
ORIGINAL RESEARCH
published: 02 October 2018

doi: 10.3389/fphar.2018.01096

Frontiers in Pharmacology | www.frontiersin.org 1 October 2018 | Volume 9 | Article 1096

Edited by:

Leonardo L. G. Ferreira,

Universidade de São Paulo, Brazil

Reviewed by:

Alfonso T. García-Sosa,

University of Tartu, Estonia

Andreas Dominik,

Technische Hochschule Mittelhessen,

Germany

Deepak Singla,

National Institute of Malaria Research

(ICMR), India

*Correspondence:

Rajarshi Guha

rajarshi.guha@gmail.com

Andreas Bender

ab454@cam.ac.uk

†Present Address:

Rajarshi Guha,

Vertex Pharmaceuticals, Boston, MA,

United States

Specialty section:

This article was submitted to

Experimental Pharmacology and Drug

Discovery,

a section of the journal

Frontiers in Pharmacology

Received: 02 May 2018

Accepted: 07 September 2018

Published: 02 October 2018

Citation:

Mason DJ, Eastman RT, Lewis RPI,

Stott IP, Guha R and Bender A (2018)

Using Machine Learning to Predict

Synergistic Antimalarial Compound

Combinations With Novel Structures.

Front. Pharmacol. 9:1096.

doi: 10.3389/fphar.2018.01096

Using Machine Learning to Predict
Synergistic Antimalarial Compound
Combinations With Novel Structures
Daniel J. Mason 1,2, Richard T. Eastman 3, Richard P. I. Lewis 1, Ian P. Stott 4,

Rajarshi Guha 3*† and Andreas Bender 1*

1Department of Chemistry, Centre for Molecular Informatics, University of Cambridge, Cambridge, United Kingdom, 2Healx

Ltd., Cambridge, United Kingdom, 3Division of Preclinical Innovation, National Center for Advancing Translational Sciences,

National Institutes of Health, Rockville, MD, United States, 4Unilever Research and Development, Wirral, United Kingdom

The parasite Plasmodium falciparum is the most lethal species of Plasmodium to

cause serious malaria infection in humans, and with resistance developing rapidly novel

treatment modalities are currently being sought, one of which being combinations

of existing compounds. The discovery of combinations of antimalarial drugs that act

synergistically with one another is hence of great importance; however an exhaustive

experimental screen of large drug space in a pairwise manner is not an option. In

this study we apply our machine learning approach, Combination Synergy Estimation

(CoSynE), which can predict novel synergistic drug interactions using only prior

experimental combination screening data and knowledge of compound molecular

structures, to a dataset of 1,540 antimalarial drug combinations in which 22.2% were

synergistic. Cross validation of our model showed that synergistic CoSynE predictions

are enriched 2.74× compared to random selection when both compounds in a predicted

combination are known from other combinations among the training data, 2.36× when

only one compound is known from the training data, and 1.5× for entirely novel

combinations. We prospectively validated our model by making predictions for 185

combinations of 23 entirely novel compounds. CoSynE predicted 20 combinations to be

synergistic, which was experimentally validated for nine of them (45%), corresponding to

an enrichment of 1.70× compared to random selection from this prospective data set.

Such enrichment corresponds to a 41% reduction in experimental effort. Interestingly,

we found that pairwise screening of the compounds CoSynE individually predicted to

be synergistic would result in an enrichment of 1.36× compared to random selection,

indicating that synergy among compound combinations is not a random event. The

nine novel and correctly predicted synergistic compound combinations mainly (where

sufficient bioactivity information is available) consist of efflux or transporter inhibitors (such

as hydroxyzine), combined with compounds exhibiting antimalarial activity alone (such as

sorafenib, apicidin, or dihydroergotamine). However, not all compound synergies could

be rationalized easily in this way. Overall, this study highlights the potential for predictive

modeling to expedite the discovery of novel drug combinations in fight against antimalarial

resistance, while the underlying approach is also generally applicable.
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INTRODUCTION

Malaria is a deadly and worldwide disease, with an estimated
445,000 deaths globally in 2016, of which 91% are estimated
to have occurred in Africa (World Health Organisation, 2017).
Despite global mortality rates declining by 62% between 2000
and 2015, this disease remains a major killer for children under
5 years, with a young life being taken every 2min (World Health
Organisation, 2017).

When exposed to antimalarial compounds, the malaria-
causing parasite Plasmodium falciparum can over time develop
resistance to different therapies and via a number of distinct
mechanisms (Mita and Tanabe, 2012). This tendency has
rendered many antimalarial therapies ineffective in the past, and
continues to threaten the current standards of care. In order
to combat resistance, options include the design or discovery
of new antimalarial compound classes or analogs that offer
increased efficacy over those with prior use. However, in the
present time, and in absence of these novel discoveries, the
current World Health Organization (WHO) guidelines state that
combinations of at least two effective antimalarial medicines
with different modes of action need to be administered in order
to help protect against resistance (World Health Organisation,
2015). At present, the standard of care listed by WHO
includes artemisinin-based combination therapies (ACT), such
as artemether with lumefantrine, artesunate with amodiaquine,
and dihydroartemisinin with piperaquine (Figure 1). Resistance
to artemisinins has arisen more recently in South East Asia
(World Health Organisation, 2017), raising concern on the future
effectiveness of ACTs since resistance to the ACT partner drug
significantly decreases the clinical efficacy of the combination
therapy (Bacon et al., 2007). Alarmingly, this concern has recently
been confirmed in Cambodia, in the form of resistance to
the first line treatment dihydroartemisinin-piperaquine by P.
falciparum strain PfPailin (Imwong et al., 2017). The evolution
and spread of multidrug resistant organisms renders the selection
of novel drug combinations only a viable medium-term option,
and there is continued effort to map ACT partner drugs by
the World Wide Antimalarial Resistance Network (World Wide
Antimalarial Resistance Network, 2014).

The combined properties resulting from a mixture of drugs
is not always equivalent to the sum of their parts. Drug
combinations are well-known to result in an increase or decrease
in measured therapeutic efficacy (synergy or antagonism,
respectively), result in no difference in effectiveness (additivity),
or present an increase or decrease in the number of side effects
experienced (drug-drug interactions, which would then also
possibly represent synergy, albeit of undesired effects; Lehár
et al., 2009; Tatonetti et al., 2012). In the case of malaria (and
probably many other diseases one wants to treat), the desired
effect sought after is usually synergy, i.e., a drug combination
for which the antimalarial effect is greater than that observed by
each compound alone, and greater than what would be expected
by assuming solely additivity of compound effect (Sucher, 2014).
In this case lower doses of each individual compound would be
required, thereby potentially achieving the desired efficacy with
in many cases reduced side-effects (Csermely et al., 2005).

FIGURE 1 | Artemether and Lumefantrine, Artesunate and Amodiaquine, and

Dihydroartemisinin and Piperaquine are antimalarial combinations

recommended by the WHO as the current standard of care to help protect

against drug resistance in P. falciparum.

Antimalarial drug combinations can be either novel, or
represent the repurposing of drugs used previously for other
purposes, such as in the use of tricyclic antidepressants in
chloroquine-resistant strains of P. falciparum (Bitonti et al.,
1988). High throughput screening for antimalarial compound
combinations is one mechanism by which discovery of novel
combinations may be found faster (Mott et al., 2015). However,
the discovery of synergistic combinations is experimentally
challenging: As the number of compounds increases, very quickly
too does the number of potential combinations, in particular
when considering multiple replicates, the requirement of
screening concentration matrices, and possibly against different
strains of the pathogen. For example, 100 compounds screened
pairwise results in 4,950 compound combinations, and testing
for synergy in a 6 × 6 dose-response matrix altogether requires
178,200 data points (with numbers increasing further when
taking into account replicates, different strains, etc.; Cokol et al.,
2014). Increasing the search space by the addition of just 25 more
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compounds would require over 100,000 further data points, due
to combinatorial explosion.

Computational approaches have been investigated as a
means to predict the synergistic interaction of compounds
previously, with methods that utilize networks of pathways
and simulation (Lehár et al., 2007; Nelander et al., 2008;
Miller et al., 2013; Huang et al., 2014; Patel et al., 2014;
Zhang et al., 2014), relationships between physicochemical
properties (Yilancioglu et al., 2014), chemogenomics approaches
(Bansal et al., 2014; Wildenhain et al., 2015; KalantarMotamedi
et al., 2018), and single agent efficacies (Gayvert et al.,
2017) and/or combinations (Menden et al., 2018) measured
across multiple cell lines (for recent reviews of compound
combination modeling and perspectives, see Bulusu et al.,
2016; Weinstein et al., 2017; Tsigelny, 2018). A disadvantage
to many of these approaches is that they often require
experimental knowledge of underlying biological interactions
between drugs and disease, or chemogenomic or phenotypic
readouts (Jansen et al., 2009; Bansal et al., 2014; Wildenhain
et al., 2015; Menden et al., 2018). This data may be
difficult to obtain, non-existent, or expensive to collect
enough to create a predictive model from. In addition, the
prediction of novel combinations themselves will rely on the
same experimental descriptors being available for each new
compound.

In order to address these problems, we have developed
CoSynE (Combination Synergy Estimation; Mason et al., 2017).
CoSynE constructs predictive models from existing combination
screening data, and utilizes only the known structures of
compounds that have been part of these screens. As such,
CoSynE requires only two pieces of information, namely a list
of compounds together with their structural representations, and
a list of compound combinations together with a label whether

the action of each combination was found to be synergistic,
antagonistic, or additive (depending on the criteria for those
categories one finds appropriate in a particular case). The
compounds are transformed into two classes of representation
by CoSynE: Firstly, a compound structure fingerprint (SFP; a
2048-bit Morgan Fingerprint), and secondly a predicted target
fingerprint representing bioactivity spectra [TFP; 1,080 predicted
protein target binding probabilities above a training cut-off,
using PIDGIN (Mervin et al., 2015)]. This hence yields three
classes of models: SFP, TFP, and STFP (a concatenation of
the SFP and TFP fingerprints). These fingerprints are used as
input to machine learning models that make inferences between
a particular representation and the experimentally observed
synergy. A number of models are optimized for the prediction
of synergistic combinations, and the best-performing final model
is selected following a rigorous cross-validation procedure, where
either both compounds are known to the model, one compound
is unknown, or both are unknown, such that the ability of CoSynE
to extrapolate to novel chemical spacemay be inferred (Figure 2).

We have previously applied CoSynE to the prediction of novel
antibiotic combinations effective against E. coli (Mason et al.,
2017). In this initial study, CoSynE was trained upon 156 pairs
of 18 compounds using the SFP representation of combinations
(since in preliminary studies other types of descriptors were
found to lead to inferior performance), which was then
used to pre-screen a set of 123 combinations, comprising
compounds that were known and/or unknown to the model.
After prospective validation, 10 novel synergistic combinations
were confirmed from a list of 12 that were highlighted by
CoSynE. The results from our previous study correspond to a
2.8-fold enrichment in the discovery of synergistic combinations
vs. that expected by random selection from the same set of
compounds.

FIGURE 2 | Three different rounds of cross-validation (CV) were employed to test model performance prior to making final predictions. Numbers on axes represent

compound IDs in a compound combination training dataset. K-fold randomly selects a 1/K fraction of combinations to remove from the training data and predict in

each round; Leave One Compound Out (LOCO) chooses pairs to remove based upon one compound in each round, and Leave One Pair Out chooses pairs to

remove based upon a choice of two compounds in each round. Green; training combinations; blue; test combinations, red; held-out combinations, black; self-self

crosses (not included in training data).
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In the present study, we were starting with a much
larger training dataset consisting of 1,540 combinations of 56
compounds tested against P. falciparum (Mott et al., 2015).
Next, CoSynE was used to pre-screen a library of 23 compounds
unknown to the model (see Methods section for compound
selection process) by predicting which combinations of those
compounds are likely to exhibit novel antimalarial synergy.

These predictions were prospectively validated by carrying
out a full pairwise experimental screen of all 23 compounds
the model could have chosen from (in order to also provide
a negative control, i.e., testing of compound combinations
not predicted to be synergistic by the model). This validation
represents making predictions in entirely novel compound space,
where both compounds have not been seen by the model before,
which is a very tough challenge, compared to our previous study
(and many other studies) which mostly included compounds
that were previously known to the model. However, prospective
validation in the present study showed CoSynE predictions
to be enriched with 1.70 times more synergistic combinations
than expected by random selection (over an already rather
high baseline synergy level, see details below), and hence also
predictions in novel chemical space are enriched over random.

RESULTS AND DISCUSSION

Similarity of Training and Validation Sets
Clustered hierarchical similarities are shown for whole and
scaffold structures in Supplementary Figure 1. In general, there
is little structural similarity between compounds in the training
data compared to the prospectively tested data. Compounds
which formed the top five most synergistic combinations in both
the training and validation datasets are shown in dimensionally-
reduced chemical space in Figure 3. The lack of a clear clustering
between the top synergistic compound structures in either
datasets demonstrates the difficulty in selection of compounds
to screen simply via structural similarity alone. In addition
to the observation that synergy is more commonly observed
for drugs targeting the same processes (Brochado et al., 2018),
the relationship between compound structure-related properties
and synergistic interaction has been shown previously [such as
lipophilicity and synergy in the case of anti-fungals (Yilancioglu
et al., 2014)]. Overall, the inference of complex relationships,
such as these on a scale that may quickly explode to intractable
proportions is a task highly applicable to machine learning.

Dataset Composition and Model
Performance During Cross-Validation on
Training Set
The number of high quality (HQ) training combinations per
dataset (see Methods section for definition) and synergy type
is shown in Table 1. The Dd2 dataset contains the greatest
number of HQ combinations (1,245), followed by 3d7 (1,194),
and then Hb3 (1,159). This was reflected in the results of the
5-fold leave-one-compound-out (LOCO) and leave-one-pair-
out (LOPO) cross-validation routines (Supplementary Table 1),
which showed the Dd2 model to outperform 3d7 and Hb3.

The mean average Matthews Correlation Coefficient (MCC)
score for each strain (i.e., across all fingerprint type and all CV
routines) were 0.19 (Dd2), 0.18 (3d7), and 0.11 (Hb3). Although
these MCC scores are not particularly high in absolute terms
(particularly since the more difficult CV routines bring the scores
down, while considering that a score of 0 is equivalent to random
selection), the Dd2 dataset was chosen for use in the remainder of
the study due to the expectation of relatively greater performance
in a prospective validation, in addition to the greater number of
high quality data points upon which the model is trained upon.

The Dd2 dataset model was further examined in terms of
the performance for each of the descriptor types, the results
of which are displayed in Table 2. During 5-fold CV (where a
random subset of 20% of the training data is held out to test
upon), each descriptor type for Dd2 showed similar performance,
with a cross-descriptor average MCC of 0.46 and a cross-
descriptor average 2.78-fold enrichment (compared to random
selection) of synergistic combinations correctly predicted by the
model. However, for the more challenging leave-one-compound-
out (LOCO) CV, the SFP model significantly outperformed
the others, with MCC scores of 0.27 (SFP), 0.03 (TFP), and
0.03 (STFP). Moving on to the most difficult leave-one-pair-
out (LOPO) CV routine, the performance was still greatest
for the SFP model with a precision of 0.33 and recall of 0.01
(corresponding to an MCC of 0.02). Although recall (number
of synergistic compounds in the test data that were identified
correctly) is very low, the precision (number of synergistic
combinations correctly identified in all that were predicted to be
synergistic) is greater at 0.33. This is still useful in practice since
it suggests we are only likely to find the minority of all synergistic
combinations in a dataset, but 33% of those combinations predicted
to be synergistic will indeed turn out to be synergistic combinations.
Compared to our previous study where CoSynE was applied
to antibiotic combinations (Mason et al., 2017), the LOPO CV
performance was qualitatively similar with a high precision and
low recall (1.0 and 0.2, respectively) for a SFP fingerprint on the
training data. Since the coverage of chemical space in this dataset
overall is quite low it is likely that the model has not been exposed
to enough diversity to make confident predictions about many of
the compounds, and so the recall score is low as a result.

A possible reason behind the low performance of the TFP
descriptor models is that the protein targets from PIDGIN are of
human origin, and are unlikely to provide a useful representation
of target interactions in P. falciparum. However, it is the case
that orthologous proteins exist between Homo sapiens and P.
falciparum, and it has previously been shown that the number
of conflicting bioactivities between human and ortholog targets
in public databases is comparatively low (Mervin et al., 2018),
which supports the use of human targets as bioactivity spectra
in this indirect manner. It has also been shown that bioactivity
spectra can be used more generally as a descriptor that captures
biologically relevant information, and can outperform chemical
descriptors in the identification of compounds with similar
bioactivities [see Petrone et al. (Petrone et al., 2012) Bender et al.
(Bender et al., 2006), Kauvar et al. (Kauvar et al., 1995), Riniker
et al. (Riniker et al., 2014), and Paricharak et al. (Paricharak et al.,
2016)]. These, together with the lack of predictive modeling tools
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FIGURE 3 | Multi-Dimensional Scaling (MDS) plot of chemical space for all compounds used in this study, based upon pairwise similarity of radius 2, 2,048-bit

Morgan fingerprints. Compounds that comprise the top five synergistic combinations in the training (red dots) and prospective validation (green dots) datasets are

highlighted, together with their synergistic connection. The lack of a clear clustering suggests that pairs of synergistic compounds do not always arise from those in

distinct or well-defined chemical space. Out of these predictions in green, none were predicted by CoSynE, but paroxetine + guanethidine would be discovered

following the indirect route described in the Results section, and is the second-most synergistic combination in the validation dataset. Structures for validation and

training compounds are included in Supplementary Tables 5, 7, respectively.

available to predict potential P. falciparum targets from a given
compound structure, provided the reasoning behind our choice
of entire bioactivity spectra against proteins as a descriptor type.

Since we are carrying out the toughest validation possible
for our model by exploring novel areas of chemical space
(i.e., the compounds to be prospectively validated in this study
are not present in the training data), the most-challenging
LOPO scenario represents the predictions we wish to make.
The CV performance results suggest that by using the SFP
descriptor model, we may expect an approximate 1.5-fold
enrichment of synergistic combinations in those predicted from
our novel compounds compared to random selection (although
this enrichment appears low, note that there is already a high
baseline of synergy within the dataset which this suggests could
be increased further and that the prediction of synergy for
entirely unseen data is the most difficult test of a predictive model
possible). The SFP descriptor model was therefore selected as
the most suitable candidate for this study, which is the same
class of descriptor used in our previous study which successfully
identified antibacterial combinations (Mason et al., 2017).

Prospective Validation of CoSynE
Predictions
The library of 23 compounds that were selected for
prospective validation resulted from predictions generated
by a developmental version of CoSynE that had previously
virtually screened 21 million DrugBank combinations using
the same training data, alongside a different approach that was
developed in parallel to CoSynE (KalantarMotamedi et al., 2018;
see Experimental section for details). From this library of 23
compounds (and a possible 253 combinations), a total of 20
combinations comprising 12 distinct individual compounds
were predicted to be synergistic, and these were submitted for
prospective experimental validation. The prospective validation
found that 9 of these 20 combinations (i.e., 45%) exhibited
antimalarial synergy (defined in this study as γ ≤ 0.96). These
predicted synergistic combinations are shown in Table 3 where
the range of γ is 0.917–0.958 (compared to the full prospective
screen shown in Supplementary Table 2, where the range of
γ is 0.88–0.959). The nine synergistic combinations that were
correctly predicted comprise only seven compounds of the 23
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TABLE 1 | Dataset statistics.

Strain Synergistic combinations Additive combinations Antagonistic combinations Total

TRAINING COMBINATIONS (HQ)

3d7 264 (22.1%) 762 (63.8%) 168 (14.1%) 1,194

Dd2 277 (22.2%) 817 (65.6%) 151 (12.1%) 1,245

Hb3 242 (20.9%) 767 (66.2%) 150 (12.9%) 1,159

PROSPECTIVELY VALIDATED COMBINATIONS (HQ)

3d7 18 (15.1%) 100 (84%) 1 (0.8%) 119

Dd2 49 (26.5%) 134 (72.4%) 2 (1.1%) 185

Hb3 29 (35.8%) 52 (64.2%) 0 81

Counts for the number of synergistic, additive, and antagonistic compounds in each of the datasets available for the current study, after filtering for high quality (HQ) data. The Dd2

training dataset had the highest number of HQ datapoints, which was reflected during cross validation (CV). The Dd2 dataset also contained the highest number of HQ datapoints in

the prospectively validated dataset.

TABLE 2 | Dd2 training performance.

CV Descriptor MCC F1 AUC Pr Re Ac Ef Rank

5-Fold SFP 0.45 0.56 0.84 0.61 0.53 0.82 2.74 2

TFP 0.44 0.55 0.83 0.60 0.51 0.81 2.69 3

STFP 0.47 0.57 0.84 0.64 0.52 0.83 2.89 1

Cross-descriptor average 0.46 0.56 0.84 0.62 0.52 0.82 2.78

LOCO SFP 0.27 0.31 0.81 0.52 0.33 0.77 2.36 1

TFP 0.03 0.08 0.58 0.07 0.11 0.76 0.31 3

STFP 0.03 0.32 0.55 0.23 0.89 0.31 1.04 2

Cross-descriptor average 0.11 0.23 0.64 0.28 0.44 0.61 1.24

LOPO SFP 0.02 0.01 0.44 0.33 0.01 0.78 1.50 1

TFP −0.02 0.10 0.49 0.20 0.07 0.73 0.89 3

STFP 0.02 0.36 0.47 0.23 0.82 0.34 1.02 2

Cross-descriptor average 0.01 0.16 0.47 0.25 0.30 0.62 1.14

The results from three increasingly difficult rounds of cross validation (CV); shuffled and stratified 5-fold CV, leave one compound out (LOCO), and leave one pair out (LOPO), for each

model type (SFP, structural fingerprint; TFP, target fingerprint; and STFP, combined structure-target fingerprint). Since the current study concerns the prediction of novel compound

combinations, our chosen model followed the expected performance of the SFP model during LOPO CV, since this is the most challenging test of the model. AUC, area under receiver

operating curve; Pr, precision; Re, recall; Ac, accuracy; Ef, enrichment factor. The “cross descriptor average” is the average score for each metric across each cross validation routine.

that were provided to CoSynE. These seven compounds were
further investigated using the literature, in order to identify
a biological rationale for their selection, and are depicted
in Table 4. It should be noted that five out of these seven
compounds were found to also have self-self Èvalues that would
be classed as synergistic by the threshold that was trained upon,
instead of additive (as one would expect). Inclusion of this
observation in a predictive model would additionally include the
experimental data for self-self crosses for all compounds, which
may not be feasible. Instead, this highlights a current limitation of
synergy quantification based upon experimental dose-response
matrices, whereby the underlying metric should include these
crosses as an additional parameter (see Experimental for details).
In the present study however, the model has successfully
predicted combinations of drugs that produced Èvalues below a
cutoff at a rate of 45%, demonstrating the ability to reduce search
space significantly.

The following seven compounds were part of the
nine combinations that were prospectively validated as

being synergistic; dihydroergotamine (in four of the
combinations), apicidin (three combinations), hydroxyzine
(three combinations), trifluoperazine (three combinations),
sorafenib (two combinations), virginiamycin factor S1 (two
combinations), and guanethidine (one combination). The
Tanimoto similarity of each compound vs. the training
compounds is shown in Supplementary Figure 2, which
shows apicidin has the greatest similarity among validation
compounds to the training compounds at 39.1% (to gramicidin).
Virginiamycin factor S1 is the next-closest compound to the
training data, with a 30.7% similarity to gramicidin, followed
by hydroxyzine (26.2% to piperaquine), trifluoperazine (24.6%
to piperaquine), dihydroergotamine (23.5% to gramicidin),
sorafenib (19.8% to nilotinib), and guanethidine (15.9% to
pyronaridine). Overall, these greatest similarities to the training
compounds are on the more-similar end of the distribution
curve, but the overall similarity is still quite low. Compounds
that form both the validation and training compounds are listed
in Supplementary Tables 5, 7.
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TABLE 3 | Dd2 SFP predictions.

Combination ID Drug1 name (PubChem ID) Drug2 name (PubChem ID) Predicted probability

of being synergistic

Prospectively derived γ

(synergy ≤0.96)

NCGC00167488

NCGC00021152

Sorafenib (216239) Hydroxyzine (3658) 0.4 0.917

NCGC00263624

NCGC00017400

Apicidin (6918328) Dihydroergotamine (10531) 0.42 0.924

NCGC00016272

NCGC00013226

Guanethidine (3518) Trifluoperazine (5566) 0.36 0.926

NCGC00021152

NCGC00017400

Hydroxyzine (3658) Dihydroergotamine (10531) 0.4 0.932

NCGC00167488

NCGC00013226

Sorafenib (216239) Trifluoperazine (5566) 0.43 0.937

NCGC00181117

NCGC00017400

Virginiamycin s1 (46937022) Dihydroergotamine (10531) 0.49 0.941

NCGC00263624

NCGC00021152

Apicidin (6918328) Hydroxyzine (3658) 0.47 0.952

NCGC00263624

NCGC00181117

Apicidin (6918328) Virginiamycin s1 (46937022) 0.62 0.957

NCGC00017400

NCGC00013226

Dihydroergotamine (10531) Trifluoperazine (5566) 0.43 0.958

The 9 combinations out of 20 predicted by CoSynE, which were prospectively validated to be synergistic, which cover a total of 7 unique compounds. The probability of being synergistic

that was assigned by CoSynE is shown, which does not correlate with the experimentally quantified degree of synergy.

Out of the nine true positive synergistic predictions,
four combinations involved one compound (namely, either
hydroxyzine or guanethidine) known as a drug efflux pump
inhibitor in other species (further details given below), which
may also facilitate accumulation of a respective antimalarial
partner drug in P. falciparum. Drug efflux pump inhibition has
previously been suggested as attractive in combating resistance,
whereby the intracellular concentration of an active compound
is otherwise strongly restricted by the microorganism (Alibert-
Franco et al., 2009). Firstly, hydroxyzine is a compound with
antihistamine and central nervous system (CNS) properties that
has been shown to act as an efflux pump inhibitor in bacteria,
and also affects Quorum Sensing (QS) (Aybey et al., 2014). QS is
a system of stimulus and coordination among microorganisms,
which P. falciparum may use to detect conditions of the external
environment (Wu et al., 2016), such as overcrowding, in order
to keep the parasite population under control in the host (Mutai
and Waitumbi, 2010). Hydroxyzine was correctly predicted
to be synergistic in combination with sorafenib, apicidin, or
dihydroergotamine. Sorafenib is a tyrosine kinase inhibitor
used in the treatment of cancer that inhibits parasite egress
from the host cell (Gaji et al., 2014), and is annotated with
activity against both 3D7 and Dd2 strains of P. falciparum
in PubChem (Pathak et al., 2015; Kim et al., 2016). Apicidin
is a potent inhibitor of histone deacetylase [HDA; of which
the P. falciparum ortholog PfHDA2 exists (Coleman et al.,
2014)] and this mechanism of inhibition is responsible for the
antiprotozoal properties of the drug (Darkin-Rattray et al., 1996;
Engel et al., 2015). Dihydroergotamine is a known inhibitor
of P. falciparum (Weisman et al., 2006), which may target a
serotonin 5-HT1a-like receptor in the parasite thought to be
a nutrient channel critical for parasite development (Hanoun

et al., 2003; Locher et al., 2003). Ergotamine, the structural
analog of dihydroergotamine was one compound involved in
a docking study looking for competitive inhibitors for the
enzyme P. falciparum lactate dehydrogenase (PfLDH), upon
which the parasite is dependent for energy production where
it achieved a reasonably good docking score (Penna-Coutinho
et al., 2011). The combination of these active compounds
with the hydroxyzine efflux pump inhibition and QS action
may be responsible for the observed synergy in these cases.
Secondly, guanethidine is annotated as active against human
multidrug resistance protein 1 (MDR-1) in a screen for
compounds that compete for this transporter as a means to
increase accumulation of active compounds in cells (AID:377).
A plasmodium ortholog of MDR-1, PfMDR1 exists (Hyde,
2007), and if guanethidine competes for PfMDR1, this may
explain a potential mechanism for synergy, since PfMDR1
is important for transporting substrates from the cytoplasm
into the lysosomal-like parasite digestive vacuole (Reiling and
Rohrbach, 2015). Guanethidine alone does not show activity
against P. falciparum (Chong et al., 2006), but was correctly
predicted to show synergy in combination with trifluoperazine.
Trifluoperazine is an antipsychotic drug and a potent inhibitor
of P. falciparum calcium-dependent protein kinase 4 (PfCDPK4)
(Cavagnino et al., 2011), and so would represent the anti-malarial
compound in this combination. To the authors’ knowledge, these
may be novel modes of action for the use of hydroxyzine and
guanethidine in context of P. falciparum. Since the training
dataset did not include compounds explicitly annotated as
targeting P. falciparum efflux pumps [with the exception of
primaquine, which exhibits synergy with chloroquine through
inhibiting the P. falciparumChloroquine Resistance Transporter;
PfCRT (Bray et al., 2005)]. Further experimental validation
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TABLE 4 | Synergistic drugs correctly predicted by CoSynE.

Drug name Depiction Notes

Apicidin Known to target histone deacetylase and has

previously shown activity against P. falciparum

via inhibition of apicomplexan histone

deacetylase (HDA) (Darkin-Rattray et al., 1996).

Dihydroergotamine An inhibitor of P. falciparum (Weisman et al.,

2006), and is annotated in PubChem as being

active in several assays. May target a serotonin

5-HT1a-like receptor in the parasite thought to

be a nutrient channel (Hanoun et al., 2003;

Locher et al., 2003). Structural analog

ergotamine achieved reasonably good docking

score in a study searching for competitive

inhibitors for PfLDH (Penna-Coutinho et al.,

2011).

Guanethidine Annotated in PubChem as having an

inconclusive potency against P. falciparum of

5.72 uM (AID:504834). Also annotated as

active against MDR-1 (AID:377); the P.

falciparum analog of which (pfmdr1) is involved

in resistance and guanethidine may therefore

play a role in preventing drug efflux (Hyde,

2007)

Hydroxyzine Shown to act as an efflux pump inhibitor in

bacteria (Aybey et al., 2014). Also affects

Quorum Sensing in microorganisms (Aybey

et al., 2014).

(Continued)
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TABLE 4 | Continued

Drug name Depiction Notes

Sorafenib tosylate Tyrosine kinase inhibitor that exhibits

antimalarial properties, and has been shown to

inhibit the function of calcium-dependent

protein kinase 3 in P. falciparum (PfCDPK1),

which affects parasite egress from the host cell

(Gaji et al., 2014). Sorafenib is an antitumor

drug annotated in PubChem with activity

against both 3D7 and DD2 strains, as well as

RKL9, MRC2, and 7G8 with IC50s of

1.66–2.64 uM (Pathak et al., 2015). This

compound was also tested in combination with

artesunate in the study, however the mode of

action was found to be antagonistic, while for

another tyrosine kinase inhibitor, imatinib,

combination with artesunate demonstrated

synergy.

Trifluoperazine Calmodulin inhibitor, and a potent

antiplasmodial inhibitor of calcium-dependent

protein kinase 4 (PfCDPK4) (Cavagnino et al.,

2011).

Virginiamycin s1 An antibiotic that is annotated as targeting 60S

Ribosomal Protein L37 in PubChem. Similar in

structure to azithromycin (which is known to

target apicoplast 50S ribosomal subunit and

inhibit P. falciparum).

Depiction and description of the seven compounds that were part of combinations predicted to be synergistic by CoSynE.

would be required to confirm this mechanistic hypothesis of the
synergies observed experimentally.

Three of the remaining five combinations that were
correctly predicted involve a combination of the previously
detailed compounds that were the “active” partner
drugs to those with expected efflux pump inhibitors
(apicidin-dihydroergotamine, trifluoperazine-sorafenib, and

trifluoperazine-dihydroergotamine). The observed synergy in
these may exert their synergistic effect through their differing
mechanisms.

The final two correctly predicted combinations involve
virginiamycin factor S1, a macrolide antibiotic annotated as
active against P. falciparum proliferation (AID:504749), with
either apicidin or dihydroergotamine. Antibiotics may exhibit
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antimalarial properties, albeit slow-acting, by targeting the
apicoplast during development (Dahl et al., 2006; Barthel
et al., 2008; Chakraborty, 2016). Macrolides are known for
their effectiveness in treatment of uncomplicated malaria in
combination with quinine, where the main mechanism of
action involves binding to ribosomal proteins, but suffer due
to poor pharmacological properties (Gaillard et al., 2016). The
combination of virginiamycin S1 targeting the apicoplast, and
apicidin targeting plasmodium orthologs of histone deacetylase,
such as PfHDA2 (Darkin-Rattray et al., 1996; Coleman et al.,
2014; Engel et al., 2015) suggests that this combination puts
pressure on the developmental and growth stages of the parasite.
The combination of potential nutrient channel and energy
inhibition properties of dihydroergotamine (Hanoun et al.,
2003; Locher et al., 2003; Penna-Coutinho et al., 2011) with
the apicoplast-targeting mechanism of virginiamycin S1 also
suggests pressure being put on the developmental and growth
stages. However, since this work used asynchrous parasite
cultures to assess compound efficacy, and given that apicoplast-
targeting molecules don’t typically affect the first replication
cycle upon drug pressure [where they are instead exhibiting
a “delayed death” phenotype (Dahl and Rosenthal, 2007)],
this apicoplast-targeting mechanism is unlikely to have been
observed. Unfortunately, the combination of macrolides and
dihydroergotamine has been reported to produce clinically
significant adverse drug reactions (Horowitz et al., 1996), which
means this particular combination would not be suitable as a
potential treatment.

Full Pairwise Synergy Screen of 23
Compounds
A subsequent full pairwise experimental screen of all 23
compounds was also carried out (Supplementary Table 3),
in order to assess the performance of CoSynE for the
prediction of completely novel combinations of compounds
acting synergistically. Comparison of the overall number of
synergistic combinations that were found (49 out of 185, or
26%, see Table 1), compared to the number that was present
among those predicted by CoSynE (9 out of 20, or 45%)
showed that we achieved a 1.70-fold enrichment (0.45/0.265);
approximately that which was expected from our LOPO CV
performance. This level of enrichment is significant in the search
for antimalarial compound combinations in practical terms,
where a 41% reduction [1 – (1/1.70)] in the total number of
measurements required is a very attractive prospect in terms
of both time and cost. Although this performance is attractive,
the model is still far from ideal and requires further refinement
to increase both the precision (0.45) and recall (0.18) seen in
Table 5. On the other hand it should be noted that the baseline
of obtaining synergy in 26.5% of cases is a rather high baseline,
which the model was able to increase further to nearly half of
all synergistic predictions being true positives (more precisely, to
45% of all combinations).

Potential for Indirect Discovery of
Synergistic Combinations
We next investigated the hypothetical scenario where all
compounds that are part of combinations predicted to be

synergistic by CoSynE were screened in a fully pairwise manner,
to see whether CoSynE could indirectly expand the discovery
of novel combinations. Interpreted differently, we investigated
whether synergy between compounds is “clustered”—and
whether the knowledge that a compound has shown synergy
before increases the chances that it will show synergy also
in combination with other compounds (with the limitation of
our validation being the limited sampling of chemical space,
which may or may not generalize to “all” chemical space).
Each combination in the prospective validation dataset for
Dd2 involving any of the 12 compounds that were part of a
combination predicted to be synergistic was extracted, yielding
a total of 61 combinations, out of which 36% were found
to be synergistic (22 combinations in Supplementary Table 4).
This proportion of synergistic combinations is hence higher
(by 9.5% in absolute terms, and 36% in relative terms) than
the 26.5% found in all of the 185 HQ validation combinations,
which corresponds to an enrichment of 1.36× compared to
random selection. However, to some extent this enrichment
may be slightly inflated due to CoSynE having identified drug
efflux pump inhibitors in the model. Among the synergistic
combinations in this subset indirectly found through CoSynE
is guanethidine (antiplasmodial and active against MDR1)
and paroxetine (annotated in DrugBank as targeting MDR1,
antibacterial activity via efflux pump and QS inhibition Aybey
et al., 2014, and antiplasmodial activity Chong et al., 2006
including AID:524790–524796), with a Èscore of 0.889. This
combination is more synergistic than all those directly predicted
by CoSynE, and is the second-most synergistic combination
among all HQ combinations in the validation dataset. This
suggests that by not only screening compound combinations
predicted to be synergistic by CoSynE, but all combinations
of the compounds predicted to be part of any combination
predicted to be synergistic will still increase the likelihood of
identifying further synergistic combinations. This also is in line
with previous studies, which have found that while synergy to
an extent depends on the properties of both compounds in a
combination, there is still a significant bias in chemical space,
with some parts of it being significantly more frequently part
of synergistic compounds combinations than others (Weinstein
et al., 2017).

Along these lines, we believe that an iterative screening
procedure could be followed in an industrial setting, whereby
predictions are made, screened, and then fed back into CoSynE
for training before further predictions are made. Such iterative
approaches have been investigated in the literature (Paricharak
et al., 2016), and could enable gradual expansion of chemical
and/or biological space, in particular with current improvements
in cherry picking compounds in such iterative screening settings.

CONCLUSION

In this work, we describe the application of our compound
combination prediction method, CoSynE, to a recently published
compound combination screening dataset for P. falciparum,
and the results to a prospective validation of our predictions.
When we used our final CoSynE model to predict synergistic
combinations (γ ≤ 0.96) from a library of compounds previously
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TABLE 5 | Dd2 SFP Performance.

Descriptor Predicted synergistic combinations Experimentally validated as synergistic MCC F1 AUC Pr Re Ac Ef

SFP 20 9 0.15 0.26 0.63 0.45 0.18 0.72 1.70

Overall performance of the Dd2 SFP model, after the full pairwise screen of prospective compounds was carried out. Overall, the precision and recall for the prediction of novel synergistic

combinations, however this still provides greater enrichment of synergistic combinations than expected by random selection (1.70-fold) from the prospectively validated dataset. AUC,

area under receiver operating curve; Pr, precision; Re, recall; Ac, accuracy; Ef, enrichment factor.

unknown to the model for P. falciparum Dd2, 45% of the
predicted combinations (9 out of 20) were experimentally
confirmed as being synergistic, corresponding to a 1.70-fold
enrichment of synergistic combinations than that expected
by randomly selection from the validation dataset. This is
of practical significance when combinatorial explosion and
experimental cost for combination screening is taken into
account. Furthermore, a 2.36-fold enrichment was observed
during cross validation when one compound is unknown, and
2.74-fold when both compounds are known to the model (but
only in different combinations). In addition, it was found
that screening only compounds part of combinations CoSynE
predicted to be synergistic would yield 9.5% more synergistic
combinations in absolute terms (and 36% in relative terms) than
expected by random selection alone.

The combinations that were prospectively validated from our
predictions mainly involve one compound with antimalarial
activity coupled to another targeting potential drug efflux or
substrate transport mechanisms in P. falciparum. These results
in particular suggest that the approach we describe can capture
meaningful information that enables the prediction of synergy,
which is corroborated by our previous study involving antibiotic
combinations.

CoSynE offers an advantage over similar methods that require
data, such as differential gene expression analysis, or single
agent efficacies across multiple cell lines related to the target,
in that the only information required to make new predictions
is the provision of chemical structure information. The use
of CoSynE to make predictions for other therapeutic areas
requires only a dataset of combination screening results together
with compound structural information, and may also predict
for higher orders of combinations (e.g., combinations of 3, 4,
and above), should training data with a meaningful measure
of synergy be made available. Our approach may be employed
to prioritize screening of new combinations, thus reducing the
potential burden and cost of combinatorial explosion in the
search for future antimalarial compound combinations that
exhibit synergy.

EXPERIMENTAL

Experimental Screening of Compound
Combinations
Training data was obtained from a publicly available dataset
of antimalarial compound combinations from a high-
throughput screen against 3D7, Dd2, and HB3 strains of P.
falciparum (assay IDs 1463, 1464 and 1465, which can be

found at https://tripod.nih.gov/matrix-client/?p=183; Mott
et al., 2015). Compounds were acoustically dispensed and
read at 72 h as previously described (Mott et al., 2015).
Matrix combination response was calculated based upon
relative SYBRGreen intensity values, compared to controls
(Mott et al., 2015). The prospective validation data was
screened using the same method as the training data. This
validation dataset includes both single-agent and combination
responses, and can be found at https://tripod.nih.gov/matrix-
client/?p=1261. The 23 compounds that comprised the
validation dataset are listed in Supplementary Table 5, the
experimental data used to validate the Dd2 model is listed in
Supplementary Table 3, and reproducibility of assay results is
detailed in Supplementary Table 6.

Compound Combination Datasets and
Synergy
The training data used in this study consisted of 1,540
combinations of 56 antimalarial compounds that exhibit different
modes of action, which were screened against the 3D7, Dd2, and
HB3 strains of P. falciparum. The 56 compounds that formed
this screen are listed in Supplementary Table 7. Synergy metrics
and data quality (QC) were pre-determined from a 6 × 6 dose-
response matrix of each combination, where inhibition of the
parasite in infected red blood cells was measured. The QC score
for a combination was precomputed from a set of heuristics
described in Mott et al. (2015), that takes in to account the
quality of the single agent dose response, DMSO activity and
the smoothness of the dose combination response matrix. This
yields a value between 0 and 18, where lower values indicate
higher quality. Only high quality (HQ) experimental readouts
were kept that have a QC score ≤3, which provided 1,194 HQ
combinations for 3D7, 1,245 for Dd2, and 1,159 for HB3 (Table 1;
training dataset). For the validation dataset, the same filtering
rules applied to 209 combinations of 23 compounds provided
119 for 3D7, 185 for Dd2, and 81 for HB3 (Table 1; validation
dataset).

The metric used to interpret synergy in our modeling
approach was gamma (È), which is a combination of the
Highest Single Agent (HSA; also known as Gaddum’s non-
interaction model) and Bliss independence. Based upon a 6 ×
6 dose-response matrix of compound A and compound B at
concentration x and y vs. inhibition of P. falciparum, the variable
Èis computed to minimize the following function (Cokol et al.,
2014).

6
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f
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A[x] + B[y]
)

− γ × max
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, f
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)}]2
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This yields a positive value, where synergy is characterized as
<1, additivity as =1, and antagonism as >1. In order to classify
each of the combination readouts, we set a maximum Ècutoff for
synergy of 0.96, and minimum cutoff for antagonism of 1.04,
with the remainder assigned as additive. This cutoff value was
empirically chosen to provide a degree of separation between
antagonism and synergy in the training data, while aiming to
keep the balance of each class similar across strains. Although
not explicitly investigated during the study, we expect that
making the Ècutoff larger may lead to an increased enrichment of
synergistic combinations being predicted, whilemaking it smaller
may affect the model robustness by decreasing the number of
synergistic training datapoints further.

One limitation with regard to the pre-processing of
experimental combination responses during our study is that
measurement of self-crosses using the Bliss model component of
Èmay in fact produce values which are classed as synergistic. For
example, apicidin in combination with itself in the validation
dataset shows a Èvalue of 0.895, whereas our cut-off for the
training data was 0.96. In other words, this self-cross should be
labeled as “synergistic” according to our criteria, whereas self-
interaction should be additive; this is a well-known phenomenon
among synergy measures, where a generalizable and robust
model is yet to be identified (Bulusu et al., 2016). We chose to
apply the cut-off of 0.96 that was used for the training data to
enable our assessment of validation predictions “in the eyes of the
model” with respect to training criteria, yielding 49 synergistic
combinations in the Dd2 validation dataset. Compounds with
self-cross Èvalues lower than our training data cut-off include
trifluoperazine, raloxifene, guanethidine, hydroxyzine, megestrol
acetate, FK-506, fulvestrant, sorafenib, apicidin, and ingenol
mebutate. Since these cover five out of the seven compounds in
Table 3, any future investigation into combinations involving
these compounds based solely upon Èvalues should bear this in
mind (i.e., eight out of our nine predictions in Table 3). Although
it is not clear precisely how to overcome this limitation, future
models that additionally train upon the validation dataset might
take these self-crosses into account more explicitly by lowering
synergistic cut-offs on a per-combination basis, or seek to find a
way of incorporating this into the synergy metric itself. All self-
crosses for the validation data may be found at https://tripod.nih.
gov/matrix-client/?p=1261, and minimum significance ratios
for the validation compounds that were screened are detailed in
Supplementary Table 6.

Prior Selection of Validation Compounds
The selection of compound combinations for screening and
validation of our models were based upon a version of CoSynE
much earlier in development. Several CoSynE models were
trained upon the same dataset as described in this report,
except the range of additivity for Èwas narrower at 0.975–
1.025 (opposed to 0.96–1.04). The resulting models were used to
predict enumerated combinations of approved, investigational,
and experimental compounds in DrugBank (Wishart et al.,
2006), which amounted to around 21 million combinations for
prediction. Of these, approximately 1.2 million combinations
were predicted to be synergistic, and 10 combinations needed

to be selected for the prospective validation. This selection was
achieved by manually reviewing the top-ranked combinations
(sorted by the probability of being synergistic that was assigned
to each combination by CoSynE), and taking into consideration
the prevalence of each compound throughout the list of
combination predictions, followed by examining the literature
co-occurrence of each predicted combination’s compounds
together with mention of P. falciparum in PubMed. These
10 chosen combinations comprised 18 compounds, and were
submitted for testing together with an additional 10 selected from
a different approach developed in parallel by KalantarMotamedi
et al. (2018).

Out of the total number of compounds among the 20
combinations primarily suggested for testing, only the 23
compounds shown in Supplementary Table 5 were available for
purchase at the time, which meant few original predictions
could be prospectively validated. The decision was made to
instead use a more recent version of CoSynE to predict which
combinations of these 23 compounds were synergistic, finally
yielding the dataset in this study. Interestingly, Table 1 shows
that the number of antagonistic combinations observed in the
validation dataset is significantly lower compared to the training
dataset, while at the same time the number classed as additive
or synergistic has increased. This reduction in the number of
antagonistic combinations as a result of virtually screening a
library of intractable size suggests that the approach taken by
CoSynE, together with the process of manually reviewing the top
predictions, aids the discovery of synergistic combinations.

Comparison to a Similar Study Conducted
in Parallel
The approach by KalantarMotamedi et al. (2018) differs from
that described in this work primarily by the usage of gene
expression data. Firstly, differential gene expression profiles of
mild vs. severe malaria patient peripheral blood samples were
used to predict potentially active single antimalarial agents by
comparison of drug gene perturbations through a modified
Gene Set Enrichment Analysis (GSEA) approach (Subramanian
et al., 2005) applied to the Library of INtegrated Cellular
Signatures (LINCS) Phase I database (Subramanian et al., 2017).
Secondly, a Random Forest model was trained on the same
dataset of 1,540 combinations from NCATS as in the present
study, and human target predictions and pathway annotations
were used to infer which drug combinations may interact
synergistically. Finally, the single agents identified by the GSEA
approach to human blood samples were enumerated as pairs
and predicted by the Random Forest model as synergistic/non-
synergistic. These predicted combinations were ranked based
upon the predicted probability of being synergistic, and the
top 17 compound combinations were selected for prospective
experimental testing (covering a total of 14 single agents).
This approach reported an overall average precision of 0.488
and recall of 0.755 (F1 = 0.593) for experiments across
the three strains of P. falciparum where drug combinations
were predicted to be synergistic at a cutoff for synergy of
γ ≤ 0.975. Among the 14 single agents in 17 combinations
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Kalantar-Motamedi et al. selected for prospective validation were
seven that overlapped with the 12 drugs in 20 combinations
CoSynE predicted for prospective validation; ciprofloxacin,
wortmannin, paroxetine, raloxifene, apicidin, trifluoperazine,
and hydroxyzine. The only combination of these overlapping
compounds that was correctly predicted to be synergistic in
both CoSynE and the method described by Kalantar-Motamedi
et al. was apicidin-hydroxyzine. Since CoSynE is not constrained
to compounds that are only present in the Connectivity-Map
(Lamb et al., 2006) or LINCS databases (instead needing only
knowledge of compound structure) it is difficult to draw a direct
and fair comparison of overall performance. However, for the
same experimental γ cutoff applied to the total pool of 185
prospective combinations in the current study that denotes a
synergistic combination, CoSynE achieved precision of 0.45 and
recall of 0.18 (F1 = 0.26). While the precision of CoSynE for
the prospectively validated combinations is close to that reported
by Kalantar-Motamedi et al. recall in this instance is much
lower. However, it should be noted this overall performance
still represents greater enrichment of synergistic combinations
being discovered than by random selection (see Table 5), and
CoSynE is not limited by the requirement for gene expression
data to be made available for the compounds that are to be
predicted.

Combination Descriptors
We represented each compound combination as an array of
features in three ways. A Structural Fingerprint (SFP) descriptor
based upon the molecular structure of each compound in
a combination, a Target Fingerprint (TFP) descriptor based
upon probabilistic combination of predicted target affinity
probabilities per compound, and a concatenation of these two
previous descriptors (Structure-Target; STFP). This provided
three descriptor sets for which models were trained.

Structural fingerprints were generated by first obtaining
SMILES representation PubChem (Kim et al., 2016) for each
compound that was screened in the training data, before
standardizing this representation with ChemAxon JChem
Standardizer (ChemAxon, 2014) according to the protocol
defined by PIDGIN (Mervin et al., 2015). Standardized SMILES
were then loaded into RDKit v20151 and 2,048-bit Morgan
fingerprints with radius 2 were generated, yielding arrays of 2,048
integer features. A given combination of two compounds was
represented as the bitwise average of these features, yielding
possible values of 0, 0.5, and 1 per feature, which formed
the SFP descriptor. A Morgan fingerprint was chosen for this
study due to generally outperforming the MACCS fingerprint
in this dataset [however the MACCS fingerprint was found to
outperformMorgan when CoSynE was used to predict antibiotic
combinations (Mason et al., 2017)]. The SMILES representation
was also used as input for PIDGIN (Mervin et al., 2015), where
the probability of binding below the training cut-off of 10µM for
each compound vs. 1,080 human protein targets was predicted,
yielding arrays of 1,080 floating point value features between 0
and 1. A given combination considered the probability of binding
to each protein target by each compound from the following
function, such that the maximum affinity a combination of

1Landrum, G. RDKit: Open-Source Cheminformatics. Available online at: http://

www.rdkit.org

compounds may have is 100% [i.e., a value of 1.0; Equation (2)],
which formed the TFP descriptor. The rationale behind the use of
this function for TFP was that the probability of a protein being
inhibited cannot be more than 100%, but the more compounds
in a single combination that are predicted to target the protein,
the more this is likely to be the case.

p
(

Combination, TargetN
)

= 1−
(

1− p
(

Compound1, TargetN
))

× (1− p
(

Compound2, TargetN
)

) (2)

Model Construction and Performance
Testing
Model settings were optimized prior to construction of the final
models, and all machine learning capabilities were carried out
using SciKit-Learn v0.17 (Pedregosa et al., 2011).

The 1,245 Dd2 compound combinations that formed our
training data each has either between 1,080, 2,048, or 3,128
features per combination (depending on the descriptor used),
meaning that the feature space is larger than the number of
combinations. It is therefore necessary to remove any features
that are not useful for training prior to constructing the final
models. Training data was scaled to unit variance with a
zero-centered mean, and starting from N = 1, the top N
percentile of features within the training data [as determined
by ANOVA F-classifier score in SciKit-Learn v0.17 (Pedregosa
et al., 2011)] was selected to train upon using a Support Vector
Machine Classifier (SVC, optimization parameters detailed in
Supplementary Methods), together with the synergy type labels
per combination, to construct a classifier. This classifier then
predicted the synergy label for test data that has had the same
features selected, and the outcome of this test was scored
using the Matthews Correlation Coefficient [MCC, Equation (3)]
with respect to the ability for correctly predicting a synergistic
combination. Due to the consideration of all possible outcomes of
a classification problem (true positive; TP, false positive; FP, true
negative; TN, false negative; FN), the MCC score offers benefit
over performance metrics, such as the Area Under Receiver
Operating Curve (AU-ROC) and Accuracy, which ignore TN and
TN, and FP and FN predictions, respectively.

MCC =
TP × TN − FP × FN

√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

(3)

This process was repeated 10 times per N, by stratified and
shuffled 5-fold cross validation, to finally yield 99 averaged MCC
scores. These top N selected features that resulted in the highest
MCC score overall were subsequently used by CoSynE in the
final model training round, in order to test model performance
in different scenarios. The top N selected features per model are
detailed in Supplementary Methods. While CoSynE will label
predicted combinations as synergistic, additive, or antagonistic,
during model optimization only the prediction of synergistic
combinations is carried out.

The second round that results in selection of the final
model involved construction of a number of different classifiers
[Bernoulli Naïve Bayes, Support Vector Machine, Random
Forest, Extra Trees, and Decision Tree, SciKit-Learn v0.17
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(Pedregosa et al., 2011)], which were subject to grid search
parameter optimization (optimization parameters detailed in
Supplementary Methods). The selection of the best model
parameters was based upon 10 repeats of stratified and shuffled
5-fold cross validation, which represents a scenario where the
training data has prior knowledge of both compounds per
combination (Figure 3). Eachmodel with a new set of parameters
was then subjected to two further rounds of validation of
increasing difficulty; Leave One Compound Out (LOCO; in
which one compound in a combination is made unknown
to the model), and Leave One Pair Out (LOPO; in which
both compounds are made unknown to the model). This
provided a view on model performance when looking to
extend the compounds used in combination with those already
known (LOCO) or, in the toughest case, searching for novel
combinations of unknown compounds (LOPO). The choice of
final model settings was based upon performance in terms of the
MCC score for the prediction of synergistic combinations in each
of these scenarios.

In each test and train split of the data, feature selection and
scaling were based solely upon the training data to ensure that no

information from the test set was used in the model generation
step. Final model settings are detailed in Supplementary Table 7.
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