’Sullivan et al., 2012). This
conclusion could have been generated by ignoring the potential
nature that some individuals have more dynamic sitting behavior
(like motif), whereas others have less.

The current study is the first to report the motif of sitting
behaviors, which consists of stable sitting and slight sway. The
motifs are not the types of sitting posture but a dynamic
sitting behavior pattern. This finding might help others to better
understand the nature of sitting. The motif is a sitting behavior
pattern that lasts <3 min and more than 1 min, it was found
to be common for all the subjects in this study. However, it is
not clear why this motif occurs. A possible explanation is that
when the lumbar spine has too much pressure, human body will
produce a non-intentional self-defense mechanism which is a
natural physiological behavior, similar to locking the body when
one is highly stressed or fatigues, or moving the cervical spine
when one gets a neck pain. This will be one of the research
directions in future.

Another important finding is that this motif has a positive
effect on LBP. These results are consistent with the ideas
presented in some review articles of LBP (Dieen et al., 2001; Pynt
et al., 2001). Therefore, it suggests that the healthy sitting posture

(1) is best thought of as an active, not a static phenomenon,
regularly interspersed with moving, (2) is the optimal sitting
posture, and (3) helps with lumbar postural health and LBP
prevention. In addition, studies have reported less frequent
postural shifts in individuals with chronic LBP than in healthy
individuals (Dunk and Callaghan, 2005; Akkarakittichoke and
Janwantanakul, 2017). Notably, this result may be explained
by the shift of stable sitting and slight sway, similar to the
movements in the different parts of the trunkmuscles, whichmay
alleviate LBP (Dieen et al., 2001). These results corroborate the
findings of a previous in which prolonged static contractions of
trunk muscles could lead to an increased risk of injury (Nairn
et al., 2013).

In contrast, postural modification has been shown to increase
the saturation of subcutaneous oxygen, which positively affects
tissue viability (Reenalda et al., 2009). Therefore, combined with
stable sitting and slight sway, this motif may alleviate LBP. After
an in-depth analysis, we found that the motif is always <3
min, which is like a fundamental unit. It can be extended as a
longer motif with the same component and sequence. However,
we still do not know the mechanism by which sitting behavior
exhibits this motif, and we speculate that in unconscious states,
the nervous system may be controlling the trunk during sitting
behavior for self-protection.

As aforementioned, the motif consists of stable sitting and
slight sway that positively affects LBP. These results correlate with
a previous study showing that the range of COP displacement in
both directions and lumbar curvature were positively correlated
with LBP (Sondergaard et al., 2010). First, sitting compresses the
intervertebral disc, creating hydrostatic pressure in the nucleus
by the annulus and adjoining vertebral bodies (Chan et al., 2011).
The amount of hydrostatic pressure within the nucleus is affected
by the number of sits (Chan et al., 2011). Therefore, stable sitting
and slight sway may be adjusting such pressure. Second, it may
be argued that comfortable sitting will preserve lumbar lordosis
and transfer the forces acting on the lumbar vertebrae from
the intervertebral discs to the lower margins of the articular
surfaces of the zygapophysial joints, minimizing the effect of
creeping intervertebral discs (Chun-Ting et al., 2014). Third,
slight sway shifts a portion of the body weight, thereby reducing
the load of back muscles (Makhsous et al., 2009). Following the
present results, previous studies have demonstrated that relative
to the upper and lower thoracic areas, the non-pain participants
displayed a less lateral bent positional shift in the mid-thoracic
region. The participants developed transient pain that showed
higher muscle activations in the abdominal muscles. In addition,
poor to moderate positive associations between rated pain and
low back muscle activation were found (Nairn et al., 2013).
However, with a small sample size, cautionmust be applied, as the
findings is subject to the selection bias. Thus, it may be inferred
that during working hours, stable sitting and slight sway may
have a positive effect on LBP.

We also identified two states and many motifs from the
sitting behavior. For the other two states, one was absent from
the chair; the subjects might have left the chair for lunch or
for meetings at a different place. The other state indicated a
big sway, which is not the component of the common motif.
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However, it may indirectly confirm the association between
sitting behavior and LBP. Previous research showed that all
participants experienced the highest discomfort in the relaxed
slouching sitting posture, which is similar to a big sway (Li
et al., 2015). As we mentioned, the increase in the degree of
variability in the sitting posture is interrelated with the increase
in the perceived discomfort (Sondergaard et al., 2010). Notably,
this effect may be clarified because those who developed pain
had larger L1/L2 intervertebral angles, larger pelvic incidences,
and sacral slopes (Misir et al., 2019). In contrast, the flexion-
relaxation phenomenon in the relaxed slouching sitting posture
caused the body weight to producemechanical loading on passive
tissues (Panjabi, 1992). Furthermore, many motifs consisted of
two or more states. Most of these motifs are not as common
as the motif we proposed, and we speculate that these motifs
highly depend on each individual’s characteristic or personality,
and there are still several motifs that may reflect LBP. Therefore,
it seems that further research can perform clustering based on
motifs caused by individual differences to identify a tighter
relationship between LBP and such sitting behavior.

Similar to the techniques widely applied to recognize walking,
running, and calculating activity consumption, we proposed a
novel idea combining machine learning for feature extraction
based on dynamic time series of sitting behaviors. Furthermore,
we found Recurrent Neural Network (RNN) can learn this motif
with accuracy higher than 92% and the motif can be recognized
in real-time, this approach solves the problem that TICC and
MASA take much time and computer memory to run, this
finding should help others to find new ways of applying this
tech in practice. However, more feature engineering studies were
still needed in this research field. Mapping sitting behavior to a
deep feature space may result in some regular features similar to
walking or running, we guess some discoveries may be found if
chaos theory is integrated into sitting behavior feature extraction.

Despite these promising results, the questions remain. First,
our sample of subjects was likely not large enough to represent
the population’s vast heterogeneity; caution must be applied, as
the findings might not be applicable to the entire population.
However, application of the same method, it is possible to collect
more data and improve the model performance. Second, it is
better to use a generative model for data derived from a small
sample size. For the bigger data set, discriminate and ensemble
models may also have good performance.

5. CONCLUSION

Low back pain exacerbation is predictable through motif
identification in center of pressure time series data recorded

during dynamic sitting. This study proposed a method of
predicting LBP exacerbation of office workers in a “real world”
office environment. We split the time-series data of COP
changes into four states and used MASA to find out the
common motif consisting of stable sitting and slight sway, which
may reduce LBP. We used the motif as one of the features
to determine the changes in LBP by SSA-PNN, which had
better performance compared with the other nine commonly
used algorithms. The contribution of this study is to confirm
the dynamic nature of sitting behavior, which has significant
implications for understanding LBP and sitting behavior. Further
studies are required to validate the effect of this motif on
LBP; large randomized controlled trials could provide more
definitive evidence.
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