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Studies have shown that fungi cause plant diseases through cross-species RNA
interference mechanism (RNAi) and secreted protein infection mechanism. The small
RNAs (sRNAs) of Magnaporthe oryzae use the RNAi mechanism of rice to realize the
infection process, and different effector proteins can increase the autotoxicity by inhibiting
pathogen-associated molecular patterns triggered immunity (PTI) to achieve the purpose
of infection. However, the coordination of sRNAs and proteins in the process ofM. oryzae
infecting rice is still poorly understood. Therefore, the combination of transcriptomics and
proteomics to study the mechanism of M. oryzae infecting rice has important theoretical
significance and practical value for controlling rice diseases and improving rice yields. In
this paper, we used the high-throughput data of various omics before and after the M.
oryzae infecting rice to screen differentially expressed genes and sRNAs and predict
protein interaction pairs based on the interolog and the domain-domainmethods.Wewere
then used to construct a prediction model of the M. oryzae-rice interaction proteins
according to the obtained proteins in the proteomic network. Finally, for the differentially
expressed genes, differentially expressed sRNAs, the corresponding mRNAs of rice and
M. oryzae, and the interacting protein molecules, the M. oryzae-rice sRNA regulatory
network was built and analyzed, the core nodes were selected. The functional enrichment
analysis was conducted to explore the potential effect pathways and the critical infection
factors of M. oryzae sRNAs and proteins were mined and analyzed. The results showed
that 22 sRNAs ofM. oryzae, 77 secretory proteins ofM. oryzaewere used as effect factors
to participate in the infection process of M. oryzae. And many significantly enriched GO
modules were discovered, which were related to the infection mechanism of M. oryzae.
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INTRODUCTION

Rice is an important crop, providing a portion of staple food for more than half of the world’s
population (Ruiz-Sánchez et al., 2010). However, rice blast is the most severe disease of rice, caused
by Magnaporthe oryzae, which seriously affects crop stability and sustainability around the world
(Imam et al., 2015). Therefore, research on how to control rice blast is widespread.
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Although M. oryzae is a model fungus for the study of plant-
fungal diseases, current studies have shown that the long-term
control performance of rice blast by using rice fungicides in the
field or selecting rice varieties resistant to M. oryzae is still
unstable (Deng and Naqvi, 2019). Therefore, people have done
a lot of research on M. oryzae infecting rice and achieved some
research results. However, the interaction mechanism between
fungi and plants is very complicated, and it is currently
challenging to analyze the molecular interaction mechanism
only by biological experiments (Li et al., 2017; Nelson et al.,
2018). Therefore, researchers began to use biocomputing
methods to assist and guide biological experiments based on
the emergence of many omics data related to fungus-plant
interactions, such as genomics, transcriptomics, proteomics
and metabolomics multi-omics data to reveal interactions
between biomolecules and explore key factors in biological
processes.

For exploring the key biomolecules in the process of fungus-
plant interactions small RNAs (sRNAs) were first studied in
depth. sRNAs refer to those that do not encode proteins in
the organism and are mostly 18nt-40nt in length (Mueth
et al., 2015). The common mechanism of action of sRNAs is
RNA interference (RNAi). The effector complex RISC is added to
one of the sRNA strands to achieve the purpose of inhibiting
protein biosynthesis (Majumdar et al., 2017). Researchers have
found that using the host plant’s RNAi mechanism by pathogenic
sRNAs to achieve the infection process may be ubiquitous in the
fungus-plant interaction mechanism (Weiberg et al., 2013; Cai
et al., 2018).

In addition, fungi as eukaryotes, their secreted proteins are
transported across the membrane by endocytosis and exocytosis
(Pompa et al., 2017; Riquelme et al., 2018). Secreted proteins are
proteins produced by the nucleus, processed and transported
through the endoplasmic reticulum and Golgi apparatus, and
secreted outside of cells or other cells. They play key biological
regulatory roles, such as hormones, antibodies, and enzymes
(Faso et al., 2009). In addition, studies have found that
pathogens invade hosts through secreted proteins to achieve
an attack on the hosts’ immune effect. For example, when
soil-borne pathogenic fungi invade plants, they secrete an
effector protein (Verticillium dahliae polysaccharide
deacetylase, VdPDA1), which deacetylates chitin
oligosaccharides produced by plants to resist infection by
pathogens, thus reducing or inactivating the immune system
of plants, to achieve the purpose of infection (Cui et al., 2020).

However, at present, the research on the mechanism of
fungus-plant interaction is still in its infancy (Kim et al., 2016;
Larsen et al., 2016; Großkinsky et al., 2018; Wang et al., 2019). In
addition to genomics research combining plant disease resistance
genes and sRNA for analysis (Zhang et al., 2016; Raman et al.,
2017), other omics analysis is still based on single omics analysis,
and some sRNAs (Zhang et al., 2019; Chang et al., 2020), proteins
(Solomon and Oliver, 2001; Grenville-Briggs et al., 2005;
Grohmann and Bronte, 2010; McGaha et al., 2012; Yang et al.,
2012), metabolites (Parker et al., 2009) have been identified. In
fungi infecting plants, how sRNA and protein molecules are
involved in the regulation is still unknown. Therefore, based

on differentially expressed genes, differentially expressed sRNAs
and protein interaction pairs in the process ofM. oryzae infecting
rice, this study proposed a new method to analyze the multi-
omics data of M. oryzae infecting rice and constructed a multi-
omics data integration-basedM. oryzae-rice interaction network.
It also wholly presented the interaction relationship between the
markers of various omics in the process ofM. oryzae infecting rice
and revealed the key nodes that play a regulatory role inM. oryzae
infection in rice. This paper found a possible solution for studying
the mechanism ofM. oryzae infecting rice and provided research
ideas for preventing and controlling rice and other food crops.

DATA AND METHODS

Firstly, the genomic, transcriptome, and proteome data were
analyzed to establish the M. oryzae-rice sRNA interaction
network and M. oryzae-rice protein interaction network.
Then, the sRNA and protein interaction networks of M.
oryzae and rice were analyzed. Finally, the PPI interaction
networks and GO functional enrichment modules of M.
oryzae and rice were excavated, respectively, and the key
factors of multiple omics joint regulations and the biological
processes involved were explored. The design roadmap for this
work is shown in Figure 1.

Data Source
Regarding the genome and transcriptome, this paper used the
gene chip expression data of rice before and after M. oryzae
infection with rice at 72 h, sRNA data of M. oryzae cultured on a
complete medium for 16 h, the mixed sRNA data of the rice
infected by M. oryzae for 72 h (Raman et al., 2013), the gene
expression data of rice after 48 h of culture, the gene expression
data of rice after 48 h of infection by M. oryzae (Chujo et al.,
2013), and the mRNA data of rice. These are all from the NCBI
database. Regarding the proteome, high-throughput protein data
of mode hosts, mode pathogens, rice andM. oryzaewere obtained
from HPIDB, NCBI and Uniport databases. We first obtained the
protein IDs of M. oryzae and rice from the NCBI and Uniport
databases. Because different databases have different identifiers
for the same protein, the obtained protein IDs must be converted
uniformly. Here, the protein IDs of the Uniport database were
selected as the unified protein ID identifiers, and the high-
throughput data of these proteins were obtained after the
protein IDs were converted.

Data Preprocessing
The Acquisition of Differentially Expressed Genes in
Rice
The commonly used R software packages for the gene chip probe
level data processing include affy, affyPLM, affycomp, gcrma, etc.
In this step, the affy package was used to analyze the rice gene
differential expression. Firstly, the background noise of the gene
chips was denoised by the MAS method. Then, in order to
eliminate the influence of signal strength and other factors
between different chips, the linear normalization method was
used for chip data. Next, the expression amount of the gene
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probes was calculated by the hybridization signal of the probeset
using the function computeExprSet in the affy package.

Then, the sequence number of the probes used by the gene
chip was retrieved from the GEO database and the probe

sequences were downloaded. Then, the whole rice genome
sequences were downloaded from RAP-DB, and the sequence
alignment between the gene probe sequences and the whole rice
genome sequences was performed by using the SeqMap sequence

FIGURE 1 | Overall design route.

FIGURE 2 | Algorithms for the analysis of differentially expressed genes.
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alignment tool to find the rice gene IDs corresponding to the gene
probes. Finally, by extracting the matched rice gene IDs, the
conversion from gene probes to gene IDs was completed, and 1.5-
fold differentially expressed rice genes were screened out, totaling
1,368. This process is shown in Figure 2.

Differentially Expressed sRNAs Screening of M.
oryzae
First, to remove the adapters and get the correct sRNA sequences,
the cutadapt tool was used to remove the sRNA data adapters.
Next, genome matching was performed on the sRNA data of M.
oryzae after removing the adapters to remove the sRNA data that
were not ofM. oryzae from the data. The specific operation was to
perform the mapping operation on the mixed sRNA data of M.
oryzae after removing the adapters and match it to the genome of
M. oryzae to obtain the pure sRNA data ofM. oryzae. The genome
matching tools used in this section were bowtie and samtools.

Since there are several sRNA sequences of different lengths in
FASTQ files, it is necessary to control the length of these sRNA
sequences. According to the available length of plant sRNAs, we
selected the sRNA sequences ofM. oryzae from 18nt to 25nt, and
suggested that these sRNAs could be used to predict the target
genes of rice. File A containing sRNA sequence, sequence length
and sequence expression amount ofM. oryzae was obtained from
the M. oryzae sRNA data after length control and without
genome mapping. Then, the file after genome mapping was
extracted, and each sRNA sequence of M. oryzae was
extracted into file B. Finally, the two files were matched. After
matching each sRNA sequence in file A, M. oryzae sRNA data
appearing in file B was output.

In this paper, the 3/4 quantile normalization method was used to
normalize the sRNA expression amount data before and after the
infection of M. oryzae. The specific method was to rank the sRNA
expression amount of M. oryzae from high to low and find the M.
oryzae sRNA ranked in 3/4. Then, this expression amount was taken
as the baseline of the lower expression level, and the expression
amounts of other samples were converted to multiples of this
expression amount. Finally, the data of M. oryzae differentially
expressed sRNA after normalized treatment were statistically
analyzed, and the expression amount and expression rate was used
for screening. The following formula calculated the expression rate:

Growth Rate � countafter − countbefore
countbefore

It was found that there were 4933 new sRNA data after
infection, and the expression amount was sorted, and the top
146 sRNA data with the highest expression amount were selected.
The data of 6,100 sRNA species before and after the infection of
M. oryzae were screened by two conditions: expression amount
and expression rate. A total of 220 speciesM. oryzae sRNAs were
screened out by selecting sRNAs whose differential expression
amount increment was more significant than or equal to 9 and
differential expression increase rate was more significant than or
equal to 2. Similarly, the sRNA data ofM. oryzae with differential
expression amount increment less than −116.5 were selected, and
there were 257 kinds of sRNA data. The differential expression

amount increment and expression amount increase rate of
sRNAs above were all greater than the corresponding mean
values of increase or decrease. Because the sRNA differential
expression increase rate ranged from 0 to 1, and the change rate
was meager, only the increment of differential expression amount
was used to screen the decreased expression sRNA of M. oryzae.
The distribution map ofM. oryzae differentially expressed sRNAs
is shown in Figure 3.

Preprocessing of Protein Data
Blast sequence alignment was performed on the protein amino
acid sequences of downloaded rice and M. oryzae. Proteins with
sequence similarity more significant than 95 were removed as
repeated proteins to eliminate the error in the same protein
sequencing by different sequencing platforms and avoid
duplicating the same protein that was considered to be caused
by two different proteins.

Prediction of M. oryzae-Rice sRNA
Interaction Pairs
Using the bioinformatics method to accurately and rapidly predict
the target genes of miRNA can provide clues for studying the
function of miRNA. Using target gene prediction software to
predict miRNA target genes is more efficient and faster than
experimental biological methods. There are many standard target
gene tools, including TargetScan, miRcode, miRDB, RNA22, and
tapir, the target gene prediction tool used in this paper. Before the
prediction, T was converted to U in the sRNA data and such
sequence files were converted to FASTA files. After the sequence
base conversion of FASTA files, the tapir tool can be used to predict
the target genes of the sRNA sequence files of M. oryzae.

First, the FASTA CDS files of M. oryzae and rice were
downloaded, and the FASTA files of the differentially
expressed M. oryzae sRNAs were obtained. Then, when the
tapir tool was used for target gene prediction, the matching
score was set as 0.5 and the free energy ratio was set as 0.7.
After target gene matching, Python script was applied to process
the prediction results, and the final target gene prediction result
file was obtained.

In this section, 366 kinds of differential expression amount up-
regulated and newly added of M. oryzae sRNAs were targeted to
rice mRNAs. A total of 1,857 rice mRNAs were obtained. After
gene IDs matching and deduplication of these mRNAs, 1,121 rice
gene IDs were obtained. In the same way, 257 kinds ofM. oryzae
sRNAs with down-regulated differential expression amounts
were targeted to M. oryzae, and 664 M. oryzae mRNAs and
264 M. oryzae genes were obtained.

Prediction of M. oryzae-Rice Protein
Interaction Pairs
Sequence-Based
The protein interaction prediction method based on sequence
features (interolog method) is based on the principle that
homologous proteins have similar functional and structural
characteristics (Thanasomboon et al., 2017). Here, the
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interspecific interolog method predicted the protein interaction
relationship between M. oryzae and rice. First, the confirmed
interaction mode host and mode pathogen protein sequences
were recorded as A and B, while the protein sequences of rice and
M. oryzae were recorded as A′and B′. Then, for each protein
amino acid sequence in A′, sequence alignment was carried out
with the protein amino acid sequences in A, and the accuracy was
obtained. Similarly, file B also followed this step. Finally, the
accuracy of the interaction relationship pairs between A′and B′
was calculated by interacting with the proteins in A and B. The
process is shown in Figure 4.

In this process, the interolog method was used to screen the
protein interaction pairs between rice and M. oryzae, and the
threshold was set as E-value less than or equal to 1E-5 and
similarity greater than or equal to 30. Then, the model pathogen
and mode host protein pairs corresponding toM. oryzae and rice
proteins were matched, and the protein pair files ofM. oryzae and
rice were obtained based on the interolog method.

Domain-Based
The available domain-based protein interaction prediction
method (domain-domain interaction method) is based on the
principle that interacting protein pairs may have the exact
functional domains (Lee et al., 2006). For example, for the
confirmed interactions between mode host protein A and
mode pathogen protein B, if rice protein A′and M. oryzae
protein B′ have the same interaction functional domains as
protein A and protein B, then rice protein A′and M. oryzae
protein B′ interact. The process is shown in Figure 5.

In this process, functional domains were obtained from the protein
amino acid sequences of mode hosts, mode pathogens, rice and M.
oryzae through the Pfam database. E-value was selected as 1E-5 and
the coincidence rate was selected as 90%. TSV files containing protein
IDs, protein functional domains and E-values were obtained. Then,
protein domain files were extracted and sorted to obtain protein
interaction relationship pairs based on functional domains.

Prediction of Secreted Protein of M. oryzae
By combining the interolog method and domain-domain method,
83664 pairs of protein interactions were obtained following the two
methods. However, not all M. oryzae proteins can be transported
across the membrane, it is necessary to do the secreted protein
identification of the aboveM. oryzae proteins and screen out theM.
oryzae-rice protein interaction network that M. oryzae proteins
were secreted proteins.

In this paper, the secreted proteins ofM. oryzae were predicted
on TMHMM. The FASTA files of 323 M. oryzae protein amino
acid sequences were obtained through the Uniport database and
imported into the TMHMM website to obtain their secreted
proteins’ predicted results. When the expected number of
amino acids in the transmembrane helix of a protein is greater
than or equal to 18, or when the transmembrane helix number of
N-the best predicted is greater than or equal to 1, the protein can be
considered a secreted protein. Therefore, protein IDs with

FIGURE 3 | (A) The distribution of differential expression rate (ER) of sRNAs ofM. oryzae was greater than or equal to 2 and the expression amount (EA) was more
significant than or equal to 9. (B) The distribution of differential EA of sRNAs of M. oryzae was less than or equal to −116.5.

FIGURE 4 | Interolog method.
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parameters ExpAA greater than or equal to 18 or PredHel greater
than or equal to 1 were extracted. The obtainedM. oryzae secreted
proteins were matched and screened with the previous 83664 M.
oryzae-rice protein interaction pairs, and finally, 7352 M. oryzae-
rice protein interaction pairs were obtained.

Construction of a Prediction Model for
Cross-Species Regulatory Protein Pairs
Between M. oryzae and Rice
Acquisition and Processing of Positive and Negative
Samples
This paper established a prediction model for M. oryzae and rice
interaction protein pairs and obtained protein interaction pairs
through the sequence and functional structure prediction in
experiments. The 7352 data of the effective interaction pairs of
M. oryzae and rice obtained above were used as positive samples.
The negative samples were randomly selected from other M.
oryzae rice protein interaction pairs except the positive samples
that the ratio of positive and negative samples was 1:1.

For the protein features ofM. oryzae and rice, the proteins’ amino
acid sequences and functional domains were used as the feature data.
In addition, functional domain texts were preprocessed before
training, including unifying special symbols, spaces, upper and
lower case letters of each functional domain and removing stop
words to achieve standardized processing of data samples.

Construction of Protein Interaction Pair Prediction
Model Based on textRNN
Recurrent Neural Network (RNN) is mainly used in sequence
prediction, character generation, emotion recognition, man-
machine dialogue, etc. RNN is a kind of recursive neural network
that takes sequence data as input, recurses in the sequence’s evolution
direction, and connects all nodes in a chain. The sequence
information determines the task of the event itself, which requires
previous knowledge and current information to determine the output
result jointly. As a result, textRNN can more effectively address the

problem of contextual semantic relevance. Considering that the
protein’s amino acid sequence and functional domains belonged
to short texts, which have contextual semantic relevance
characteristics, this paper used textRNN to construct the protein
interaction pair binary classification model.

A multi-layer RNN network needs to be established in the
construction of RNN model. The dropout layer was added after
each RNN kernel function, and the amino acid sequences after the
M. oryzae and rice protein interaction pair segmentation were used
as the input variable of the RNN model. The first hidden layer
activated this input. Then the successive activations were performed
layer by layer to get the output. Each hidden layer had its ownweight
and bias. Parameters such as the classification results, accuracy and
loss function of the output protein interaction pairs were output by
the output layer. The optimal RNN protein interaction model was
obtained by adjusting learning_rate, dropout_keep_prob and total
iteration cycles according to the learning curve and confusion
matrix. Finally, different evaluation indexes were applied to
evaluate and verify the model. The accuracy of protein
interaction pairs predicted by the interolog method and domain-
domain method in this paper was proved.

Analysis of Regulatory Network BetweenM.
oryzae and Rice
In order to analyze the obtained sRNA and protein interaction
network of M. oryzae-rice, and the network diagram of M.
oryzae-rice protein interaction was too significant. Therefore,
the PPI networks of M. oryzae and rice jointly regulated by
various omics were explored, respectively. First, the PPI network
of M. oryzae was mined based on the proteins regulated by M.
oryzae differentially expressed sRNAs and M. oryzae proteins in
the M. oryzae-rice protein interaction network. And the PPI
network of rice was mined based on the proteins regulated by rice
differentially expressed genes and rice proteins in the M. oryzae-
rice protein interaction network. Then the PPI networks of M.
oryzae and rice were analyzed for GO pathway enrichment, and

FIGURE 5 | Domain-domain method.
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the modules were separated. Finally, by analyzing the isolatedM.
oryzae and rice protein networks, the main modules’ biological
functions and KEGG enrichment pathways were described. The
key nodes of M. oryzae-rice and their interaction networks were
mined by using multi-omics network data to explore the
molecular mechanism of M. oryzae and rice interaction.

RESULTS

Prediction Model Results of the
Interspecies Regulatory Protein Pairs
Between M. oryzae and Rice
The learning curves of the textRNN model on the functional
domain and amino acid sequence are shown in Figure 6.

The model was evaluated according to the precision, recall and
F1 indexes, and the accuracy indexes of the TEXTRNN model in
the functional domain and amino acid sequence are shown in
Table 1 and Table 2, respectively.

When textRNN model with the functional domain as feature
data was tested, the testAcc of textRNNmodel was 98.81%, testLoss

was 0.029, and the confusion matrix was: [[414 6]
[4 415]] .

When textRNN model with protein amino acid sequence
as feature data was tested, the testAcc of textRNN model
was 97.49%, testLoss was 0.086, and the confusion matrix

was: [[391 8]
[12 386]] .

Therefore, the textRNN model can be used to predict the M.
oryzae-rice protein interaction pairs, and the prediction model
performed well in this paper. Furthermore, the prediction of
protein interaction pairs in plants infected by other fungi can also
refer to this model.

Analysis Results of M. oryzae-Rice
Transcriptome and Proteome Networks
After target prediction of the 623 kinds ofM. oryzae sRNAs, 1,857M.
oryzae-rice sRNA interaction pairs and 664M. oryzae internal sRNA
interaction pairs were obtained. By digging positive and negative
regulatory factors, 1,166 M. oryzae genes, 1,121 rice genes, 1,173 M.
oryzae proteins and 1,677 rice proteins were found to be involved in
the biological process of M. oryzae infection to rice. In addition, the
transcriptome network of M. oryzae and rice was visualized by the
Cytoscape tool. There were 20 sRNA-mRNA interaction clusters with
two or more sRNAs involved in regulation. The network diagramwas
shown in Supplementary Figure S1.

Based on the 7,352M. oryzae and rice protein interaction pairs
obtained previously, the M. oryzae-rice protein interaction
network diagram was drawn with a total of 11 rice protein
interaction clusters. The network diagram was shown in
Supplementary Figure S2.

A total of 593 kinds of M. oryzae sRNAs and 581 kinds of M.
oryzae secreted proteins directly involved in the two interaction
mechanisms were excavated through the M. oryzae-rice sRNA
interaction network and protein interaction network, and they
were put into the STRING database for GO pathway enrichment

FIGURE 6 | (A) The learning curves of textRNN model on functional domain and (B) amino acid sequence characteristics.

TABLE 1 | Evaluation indexes of textRNN model on the functional domain.

Precision Recall F1-score Support

0 0.99 0.99 0.99 420
1 0.99 0.99 0.99 419
Accuracy 0.99 839
Macro avg 0.99 0.99 0.99 839
Weightrd avg 0.99 0.99 0.99 839

TABLE 2 | Evaluation indexes of textRNN model on the amino acid sequence.

Precision Recall F1-score Support

0 0.97 0.98 0.98 399
1 0.98 0.97 0.97 398
Accuracy 0.97 797
Macro avg 0.97 0.97 0.97 797
Weightrd avg 0.97 0.97 0.97 797
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analysis and KEGG enrichment analysis. First, the p-value was set as
1E-16, and the GO enrichment results and KEGG enrichment results
were derived. The PPI network diagram ofM. oryzae was too large to
be shown in this paper and was shown in Supplementary Figure S3.
Next, GO enrichment analysis (Figure 7A) and KEGG pathway
enrichment analysis (Figure 7B) were carried out on PPI
interaction network diagram of M. oryzae. It can be seen that
most of these enrichment pathways were involved in the biological
processes of sRNA synthesis, protein synthesis and transport in M.
oryzae. To some extent, the above conclusions proved thatM. oryzae
could complete the infection process of rice through sRNAs and
secreted proteins.

The obtained rice differentially expressed genes, rice proteins
regulated by mRNAs and rice proteins in the protein interaction
network of M. oryzae and rice were analyzed by GO enrichment
and KEGG enrichment. However, there were too many rice-
related protein nodes. Firstly, the protein nodes obtained by three
ways were mined through the STRING database for their PPI.
Then the rice protein interaction pairs obtained were imported
into Cytoscape to obtain the rice protein interaction network.
Finally, the rice protein interaction network was divided into
modules and the largest five rice modules were screened out. The
GO enrichment pathways (Figure 8A) and KEGG pathways
(Figure 8B) of each module were excavated, respectively.

Modularity Analysis Results of M. oryzae
and Rice Regulatory Networks
(Cluster 1–10)
In this paper, Clusterviz, a Cytoscape plug-in, was used to segment the
protein interaction network betweenM. oryzae and rice into modules,

and the FAG-EC algorithm was selected to intercept only the subnet
modules with more than six nodes. Next, the segmentation subnet
modules were sorted by complexity, and GO function enrichment
analysis was carried out for eachmodule. The largest five subnets with
significant function enrichment analysis were selected for subsequent
analysis and named Cluster 1–10. Then, each subnet’s GO functional
modules and KEGG enrichment pathways were mined to explore
their biological processes.

Cytoscape calculated the network topology attributes, and its
plug-in NetworkAnalyzer was used to calculate the degree and
betweenness of nodes in each subnet. Betweenness is a measure of
the centrality of a node in the network. In some sense, it measures
the influence of a node on information spread through the
network. The following formula calculates betweenness:

Cb(n) � ∑
s≠ n≠ t

(δst(n)/δst)

Where s and t are genes different from n in the network, δst
represents the shortest path from s to t, and δst (n) represents the
shortest path from s to t and through n.

The nodes of each subnet were sorted according to betweenness,
and the top 6 nodes with the highest betweenness in each subnet
were obtained, which were regarded as the central nodes of the
subnet and marked in the subnet interaction diagram.

After the segmentation module of the regulatory network ofM.
oryzae, five largest significant functional enrichment subnets were
selected, which were the M. oryzae helicase activity and protein
synthesis module (Cluster 1), M. oryzae DNA repair-related
module (Cluster 2), M. oryzae RNA transport and molecular
transport-related module (Cluster 3), M. oryzae gene expression
and mRNA processing-related module (Cluster 4) and M. oryzae

FIGURE 7 | (A) Go enrichment module diagram ofM. oryzae. The first three significantly enriched Go-terms of the biological process modules are protein N-linked
glycosylation, GPI anchor biosynthesis process and protein glycosylation. The first three significantly enriched GO-terms of the cell component modules are
oligosaccharyltransferase complex, endoplasmic reticulum membrane, and integral component of the membrane. The first three significantly enriched GO-terms of
molecular function modules are transferase activity, transferring glycosyl groups, dolichyl-phosphate-mannose-protein mannosyltransferase activity, and dolichyl-
diphosphooligosaccharide-protein glycotransferase activity. (B) KEGG enrichment bubble diagram ofM. oryzae. There are 10 significant enrichment pathways in KEGG
enrichment pathways, which are mainly related to various glycan organisms, anchor organisms, steroid organisms, biosynthesis of secondary metabolites, protein
processing and metabolic pathways.
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biosynthetic pathway-related subnet (Cluster 5). Cluster 1 was
closely related to a series of protein synthesis processes and helicase
activity (Supplementary Figure S4). The KEGG enrichment
pathways of Cluster 2 mainly included nucleotide excision
repair pathway, homologous recombination and mismatch
repair pathway, etc (Supplementary Figure S5). The KEGG
enrichment pathways of Cluster 3 mainly involved RNA
transport, MAPK signaling pathway-yeast and endocytosis
pathway (Supplementary Figure S6). The GO items of Cluster
4 were mainly involved in RNA transcription, translation and
protein synthesis. The KEGG enrichment pathways of Cluster 4
mainly included basic transcription factor enrichment pathway,
RNA polymerase enrichment pathway, pyrimidine metabolism
enrichment pathway, purine metabolism enrichment pathway,
nucleotide excision repair enrichment pathway, ribosome
biogenesis in eukaryotes enrichment pathway and metabolic
pathway enrichment pathway (Supplementary Figure S7). The
KEGG enrichment pathways of Cluster 5 mainly included steroid
biosynthesis, antibiotic biosynthesis, secondary metabolite
biosynthesis, terpenoid skeleton biosynthesis and metabolic
pathway (Supplementary Figure S8).

After the segmentation module of the regulatory network of rice,
five largest significant functional enrichment subnets were selected,
which were the rice protein binding functional module (Cluster 6),
rice GTP and nucleoside triphosphatase-related module (Cluster 7),
rice gene expression, transport and metabolism-related module
(Cluster 8), rice protein synthesis module (Cluster 9) and rice
gene expression and defense response regulation module in rice
(Cluster 10). Cluster 6 was significantly enriched in the unfolded
protein binding function module (Supplementary Figure S9).
Cluster 7 was significantly enriched in GTPase activity, GTP
binding and nucleoside-triphosphatase activity (Supplementary
Figure S10). The go terms of Cluster 8 were related to regulation
of gene expression, transport pathway of biomolecules, and rice
metabolic pathways. These GO functional modules showed that the
infection process of M. oryzae affected the gene expression and
metabolism of rice (Supplementary Figure S11). Cluster 9 was

significantly enriched in nucleus, ribosome, ribonucleoprotein
complex, cytoplasm, cell, translation and structural constituent of
ribosome. Most of these GO modules were related to the protein
synthesis process (Supplementary Figure 12). The go terms of
Cluster 10 were related to regulation of gene expression, protein
synthesis, and rice defense module. These GO functional modules
showed that the infection process of M. oryzae affected the
differential gene expression in rice (Supplementary Figure S13).

PPI Network Analysis and Screening
Results of Main Regulatory Factors of M.
oryzae and Rice
After the 366 sRNAs up-regulated during theM. oryzae infecting
rice process to predict the target genes of rice mRNAs, 1,857 rice
mRNAs were obtained, pointing to 1,121 rice genes. After the 257
sRNAs were down-regulated during the M. oryzae infecting rice
process to predict the target genes of M. oryzae mRNAs, 664 M.
oryzae mRNAs were obtained, and 264 M. oryzae genes were
involved in regulation. The 664 kinds of M. oryzae mRNAs were
input into the Uniport database to obtain 2,644 protein IDs
corresponding to these mRNAs. According to GO, the obtained
protein IDs were matched with their interacting protein IDs to
expand the proteins involved in regulation by M. oryzae. These
expanded proteins also used TMHMM to predict secreted
proteins, and 337 M. oryzae proteins were obtained. Then 601
protein IDs, which were involved in the transboundary regulation
of the secreted proteins of M. oryzae, were matched with the M.
oryzae-rice protein interaction pair network to obtain the M.
oryzae and rice sRNA-protein interaction network (Figure 9).

Analysis Results of the Core Nodes of the
Interaction Network BetweenM. oryzae and
Rice
TheM. oryzae infecting rice interaction network diagram and the
rice response of M. oryzae infection network diagram obtained

FIGURE 8 | (A) Five modules significantly enriched GO functional enrichment module diagram and (B) KEGG enrichment pathway bubble diagram of rice.
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above were combined to find the biomolecules that play a role in
them. However, the large number of these biomolecules was not
conducive to our further analysis ofM. oryzae and rice interaction
mechanism, so core node mining was needed. In this study, the
biomolecules involved in the infection of rice by M. oryzae were
extracted by multi-omics joint analysis, including 8 rice
differentially expressed genes, 31 rice mRNAs, 77 rice proteins,

22 M. oryzae sRNAs, 1 M. oryzae mRNA, and 38 M. oryzae
proteins (Supplementary Table S1).

22 differentially expressed sRNAs were found, including
12 up-regulated sRNA data of M. oryzae, 8 newly increased
sRNA data of M. oryzae, and 2 down-regulated sRNA data of
M. oryzae. 20 up-regulated and newly added sRNA data were
used to infect rice by targeting rice mRNAs for rice RNA

FIGURE 9 | Interaction network diagram betweenM. oryzae and rice main regulatory factors. The red regular triangles are the sRNA nodes ofM. oryzae, the green
inverted triangles are the mRNA nodes of rice, the red inverted triangle is the mRNA node ofM. oryzae, the green circles are the protein nodes of rice, the red circles are
the protein nodes ofM. oryzae, and the green diamonds are the gene nodes of rice. According to the screening of degree and betweenness, the key protein nodes can
be found as RIB3_MAGO7, L7JCG4_MAGOP, A0A4P7NCR6_MAGOR, L7JIK4_MAGOP, HOX5_ORYSJ and R27AA_ORYSJ. The key mRNA nodes can be
found as XM_015784275 and XM_015765891. The key sRNA nodes can be found as 4933_146_U_99 and 6100_220_U_126. The key genetic nodes can be found as
Os01g0178400 and Os01g0197200.
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silencing. And 2 down-regulated sRNAs of M. oryzae may
increase some proteins in M. oryzae to achieve the purpose of
invading rice by secreted proteins.

77 rice core proteins were imported into the STRING
database, 32 influential rice gene nodes were obtained, and
GO function enrichment analysis and KEGG pathway
enrichment analysis was conducted. There were 19 interacting
gene nodes. The PPI interaction network diagram of rice core
nodes is shown in Figure 10.

The enrichment analysis of the GO pathway of rice core
protein nodes found that the significantly enriched GO
functions in rice were distributed in three aspects. One was
gene expression-related modules, including negative regulation
of gene expression, gene expression regulation, epigenetic
regulation, gene silencing, and gene expression. The second
was protein molecular synthesis and transport-related
modules, including protein complex, protein
heterodimerization activity, nucleic acid binding, protein
binding, organic circular compound binding, heterocyclic
compound binding, DNA binding, intracellular protein
transport. The third was metabolism-related modules,
including protein metabolism process, macromolecular
metabolism process, proteolysis, nitrogen compound
metabolism process, cellular macromolecular decomposition
process, regulation of nitrogen compound metabolism process,
regulation of primary metabolic process, primary metabolic

process, etc. According to the KEGG pathways enrichment
analysis of rice core nodes, the significantly enriched KEGG
pathways were protein processing and endocytosis in the
endoplasmic reticulum. These GO functional modules with
significant enrichment of rice key proteins were basically
consistent with the GO functions of the main modules of the
rice regulatory network, which verified the accuracy of the rice
core proteins mined through multi-omics joint analysis.

GO functional modules of the M. oryzae infecting rice
mechanism and rice core nodes for the combined analysis
found that the GOs were significantly enriched in the gene
expression regulation module, protein synthesis and transport
module, and metabolism module. The significant enrichment of
gene expression modules indicated that M. oryzae silenced rice
genes through RNA silencing mechanism to achieve the purpose
of infecting rice. In addition, the protein synthesis and transport
module showed thatM. oryzae infected rice by secreted proteins.
The module included protein synthesis, nucleic acid binding,
protein binding, organic cyclic compound binding, heterocyclic
compound binding and transport. These results indicated thatM.
oryzae invaded rice by secreted proteins which combined with
some proteins or biomolecules in rice to affect the defense
mechanism of rice, thus realizing the infection process. Based
on the analysis of KEGG metabolic pathway in rice, it was found
that these key proteins in rice affected the metabolic mechanism
of rice. After M. oryzae infected rice by sRNAs and secreted

FIGURE 10 | PPI network diagram of rice core nodes.
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proteins, the rice metabolism was affected, including nitrogen
compound metabolism, protein metabolism, other biological
macromolecules metabolism, etc. The table of these GO
enrichment modules was shown in Supplementary Table S2.
The GO enrichment function diagram of rice core proteins is
shown in Figure 11.

DISCUSSION

In this study, a variety of omics data of M. oryzae and rice were
used to excavate the interaction network between M. oryzae and
rice to explore the mechanism of M. oryzae infection on rice to
mine the key nodes involved in the interaction process. The data
of each omics used in this paper included sRNA data before and
after M. oryzae infecting rice, M. oryzae mRNA data, M. oryzae
protein data, M. oryzae gene expression data before and after M.
oryzae infecting rice, rice mRNA data, rice protein data, and
protein data of mode host-mode fungus. First, each omics data

was screened separately to mine differentially expressed rice gene
data, M. oryzae-rice sRNA interaction pairs, and M. oryzae-rice
protein interaction pairs. Then, the interaction network of each
omics was analyzed longitudinally to construct the regulatory
network ofM. oryzae-rice multi-omics interaction and explore its
biological process.

In genomics, a total of 1,368 1.5-fold differentially expressed
rice genes were extracted by screening the gene expression data of
rice before and after the infection of M. oryzae. In
transcriptomics, this study analyzed the sRNA data of M.
oryzae before and after infection with rice and obtained 366
kinds of up-regulated and newly added sRNAs of M. oryzae,
which all had the possibility of interacting with host rice, that is,
to infect rice by RNA silencing mechanism. In addition, for the
257 species of M. oryzae sRNAs whose expression levels were
reduced during the infection process, it may be through the
regulation of the protein expression in M. oryzae, through the
secreted protein into the rice to achieve the purpose of infection.
Therefore, according to the two infection mechanisms of M.

FIGURE 11 | GO pathway enrichment analysis diagram of rice core proteins.
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oryzae, the 623 kinds ofM. oryzae sRNAs screened were analyzed.
Furthermore, through the method of target gene prediction, 1,857
sRNA interaction pairs of M. oryzae-rice and 664 sRNA
interaction pairs of M. oryzae were found.

In proteomics, some studies have proved that the secreted
proteins of the pathogen can enter the host body and interact
with the host proteins to interfere with the protein expression of
the host. However, it is not clear which protein molecules are
involved in the infection process ofM. oryzae to affect the defense
and growth of rice in the existing studies. In this paper, the protein
interaction pairs between mode pathogens and mode hosts that
experiments have verified were collected and used as the prediction
template. Firstly, the interolog method based on homology was
used to predict the protein interaction pairs betweenM. oryzae and
rice. Next, the domain-domain method was used to make the
second prediction of the protein interaction pairs predicted by the
interologmethod. Then TMHMM secreted protein prediction tool
was used to screen the secreted proteins of M. oryzae. In the
screening of the final protein interaction pairs, the three prediction
methods should be met simultaneously, and 7,352 protein
interaction pairs of M. oryzae-rice were obtained.

In this study, a total of 8 rice differentially expressed genes,
31 rice mRNAs, 77 rice proteins, 22 M. oryzae sRNAs, 1 M.
oryzae mRNA and 38 M. oryzae proteins were identified as the
core nodes of the M. oryzae and rice multi-omics interaction
network by high-throughput data analysis, combined with joint
analysis ofM. oryzae and rice multi-omics data, which involved
significantly enriched GO modules. Most of them were related
to gene expression, molecular protein synthesis, molecular
transport and metabolism, that is, the infection mechanism
of M. oryzae. However, all the experiments in this paper were
based on the premise that sRNA and protein interaction
mechanisms exist between M. oryzae and rice. The accuracy
of this experiment still needs to be further verified. In addition,
due to the mutual regulation between plants and pathogens,
some host sRNAs and secreted proteins can enter the fungi
during the infection process to resist infection. However, this
paper only studied the infection mechanism of M. oryzae and
neglected the analysis of the defense mechanism of rice.
Moreover, significant enrichment of biomolecular transport
modules was found in the GO function enrichment analysis
of key factors ofM. oryzae in this study, but it is not clear which
rice biomolecules are involved in the defense mechanism. And
although there are some insufficient, this paper for theM. oryzae
infecting rice joint analysis of multi-omics data, which provided

a specific data basis for further study of the mechanism of M.
oryzae-rice interaction, made some specific contributions to the
prevention of diseases and insect pests in rice and provided a
new train of thought and theoretical basis for the fungus-plant
interactions mechanism research.
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