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ABSTRACT Genomic prediction (GP) is now routinely performed in crop plants to predict unobserved
phenotypes. The use of predicted phenotypes to make selections is an active area of research. Here, we
evaluate GP for predicting grain yield and compare genomic and phenotypic selection by tracking lines
advanced. We examined four independent nurseries of F3:6 and F3:7 lines trialed at 6 to 10 locations each
year. Yield was analyzed using mixed models that accounted for experimental design and spatial variations.
Genotype-by-sequencing provided nearly 27,000 high-quality SNPs. Average genomic predictive ability,
estimated for each year by randomly masking lines as missing in steps of 10% from 10 to 90%, and using the
remaining lines from the same year as well as lines from other years in a training set, ranged from 0.23 to
0.55. The predictive ability estimated for a new year using the other years ranged from 0.17 to 0.28. Further,
we tracked lines advanced based on phenotype from each of the four F3:6 nurseries. Lines with both above
average genomic estimated breeding value (GEBV) and phenotypic value (BLUP) were retained for more
years compared to lines with either above average GEBV or BLUP alone. The number of lines selected for
advancement was substantially greater when predictions were made with 50% of the lines from the testing
year added to the training set. Hence, evaluation of only 50% of the lines yearly seems possible. This study
provides insights to assess and integrate genomic selection in breeding programs of autogamous crops.
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Wheat (Triticum aestivum) is a cereal cropwith the highest hectarage in
the world. In contrast to maize (Zea mays) and soybean (Glycine max),
wheat varieties developed by the public sector account for a majority
(�75–90%) of wheat acreage in the United States. Public sector breed-
ing programs previously relied primarily on phenotypic data or a

combination of phenotype and molecular markers associated with
traits controlled by one or a few genes to make selections (Bernardo
2016; Randhawa et al. 2013).With the rapid decline in sequencing costs
and the ease of generating genome-wide markers with genotyping
methods such as genotyping-by-sequencing (GBS; Poland and Rife
2012), genomic selection (GS) has become a powerful tool to enhance
selection for quantitative traits and consequently increase genetic gain
over time (Desta and Ortiz 2014; Jarquín et al. 2017; Pérez-Rodríguez
et al. 2017; Poland 2015; Poland and Rife 2012; Spindel and McCouch
2016; Yu et al. 2016). There is now increased interest in integrating GS
into public sector breeding programs.

Recent literature on genomic prediction (GP) has focused on
estimating predictive ability (PA) of various traits using different GP
models and cross-validation schemes. Arruda et al. (2016) and Kooke
et al. (2016) compared the genome-wide association studies and GP
using cross-validations to determine the PA for Fusarium head blight
resistance in wheat and various morphological traits in Arabidopsis
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(Arabadopsis thaliana). Similarly, Velu et al. (2016) investigated the PA
through cross-validations for grain zinc and iron concentrations in
spring wheat. These studies conclude that GS holds promise for im-
proving the respective traits. The testing of various GP models to
obtain increased PA is an active area of research. Linear models such
as genomic best linear unbiased prediction (GBLUP) utilize all of the
markers genotyped for construction of the genomic relationship
matrix (GRM), whereas Bayesian variable selectionmodels assume that
a reduced number of markers explain the genetic variance of a trait.
Nonlinear models such as reproducing kernel Hilbert space and neural
networks are also used for GP. Genomic prediction models and their
assumptions and features have been previously reviewed in other arti-
cles (Desta and Ortiz 2014; Heslot et al. 2012; Howard et al. 2014).

Although testing PA is critical information for GS, a large gap exists
between findings in these studies and their application in breeding
programs (Bernardo 2016). A limited number of articles have described
the utilization of GS in real case scenarios such as for germplasm or
cultivar development (Asoro et al. 2013; Bernardo 2016; Beyene et al.
2015; Combs and Bernardo 2013; Massman et al. 2013; Rutkoski et al.
2015). Tracking of lines advanced in a plant breeding program and
comparing their observed and predicted phenotypes can provide in-
sights to researchers for using GS in the breeding program. In this
study, we test the performance of GP to predict grain yield and evaluate
how GS can be used for making selections in preliminary yield trials,
one of the critical stages in the University of Nebraska winter wheat
breeding program (Figure S1 in File S1).

The University of Nebraska winter wheat breeding program makes
over 1,000 unique crosses annually and the progenies from these crosses
are tested systematically over the subsequent 11 years to identify a
cultivar for release (Figure S1 in File S1; Baenziger et al. 2011; Baenziger
et al. 2001). The F2 and F3 nurseries are grown in bulk populations and
nearly 45,000 heads selected from the F3 bulks are planted as headrows
(F3:4). The selections made in F2, F3, and F3:4 nurseries are primarily
based on disease resistance, winterhardiness, and plant type. Experi-
mental lines are evaluated for yield along with other traits such
as agronomic performance and end-use quality starting from F3:5
onwards. The observation yield trial (OYT; F3:5 nursery) is grown in
plots at one location for grain yield and in rows at a second location for
winterhardiness and disease resistance due to the limited amount of
seed. The preliminary yield trial (PYT; F3:6 nursery), the first multi-
location yield trial, is then grown in one or two replicates as augmented
trials with replicated check cultivars. The advanced yield trial (AYT;
F3:7 nursery) and elite yield trials (EYTs, F3:8 to F3:12 nurseries) are
grown in a replicated alpha lattice design in multiple locations, and
lines are tested for more than one year. Subsequently, a few elite lines
are advanced to regional nurseries such as Southern Regional Perfor-
mance Nursery (SRPN), state cultivar testing, and foundation seed
increase. The SRPN are replicated trials comprising 50 entries contrib-
uted by various breeding programs in the Great Plains and is grown
at more than 30 locations, with sites in Texas, Oklahoma, Kansas,
Colorado, Nebraska, and South Dakota. The SRPN trials are coordi-
nated by the USDA-ARS at Lincoln, NE. Phenotypic selection for yield
is most accurate in the AYT and EYTs due to the extensive replications
and testing of the lines at multiple environments for multiple years.
However, in the early generation (mainly F3:5) and PYT, phenotypic
selection for yield is less effective either due to the absence of replication
or testing done primarily in few environments, which do not represent
the diverse range of environments possible when wheat is grown in
Nebraska. The inaccuracy of phenotypic selection for yield in trials can
be overcome or at least reduced by using GS, which has the potential to
increase selection accuracy over phenotypic selection.

In the present study, we focus on the PYT, from which lines are
advanced to enter the resource demanding AYT and EYTs, grown with
replication atmultiple locations (Figure S1 in the File S1).Hence,making
accurate selections in the PYT is important to advance lines that have the
greatest expectation to subsequently perform well. In addition, selection
of top-performing lines from the PYT allows for recycling of elite lines
sooner to the subsequent breeding cycle as parents before testing them in
the AYT and EYTs. Increasing selection accuracy and reducing the
breeding cycle timewill increase genetic gain over time (Bassi et al. 2016).
The specific objectives of this study were to: (1) determine how GP can
predict grain yield of new lines (non-phenotyped) in the PYT and assist
with selections; (2) compare GS and phenotypic selection for making
advancement from PYT to AYT; and (3) compare genomic estimated
breeding values (GEBVs) and phenotypic estimates of lines advanced
from the PYT to the AYT and EYTs to determine the use of GS for
making selections in the breeding program. It should be noted that
although selections made from PYT (F3:6) onwards take into account
agronomic performance, end-use quality, and disease resistance among
other factors in the breeding program, yield is the most important trait
considered for selections (Baenziger et al. 2011; Baenziger et al. 2001).

MATERIALS AND METHODS

Plant material
Four independent PYT nurseries (F3:6) of the University of Nebraska
winter wheat breeding program grown in 2012-2015 were utilized for
GP (File S2). Each year �270 lines are tested in the PYT nursery. Two
hundred and eighty experimental lines were grown in 2012 and 2013 and
270 experimental lines in 2014 and 2015 thus a total of 1,100 unique lines
were used in this study. There was no overlap between experimental lines
tested across years. The experimental design was an augmented design
with 10 incomplete blocks. Each incomplete block in 2012 and 2013 had
28 lines and two different check cultivars and in 2014 and 2015 there
were 27 lines and three different check cultivars. Thus, 270 or 280 lines
along with 20 or 30 check plots (each check cultivar was replicated
10 times) were grown in a single trial. Trials were grown as a single
replicate, or sometimes two replicates, at 8 to 10 locations annually
(File S2). Testing locations include Mead, Lincoln, Clay Center, North
Platte, McCook, Grant, Sidney, and Alliance in Nebraska, and Hutchinson
and Mount Hope in Kansas (File S2). Yield measured on the lines in
the PYT nurseries (33 environments) was used for GS.

We utilized four AYT nurseries (F3:7) grown in 2013-2016 to test the
effectiveness of GS for making selections using GEBVs for yield from the
PYT nurseries grown in 2012-2015. The AYT nursery was grown in an
alpha lattice experimental design with 57 lines and three different check
cultivars each year and had either two or three replicates at each location
(File S2). The 57 lines in AYT are selected from PYT primarily based on
yield, and also end-use quality and disease resistance, and represent�21%
of top performing lines in the PYT. There was no overlap between the
lines tested across years and a total of 228 unique lines were tested across
four years. Each year the nursery was tested at six to nine locations with a
total of 29 environments across four years. The locations were the same
Nebraska locations as described earlier for the PYT nursery (File S2).

Experimental lines inboth thePYTandAYTnurseriesweregrownin
plots of four rows of 3.0 m length and 0.30m spacing between the rows.
Eachplotwas planted at a seeding rate of 54 kg ha-1. Yieldwasmeasured
from a combine harvest of all four rows of each plot.

Phenotypic data analysis
Grain yield at each location within a year was analyzed separately to
account for spatial variation in the field and obtain the best estimates of
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the phenotype. Each PYTnurserywas analyzed usingmixedmodels that
accounted for either experimental design features such as incomplete
blocks, rows, and columns or spatial variation in the field (Table S1 in
File S1; Gilmour et al. 1997). Model performance was assessed using
Akaike Information Criterion (AIC; Piepho and Williams 2010;
Wolfinger 1993) with all terms except checks fit as random effects
(Table S1 in File S1). Histogram, quantile-quantile plot, and residual
plots were used to inspect normality of residuals, heteroscedasticity,
and outliers in the dataset. If a mixed model accounting for spatial
variation had better performance (smaller AIC values, and normal
distribution and reduced heteroscedasticity of residuals) compared
to models that accounted for just the experimental design features,
we tested additional models that utilized the best spatial variation
adjustment plus the experimental design features (Table S1 in File S1;
Gilmour et al. 1997). Finally, the mixed model that performed best
was used to generate best linear unbiased predictors (BLUPs) for each
line at each location. Subsequently, the lines grown at different loca-
tions within a year were treated as replicates and BLUPs derived for
each line at each location within a year were averaged into a single
BLUP value for each line. This is a reasonable approach as all lines in PYT
are tested in all locations and the dataset is well balanced. Besides this
approach, there are many alternative ways to analyze multi-environment
trials. For instance, models that account for covariance structure
between environments, heterogeneity of residuals, and deregressing
BLUPs following a one-step analysis (Cullis et al. 1998; Garrick et al.
2009; Piepho et al. 2012; Welham Sue et al. 2010).

TheAYTnurserywasalsoanalyzedseparatelyateach locationwithin
ayear andone linearmodelwasused togenerate theBLUPvalue for each
line at each location. The model used to analyze yield data of the AYT
nursery is as follows:

y ¼ mþ r þ bðrÞ þ g þ e (1)

where y is the vector of phenotypes,m is themean, r is the replicate, b(r)
is the incomplete block nested within a replicate, g is the line effect, and
e is the error term. Replicate, block and lines were treated as random
effects. Analyzing the PYT and AYT nursery separately at each location
was necessary to test and account for the spatial variation at each
location or inspect the quality of the yield data from each of the location
before combining them into a single BLUP value for GP analysis.

Broad-sense heritability (H) was estimated for the PYT nurseries at
eachof the locations grown in two replicates (File S2).ThePYTnurseries
that were not replicated, but had two to three different check cultivars
grown in eachof the augmented trials, separated the genetic and residual
variances and were used to calculate the H. The variance components
were generated using the mixedmodel that performed the best for each
location. The H was also estimated at each of the locations for the AYT
nurseries (File S2). The variance components were generated using the
equation (1) and the H was estimated using the following equation:

H ¼ s2
G

��
s2
G þ s2

R

r

�
(2)

where s2
G ands2

R are the variance of the lines and the residuals and r is
the number of replicates within the location. Heritability was esti-
mated across locations in both the PYT and the AYT nurseries (He
et al. 2016). Variance components were generated using the linear
model:

y ¼ mþ Lþ g þ e (3)

where y is the vector of BLUPs estimated at each of the locations
within a year, m is the mean, L is the location effect, g is the line

effect, and e is the error term. The location was set as a fixed effect
because the locations were preselected in the breeding program and
the line effect was set as a random effect. The H was estimated using
the following equation:

H ¼ s2
G

��
s2
G þ s2

R

L

�
(4)

where s2
G and s2

R are the variance components of the line and the
residuals and L is the number of locations tested within a year
(He et al. 2016).

All models were fit using ASreml v3.0 (Gilmour et al. 2009) in the
R programming environment (R Core Team 2016). The R script and
an example dataset are provided (Files S3, S4).

DNA extraction and genotyping-by-sequencing
Five seeds of each line in the PYT nursery were grown annually in the
University of Nebraska-Lincoln (UNL) greenhouse and young leaves
were bulked and harvested from 2-week old seedlings in 96-well plates.
Two randomly chosen wells were kept blank in each plate for quality
control purposes. The leaves were dried and desiccated by placing the
plates in boxes filled with silica beads. DNA was extracted using
BioSprint 96 DNA Plant Kit from QIAGEN per the manufacturer’s
protocol. The genotyping-by-sequencing (GBS) was performed at the
Wheat Genetics and Germplasm Improvement Laboratory (WGGIL)
at Kansas State University. Samples were quantified using PicoGreen
and GBS libraries constructed in 188-plex using the P384A adaptor
set (Poland et al. 2012b). DNA was co-digested with two restriction
enzymes, a rare-cutter PstI (CTGCAG), and a frequent-cutter MspI
(CCGG), and barcoded adapters were ligated to individual samples.
The GBS library was prepared by pooling samples from two 96 well
plates and amplified in a thermocycler. Each library was then sequenced
in a single flow cell lane of Illumina HiSeq. Detailed protocols and
updates on the GBS protocol can be found on the WGGIL website
(http://www.wheatgenetics.org).

SNP calling, quality control, anchoring to the genome,
and imputations
Quality inspection of sequence files and SNP calling was performed on
the high-performance computing clusters available at the Holland
Computing Center (http://hcc.unl.edu) at UNL. The sequence quality
was inspected using FASTQC (http://www.bioinformatics.babraham.
ac.uk/projects/fastqc/). SNP calling was done using the TASSEL GBS
pipeline v4.0 (Glaubitz et al. 2014) and merging of multiple samples of
the same line was done in version 3. SNP calling was implemented
using default parameters except for the criterion of a number of times a
GBS tag to be present to be included for SNP calling was changed from
the default value of 1 to 5 to increase the stringency in SNP calling. A
pseudo-reference genome built using the International Wheat Genome
Sequencing Consortium Chromosome Survey Sequences (CSS) v2.0 of
the hexaploid bread wheat variety Chinese Spring was utilized for SNP
calling (International Wheat Genome Sequencing Consortium
(IWGSC) 2014). The GBS data of 1,100 lines of the four PYT nurseries
grown in 2012-2015 were analyzed along with an additional 2,202 lines
to get a better coverage of the genome, increasing read depth, and for
inspecting SNP calling accuracy (Zhang et al. 2015). These additional
samples included one bi-parental mapping population, an F3:5 nursery
of the breeding program grown in 2015, and check cultivars. A total
of 3,302 unique samples were used for SNP calling. We compared
SNP calls of 20 lines genotyped by GBS at least twice (biological
replicates) over the years for assessing the SNP calling accuracy (File S5).
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SNP markers with missing information in more than 80% (Torkamaneh
and Belzile 2015) of the samples were excluded using VCFtools
(–max-missing 0.20; Danecek et al. 2011) and the distribution of
missing values across SNPs and lines was investigated (Figure S2 in
File S1). Imputations were performed on the remaining set of markers
in Beagle v4.0 (Browning and Browning 2007). Further, SNP markers
with minor allele frequency less than 0.05 (–maf 0.05) and allelic
R2 estimated using Beagle less than 0.5 (SNPs that could be difficult to
impute accurately) were excluded (Figure S2 in File S1; Browning and
Browning 2007). The genomic location information of the SNPs
was derived using the positions of the CSS contigs that were an-
chored and ordered by population sequencing and a high-density
linkage map (Chapman et al. 2015).

Genomic prediction and cross-validation design
Phenotypic response of the line (yi) can be described as the sum of an
overall mean (m), plus the random effect of the line (Li), plus an error
term (eij) as follows:

yij ¼ mþ Li þ eij (5)

where line effects are IID (independent and identically distributed)
drawn from a normal distribution of the form Li � Nð0; Is2

LÞ,
Li; i ¼ 1; . . . ; I, and eij � Nð0; Is2

e Þ. In equation (5) the effects of
the different levels of random line effect are independent and the
information is not borrowed across lines. When genome-wide
markers are available, the genomic values of all the lines are
normally distributed with g � Nð0;Gs2

gÞ, where G is the GRM
calculated using genome-wide SNP markers and s2

g is the genomic
variance. Collecting the aforementioned assumptions the final
GBLUP model results as:

yij ¼ mþ gi þ eij (6)

where yij is the vector of phenotype (for example, BLUPs of lines
grown in 4 years), and g � Nð0;Gs2

gÞ and e � Nð0; Is2
eÞ. In equation

(6) the effects of the different levels of random line effect are corre-
lated as per the off-diagonal values of GRM and there is potentially
borrowing of information across lines, which allows for predicting the
phenotype of lines that are missing.

The GRM was estimated as in Perez and de los Campos (2014).
Briefly, the SNP markers obtained after quality control were converted
from nucleotide format to numerical format using the Numerical-
GenotypePlugin implemented in the TASSEL software (Bradbury
et al. 2007). Genotype matrix (X) was multiplied by 2 to change the
genotype scale to 2, 0, and 1 for homozygous major, homozygous
minor, and heterozygous before estimating GRM. The X matrix was
centered and scaled by subtracting each value in the column from
column means and by dividing with their standard deviations using
the scale function in R. Subsequently, GRM was estimated as:

GRM ¼ XX9
ncolðXÞ

where ncolðXÞ is the number of SNP markers.
The BGLR function in the Bayesian Generalized Linear Regression

(BGLR; Perez and de los Campos 2014) package in R was used to fit the
GBLUP model and genomic estimated breeding values were obtained.
Each run was performed with 12,000 iterations and 2,000 burn-in. The
BGLR function with default values was used for assigning prior distri-
bution and hyper-parameter settings (de los Campos et al. 2013; Perez
and de los Campos 2014).

The cross-validation schemewas designed to investigatehowGPcan
predict grain yield of PYT and address the practical scenarios that may

occur in a breeding program (Table 1). For example, an occurrence of
extreme weather events such as hailstorms during a breeding season
may result in loss of a subset of the trial. The rest of the lines within the
same location are not damaged, and the data from the undamaged lines
will be available to combine with the training set and predict the phe-
notype of damaged lines. Another example where the cross-validation
scheme will have practical utility is to use GS as a tool for allocation of
breeding program resources. If we determine the number of lines
that can be predicted with reasonable accuracy, it may be possible
to grow only a subset of lines in the trial and predict the rest and
save costs by reduced phenotyping. In our cross-validation
scheme, the training set comprised F3:6 lines from three years
and randomly chosen lines in steps of 10% from the fourth year
and test set included the rest of the lines from the fourth year
(Table 1). For instance, the training set may include all lines tested
in 2013, 2014, and 2015 PYT nurseries, and 90% of the lines from
2012 PYT nursery randomly selected, and the test set includes the
remaining 10% of the lines grown in 2012. This process was re-
peated 10 times by randomly sampling 90% of the lines in each
run. We refer to this cross-validation scenario where 10% of the
lines are excluded as NA10. Similarly, in 2012, NA50 training set will
comprise all lines tested in 2013, 2014, and 2015, and 50% of the lines
randomly chosen from 2012, and the test set will include the remaining
50% of the lines tested in 2012. We repeated this process 10 times by
randomly selecting 50% of the lines from 2012 in each run. This cross-
validation strategy was tested for each of the four years (2012-2015) with
NA10 to the NA90 scenario and by randomly selecting lines 10 times
(Table 1).

We also predicted the yield of all the lines in the PYT nursery in a
new year using lines tested in other years (Table 1). For example, we
predicted the yield of lines grown in 2012 PYT nursery using lines
tested in 2013, 2014, and 2015 PYT nurseries. We refer to it as
NA100. Although we are predicting older lines (for example,
2012 PYT) using newer lines (2013, 2014, and 2015 PYT) the results
will be insightful for predicting a new nursery in a new year. This
is true because development of a wheat cultivar usually takes
�12 years (Figure S1 in File S1) and elite lines are recycled as
parents only six to seven years after the first cross is made.

The PA (Faville et al. 2018; Sallam et al. 2015) for each run was
assessed using the Pearson’s correlation between the predicted geno-
typic effects (GEBVs) and the adjusted observed phenotypes (BLUPs).
We also calculated an average across the 10 runs to estimate average PA
for each validation scenario.

Effectiveness of phenotypic and genomic selection to
make selections
The 57 lines of the �270 lines advanced from the PYT nursery (2012-
2015) to the AYT nursery (2013-2016) were used to evaluate GS and
phenotype to make selections (Table 1). The GEBVs for the 57 lines
were subdivided from the GEBVs estimated for all �270 lines in the
PYT nursery (NA100 scenario of predictions). The GS ability was eval-
uated by estimating the correlation between GEBV of the PYT nursery
and their BLUPs in the AYT nursery. Similarly, the phenotypic selection
ability was estimated by calculating the correlation between BLUPs of
the PYT nursery and their BLUPs in the AYT nursery. Comparing the
correlation coefficients of GS and phenotypic selection abilities would
indicate the effectiveness of using phenotypic selection and GS for mak-
ing selections from PYT to AYT in each of the four years. Since the PYT
conducted in validation year is included in the training set, we have
observed the environment where the predictions will be tested in the
training set. Therefore, the predictions are effectively made for new lines

2738 | V. Belamkar et al.



and are evaluated in an observed environment. This scenario is valuable
as the new growing year may experience similar environmental condi-
tions as one of the previously observed years.

We also evaluated GS and phenotypic selection by skipping the
PYT nursery tested in the AYT year in the training set (Table 1). For
example, the GEBV for lines grown in 2012 PYT was estimated
using lines grown in 2014 and 2015 PYT (skipping 2013 PYT) in
the training set (Table 1). To match the training set comprising two
PYTs to predict 2012, 2013 or 2014, the GEBVs for lines grown in
2015 are estimated using lines grown in 2012 and 2013 PYT as a
training set. The downside of estimating GEBV by skipping the
PYT lines from the AYT year in the training set is it reduces the
size of the training set by 270 to 280 lines compared to the first
approach (Table 1). A smaller population size of the training set
may affect the accuracy of the GEBVs. Overall, the results from
these two scenarios will allow comparison of GS and phenotypic
selection for making selections.

Lastly, genomic and phenotypic selections are evaluated using the
57 lines advanced from the PYT to the AYT nursery and not all of the
�270 lines in the PYT. These 57 lines generally represent high-yielding
lines and belong to one tail of the distribution containing all lines in the
PYT nursery (Figure S3 in File S1). Nevertheless, using PYT and AYT
provides an opportunity to compare GS and phenotypic selection using
existing datasets.

Prospects for implementing genomic selection in the
preliminary yield trial
To evaluate the prospects of implementing GS in the PYT, we tracked the
lines advanced until 2016 primarily based on phenotype from the PYT
nurseries grown in 2012-2015 and compared it with BLUP and GEBV
values estimated on the lines in the PYT nursery. For instance, lines
advanced fromthe2012PYTnurseryuntil 2016were selectedand retained
in the breeding program for five years. Similarly, lines are retained for four
years starting from2013PYTnursery, threeyears from2014, and twoyears
from 2015. The GEBVs of the lines grown in the PYT each year were
estimated using the lines from the rest of the years as training dataset

(NA00 scenario), which is equivalent to predicting new lines in a
new year. Further, studying the frequency of lines with above aver-
age GEBV or BLUP or both, selected from the PYT nursery together
with the information on the number of years a line was retained in the
breeding program will allow for evaluation of the prospects of imple-
menting GS in the PYTs in the breeding program. We repeated this
entire process by making predictions on 50% of the lines randomly
selected in each year and using the remaining 50% of the lines along
with the lines from other years as training dataset (NA50 scenario). The
NA50 scenario is expected to have higher PA compared to NA100
scenario. Thus, this comparison using the GEBVs from NA50 scenario
will test the prospects of implementing GS when PA is higher.

Phenotypic selection in the PYT nursery is primarily based on yield.
Typically, lines with higher yield are selected first and then subsequently a
fewof these linesaredroppedbasedonother traits suchas resistance to stem
rust (causal organism Puccinia graminis Pers.:Pers. f. sp. tritici Eriks.
E. Henn.), agronomic performance, and end-use quality (Baenziger et al.
2011; Baenziger et al. 2001). A lower yielding line in the PYTgenerally does
not get advanced to AYT irrespective of the values of other traits. There-
fore, tracking lines advanced from the PYT based on phenotype and
comparing it with BLUP and GEBV values based on yield is a relatively fair
comparison to determine the prospects of implementing GS in the PYTs.

Population structure and kinship
Population structure among the 1,110 F3:6 lines was investigated using
principal component analysis (PCA). The PCAwas performed in TAS-
SEL (Bradbury et al. 2007) and a plot of PC1 vs. PC2 was made using
the ggplot2 package (Wickham 2009) in R. The kinship between test
and training set was analyzed by calculating the maximum realized
kinship coefficient (MRKC; Auinger et al. 2016; Saatchi et al. 2011)
using the GRM (Perez and de los Campos 2014). The MRKC was
calculated as max (Uij) and Uij is the realized kinship coefficient be-
tween line i in the test set and line j in the training set. TheMRKC value
represents the kinship between a specific line in the test set and all lines
in the training set. Further, a mean of maximum kinship coefficient
values across all lines in the test set was calculated.

n Table 1 Description of prediction scenarios and composition of training and test set using 2012 as an example

Prediction scenario
Cross-validation

scheme Training set Test set
Size of

training set
Size of
test set

Predictions of 2012 F3:6 nursery NA10 2013+2014+2015+90%
of the lines in 2012

Rest 10% of the lines in 2012 1,072 28

NA20 2013+2014+2015+80%
of the lines in 2012

Rest 20% of the lines in 2012 1,044 56

NA50 2013+2014+2015+50%
of the lines in 2012

Rest 50% of the lines in 2012 960 140

NA100 2013+2014+2015 100% of the lines in 2012 820 280
Predicting 2012 F3:6 lines

advanced to F3:7 in 2013
— 2013+2014+2015 100% of the lines in 2012

(subset GEBV of 2012 57 F3:6
lines advanced to F3:7 in 2013)

820 280

Predicting 2012 F3:6 lines
advanced to F3:7 in 2013
skipping the year of F3:7 (2013)
in training set

— 2014+2015 100% of the lines in 2012 and 2013
(subset GEBV of 2012 57 F3:6
lines advanced to F3:7 in 2013)

540 560

Tracking lines advanced in the
breeding program from 2012 F3:6

— 2013+2014+2015 100% of the lines in 2012 820 280

Tracking lines advanced in the
breeding program from 2012 F3:6
including 50% of the lines from
the same nursery in training set

— 2013+2014+2015+50%
of the lines in 2012

Rest 50% of the lines in 2012 960 140
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Data availability
File S1 contains supplementary Tables S1-S2 and Figures S1-S7. File S2 has
details of the preliminary yield trials (F3:6) and advanced yield trials (F3:7)
grown in 2012-2015 and 2013-2016. The experimental design, number of
locations, number of replicates per location, heritability for yieldwithin and
across locations is provided. File S3 contains the R script developed for
analyzing preliminary yield trials (F3:6) grown in an augmented design.
Mixedmodels incorporated both experimental design and spatial variation.
File S4 provides an example phenotypic dataset for utilizing the R script
provided in File S3. File S5 shows the SNP calling accuracy of 20 lines
genotyped by genotyping-by-sequencing at least twice (biological repli-
cates) over the years. The accuracy is presented as sequential pairwise
comparisons of 20 unique samples. File S6 contains the yield data (best
linear unbiased predictors) of the preliminary yield trials (F3:6) grown in
2012-2015 used for genomic selection. File S7 contains the SNP marker
data of 26,925 SNPs on the 1,110 F3:6 lines grown in 2012-2015. The
homozygous major, homozygous minor, and heterozygous genotypes
are coded as 1, 0, and 0.5 in the genotype matrix. File S8 shows the Akaike
Information Criterion (AIC) values and the residual plots for each of the
mixed models tested for the yield data collected on the preliminary yield
trial (F3:6) grown inMcCook,NE in 2014.The rest of the analyses described
in this study (except for the phenotypic data analysis conducted using
ASreml v3.0) were performed using publicly available software and R
packages. Supplemental material available at Figshare: https://doi.org/
10.25387/g3.6249410.

RESULTS

Accounting for spatial variation in field trials and broad-
sense heritability
Grain yield data of the PYT nursery were analyzed using linear mixed
models incorporating spatial variation. The motivation for testing
and correcting for spatial variation to improve genomic predictions
was derived from recent articles (Bernal-Vasquez et al. 2014; Lado et al.
2013) that showed accounting for spatial variation in the field result
in either similar or higher predictive abilities. Of the 33 environ-
ments (location by year combination) tested, five environments
(trials conducted by WestBred, LLC or Bayer CropScience) did not
have field-layouts available and thus the model accounted for just the
experimental design (incomplete block) when generating the BLUPs
for the lines (Table S1 in File S1). For 27 of the remaining 28 environ-
ments, the model accounting for spatial variation showed better perfor-
mance compared to models accounting for just the experimental design
based on lower AIC values, normality, and reduced heteroscedasticity of
residuals (Table S1 in File S1). As an example of the model selection
results, a table with the AIC values and residual plots for various models
is provided for the PYT nursery grown at McCook, NE in 2014 (File S8).
Averaging the BLUPs of lines grown at various locations within a year
significantly improved the broad-sense heritability (H). For instance,
H across the PYT nurseries within a year increased from �0.10 (across
two distant locations) to�0.74 (across all of the 7 to 10 locations; File S2).
Higher H will result in increased predictive abilities in the GP analysis.

In the PYT nursery, the H for grain yield within a location with no
replicate varied from 0.25 to 0.95, whereas at locations with two
replicates H ranged from 0.62 to 0.79 (File S2). The H across locations
within a year ranged from0.63 (2013 year) to 0.81 (2012year; File S2). In
the AYT nursery, the Hwas generally higher than the PYT nursery with
values up to 0.94 and the H across locations within a year ranged from
0.58 (2014 year) to 0.79 (2015 year; File S2). The AYT nursery’s smaller
sample size (57 lines) and increased replication (two or three replicates)
improved heritability relative to the PYT nursery with �270 lines and

one or two replicates. The 2013 PYT (except at Lincoln and Clay
Center) and 2014 AYT (except at Mead, Lincoln, and Clay Center)
had lower heritability trials at other locations. Sequential addition of
locations (starting with two geographically distant locations and then
subsequently adding sites generally from the eastern to the western side
of the state) within a year in the AYT nursery led to a similar increase in
H as was found in the PYT nursery. The H for the AYT nursery ranged
from�0.20 (across two distant locations) to�0.79 (across all of the 6 to
7 locations; File S2).

SNP calling, quality filtering, population structure,
and kinship
We performed SNP calling using the GBS data of 1,100 lines of the four
PYT nurseries grown in 2012-2015 along with an additional 2,202 lines
and identified 206,622 SNPs. The SNP calling accuracy tested using
sequential pairwise comparisons of 20 samples genotyped using GBS at
least twicewas95.7%(FileS5).The206,622SNPswerefiltered toexclude
markers that hadmissing information inmore than 80%of the samples,
and this resulted in 79,118 SNPs. The distribution ofmissing sites across
SNPs was left-skewed, and across lines, it was relatively normally
distributed (Figure S2 in File S1). These SNPs were then processed
usingBEAGLEand themissinggenotypeswere imputed.TheuseofGBS
results in low coverage and high missing information, which precludes
the accurate estimation of imputation accuracy. Therefore, allelic R2

generated in BEAGLE was used as a filtering criterion to exclude the
likely low quality imputed SNPs (Figure S2 in File S1; Browning and
Browning 2007). The distribution of missing information across these
selected (allelic R2 . 0.5) SNPs prior to imputation looks random
compared to the left-skewed distribution of all SNPs used for imputa-
tion (Figure S2 in File S1). Subsequently, the imputed marker data set
was subdivided to include just the 1,100 lines of the 2012-2015 PYT
nurseries and filtered using two criteria: (1) MAF . 0.05; (2) MAF .
0.05 and allelic R2. 0.5. Filtering using only MAF criterion resulted in
41,913 SNPs and both MAF and allelic R2 provided 26,925 SNPs. The
Pearson’s correlation coefficient estimated between kinship coef-
ficients estimated using 41,913 and 26,925 SNP markers was 0.99.
This is not unexpected and previous studies have shown the
method of imputation has little effect on the kinship and predic-
tive abilities (Jarquín et al. 2014; Poland et al. 2012a). Hence, we
decided to proceed with the higher-quality 26,925 SNPs for the
subsequent analysis (File S7).

The 26,925 SNPs were distributed on all 21 chromosomes. The
number of markers on a chromosome ranged from 114 (4D) to 3,323
(3B) with an average of 1,282 per chromosome (Figure S4a in File S1).
Nearly 19,707 of the 26,925 SNPs were placed in CSS contigs anchored
and ordered on chromosomes using population sequencing (Figure S4b
in File S1). The distribution of CSS contigs containing the 19,707 SNPs
across each chromosome showed good coverage of the wheat genome
except for a fewD genome chromosomes, previously reported to be less
polymorphic (Lado et al. 2013). The population structure evaluated
using PCA by plotting PC1 vs. PC2 did not indicate the presence of
prominent clusters suggesting the absence of strong population struc-
ture in the PYT nurseries grown in 2012-2015 (Figure S5 in File S1).
The PC1 and PC2 explained 4.3% and 3.2% of the variation in the
dataset (Figure S5 in File S1).

TheaverageMRKCvalue for thePYTgrownin2012-2015withother
PYTs ranged from 0.32 to 0.37 (Figure 1a). The PYT 2013 and
2014 contained a few lines that had a substantially higher kinship with
PYT lines grown in other years (Figure 1a). The results were similar
after subsetting MRKC values for the lines advanced from PYT to AYT
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and the average MRKC for the lines advanced each year and tested in
AYT in 2013-2016 ranged from 0.34 to 0.41 (Figure 1b).

Genomic predictions made on F3:6 nurseries grown
in 2012-2015
Wepredicted the performance of 10% (NA10) to 90% (NA90) of the lines
grownannually in stepsof 10%andrepeated the randomsamplingof lines
for the test set 10 times and estimated the average predictive abilities. In
three of the four years (2012, 2014, and 2015), the average predictive
abilities for NA10 ranged from 0.42 to 0.52, NA50 from 0.37 to 0.44, and
NA90 from 0.23 to 0.30 (Figure 2). In 2013, the predictive abilities were
slightly lower than in the other years and average predictive abilities for
NA10, NA50, and NA90 scenarios were 0.37, 0.27, and 0.24 (Figure 2b).
Average predictive abilities steadily decreased from NA10 to NA90 in
each year. This may be due to the varying degree of kinship between
training and test set resulting from increase in the number of lines in the
test set from �27 lines in NA10 to �243 lines in NA90 or a decrease in
the number of lines in the training set from�1,073 in NA10 to�857 in
NA90 (Figure 2; Table 1). In addition, the genotype by environment
interactions may impact the PA (Table S2 in File S1). We also investi-
gated the capability to predict all lines (�270) in a year using data from
other years, the NA100 scenario. The predictive abilities for predicting an
entire trial each year (2012-2015) ranged from 0.17 to 0.26 (Figure 2).
The range of PA in the NA100 scenarios suggests the influence of
genotype by environment interaction on PA (Table S2 in File S1).

Genomic selection vs. phenotypic selection
The AYT nurseries grown in 2013-2016, containing 57 lines advanced
primarily based on the phenotype from the PYT nurseries grown in
2012-2015, were utilized to compare phenotypic selection and GS. In
2012 and 2015, the correlation coefficient between GEBV (estimated
using NA100 scenario) of the PYT nursery and BLUP of the AYT
nursery was higher than the correlation coefficient between BLUP of
the PYT and AYT nursery, 0.48 vs. 0.36 in 2012-2013 and 0.36 vs. 0.11
in 2015-2016 (Figure 3). When the AYT year was excluded from the
training set, the correlation coefficient between GEBV of the PYT
nursery and BLUP of the AYT nursery was similar or substantially
higher than the correlation coefficient between BLUP of the PYT
and AYT nursery, 0.36 vs. 0.33 in 2012-2013 and 0.45 vs. 0.11 in
2015-2016 (Figure 3). This suggests GS would either perform equally
well or outperform phenotypic selection during 2012-2013 and
2015-2016. However, in 2014-2015, the correlation coefficient between
GEBV of the PYT nursery and BLUP of the AYT nursery was nearly half
(or lower than) the correlation coefficient between BLUP of the PYT and
AYT nursery, 0.13 vs. 0.30, and -0.05 vs. 0.30 when the AYT year was
excluded from the training set (Figure 3). And in 2013-2014, the corre-
lation coefficient between GEBV of the PYT nursery and BLUP of the
AYT nursery was significantly lower than the correlation coefficient
between BLUP of the PYT and AYT nursery, -0.02 (-0.08 skipping
the AYT year) vs. 0.37 (Figure 3). This indicates phenotypic selec-
tion would outperform GS in 2013-2014 and 2014-2015.

Tracking selections and comparison of observed
phenotypes and genomic estimated breeding values
ToexaminetheprospectsofusingGS in thePYTformaking selections in
the breeding program, we compared the advancements made primarily
based on phenotype for five years 2012-2016 with the BLUP andGEBV
values estimated on the lines in the PYT nurseries grown in 2012-2015
(Figure 4; Figure S6 in File S1). Lines with both BLUP and GEBV
values above the respective means were retained for more years in

the breeding program. If the lines had just the BLUP or GEBV alone
above the mean but not both, then these lines were dropped in
subsequent years from the breeding program (Figure 4; Figure S6
in File S1). For example, in the 2012 PYT nursery, 36 of the
71 (�50%) lines retained for two years had the BLUP and the GEBV
values above the means. Subsequently, 25 of the 34 (�74%), 7 of the
8 (87%), and 2 of the 2 (100%) lines retained for 3, 4, and 5 years had
the BLUP and the GEBV values above the means (Figure 4a). Clearly,
lines with both above average GEBV and BLUP values from each year
are retained for more years. The predictive abilities for the four years
are in the range of 0.17 to 0.26 (Figure 4; Figure S6 in File S1).
Although these prediction abilities seem low, it is interesting to note
that using both GEBV and BLUP for grain yield can increase the
accuracy of selections from the PYT nursery in the breeding program.

In 2017, one (NE12561) of the two lines from the 2012 PYT nursery
and five (NE13434, NE13515, NE13604, NW13493, NW13570) of
the 13 lines from 2013 PYT are still retained and are tested in the elite
yield trails (F3:8 nursery; Nebraska Interstate Nursery). Three lines
from 2013 PYT (NE13515, NW13493, NW13570) are also tested in
the Southern Regional Performance Nursery. A few of these lines are

Figure 1 The maximum realized kinship coefficient (MRKC) between
lines grown in a testing year and lines in rest of the years (training set). The
MRKC was calculated as max (Uij) and Uij is the realized kinship coefficient
between line i in the test set and line j in the training set. The MRKC value
represents the kinship between a specific line in the test set and all lines in
the training set. The kinship of each of the preliminary yield trials (PYT
2012-2015) with rest of the PYTs (training set) and kinship between lines
advanced from the PYT to advanced yield trial (AYT) each year (example,
AYT 2013) and lines in the training set (PYT 2013, 2014, and 2015) are
shown in a and b. The average maximum realized kinship coefficient
estimated across all lines grown in PYT and AYT is written on top of each
of the violin plots.

Volume 8 August 2018 | Genomic Selection in Winter Wheat | 2741



included in the state variety testing program and they have performed
well (data not shown).

Next, we repeated the same analysis with the NA50 scenario of
predictions in which 50% of the lines evaluated annually were added to
the trainingdataset andpredictionsweremade on the remaining 50%of
the lines (Figure 5; Figure S7 in File S1). This analysis was performed to
test the use of GEBV and BLUP to make selections when the predictive
abilities are higher than in the NA100 scenario. More lines with both
above average GEBV and BLUPs are retained for more years in the
breeding program compared to the NA100 scenario (Figure 4). Also,
lines with either their GEBV or BLUP alone higher than the respective
means but not both were significantly reduced (Figure 5; Figure S7 in
File S1). The predictive abilities for the four years for the NA50 scenario
were higher than the NA100 scenario and were in the range of 0.26 to
0.37 (Figure 5; Figure S7 in File S1).

Experimental line NE13625 is an exception to the observation that
the lines retained for more years in the breeding program have both
BLUP andGEBVvalues about their respectivemeans. NE13625was the
fourth highest yielding line in the 2013 PYT but had extremely low
GEBV. It was advanced until 2016 and is marked with a “+” sign in the
lower right quadrant in Figure 4b and Figure 5b. The line was dropped
in 2016 and did not make it to the 2017 nursery. This experimental line
is a relatively tall wheat, and there is a preference to retain a few tall lines
that may be high yielding relative to the existing commercially available
tall lines or those in the breeding program.

DISCUSSION

Genotyping-by-sequencing derived genome-wide
markers for genomic selection
Genotyping-by-sequencing provided thousands of high-quality
SNPs after quality filtering for GP analysis. In this study, we utilized

188-plexing and obtained nearly 27,000 high-quality SNPs distributed
across the genome. The number of SNPs obtained in this study using
GBS after quality filtering is comparable (Dawson et al. 2013; Poland
et al. 2012a) or higher than the previously published articles on ge-
nomic predictions in wheat (Battenfield et al. 2016; Rutkoski et al.
2014). SNP calling accuracy was high (�95%) when tested using bi-
ological replicates with small samples of F3:6 lines and multiple check
cultivars. Also, the percentage of SNP calling accuracy observed in
this study using GBS is similar to other platforms such as RNA-Seq
(Belamkar et al. 2016) and targeted resequencing of the wheat exome
(Allen et al. 2013). The GBS is a cost-efficient, reliable, and power-
ful technique for rapidly genotyping breeding germplasm with
genome-wide markers. In addition, a cost-effective strategy for a
self-pollinated crop such as wheat would be to genotype lines from
a breeding program nursery with a manageable number of lines
and then use the same markers for lines that are advanced. For
example, we are presently genotyping F3:5 nursery in the Univer-
sity of Nebraska breeding program that contains nearly �2,000
lines annually and using the same marker data for lines advanced
to F3:6 and F3:7 nurseries. The error introduced due to the minor
change in average heterozygosity with each generation is accept-
able compared to the cost of re-genotyping lines advanced to the
subsequent nurseries. This approach has also been demonstrated
recently in a different wheat breeding program (Michel et al. 2017).

Genomic predictions made on preliminary yield trial
nursery grown in 2012-2015
Genomic predictionsmade in each year (2012-2015) indicate predictive
abilities are high for NA10, modest for NA50, and low for NA100. Also,
the variability in the predictive abilities is higher from NA10 to NA40
compared to NA50 to NA90. Higher predictive abilities obtained on a
smaller number of lines (NA10) and relatively lower predictive abilities

Figure 2 Predictive ability (PA)
estimated for grain yield using
various cross-validation scenar-
ios (NA10 to NA90) and for an
entire new preliminary yield trial
nursery (NA100) in each of the
four years, 2012 to 2015, a to d.
Each of cross-validation scenar-
ios was performed 10 times and
the mean PA is written on top of
each of the box plot and is also
highlighted with an asterisk in
the boxplots.
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on a larger number of lines (NA90) in the test set is probably due to the
sample size differences andkinship between lines in the training and test
sets. Predictive ability is a function of heritability of the trait, the size of
the training population, and an effective number of chromosome
segments affecting the trait (Daetwyler et al. 2008). Training and test
population sizes affecting predictive abilities have also been demon-
strated in previous studies on various species (Akdemir et al. 2015;
Asoro et al. 2011; Cericola et al. 2017; Tayeh et al. 2015). The high
variation in the predictive abilities with fewer lines (NA10-NA40) in
the test set is probably due to a varying degree of kinship between lines
in the test and training set (Weng et al. 2016). Recently, He et al. (2017)
showed that kinship ismore important than genetic architecture of trait
for determining the estimates of GP on grain yield in wheat. The PA of
new lines in a new year using lines from other years (NA100 scenario)
was low (�0.22). Besides kinship, genotype by environment interac-
tion can be responsible for these low values. Although same lines were
not tested across years in the PYT, checks were grown in multiple
years. Ranking of these checks indicated the influence of genotype by
environment interactions on grain yield in different years (Table S2 in
File S1). For instance, ‘Goodstreak’was lower yielding than ‘Camelot’ in
all years except in 2015 when it yielded significantly higher. Similarly,
Camelot and ‘Freeman’ yielded nearly the same in 2014 whereas in
2015 Freeman yielded higher than Camelot. In summary, these results
with the current training dataset generated (containing four PYT nurs-
eries) in the University of Nebraska wheat breeding program indicate
that we can predict the yield of nearly 50% of the lines in the PYT
nursery with reasonable (0.37 to 0.44) predictive abilities. We believe it
may be possible to reduce costs by phenotyping only a subset of lines,
especially for hard to measure traits (with similar genetic architecture
and heritability as yield), and also recover information for a subset of
lines lost during extreme weather events such as a hailstorm or other
abiotic and biotic stresses. However, predicting the yield of all lines in
the PYT nursery in a new year (forward breeding) and skipping the
PYT is not possible with the current selection intensity of advancing
57 of the 270 lines to the AYT.

Evaluation of genomic selection and
phenotypic selection
The comparison of GS and phenotypic selection for making advance-
ments from thePYT to theAYTnursery indicatedGSdid better than the
phenotypic selection in2012and2015, and in2013and2014phenotypic
selection outperformed GS. When the AYT year was excluded from
the training set (for example, predicting PYT 2012 using PYT 2014 and
2015 and skipping the PYT in the AYT year 2013 in the training
set), GS was similar to phenotypic selection in 2012 (which makes GS
superior because if both GS and phenotypic selection have the same
efficiency, we can skip phenotyping), GS did better than phenotypic
selection in 2015, and phenotypic selection outperformed GS in 2013
and 2014. The lower PA of GS compared to phenotypic selection after
excluding the AYT year in the training set is likely either due to the smaller
training set or the fact that the AYT year was not observed in the training
set. Overall, GS did better than phenotypic selection in 2012 and 2015, and
the phenotype selection was better than GS in 2013 and 2014.

In 2012, Nebraska experienced severe drought (Baenziger et al.
2012), and in 2015 it received unusually high amounts of rain especially
in May, which coincides with the initiation of the flowering of the NE
lines (Baenziger et al. 2015). The 2015 crop year was the third wettest
year since the national records began in 1895, and May 2015 was the

Figure 3 Comparison of phenotypic and genomic selection. The
comparison is made using 57 lines advanced from the preliminary
yield trial (F3:6) grown in 2012-2015 to the advanced yield trial (F3:7)
grown in 2013-2016. The suffix “2” separated by an underscore rep-
resents scenarios where the genomic estimated breeding values of the
preliminary yield trials (F3:6) are estimated by excluding the following
(F3:7) year from the training set. Correlation coefficients noted on the
bar plots.

Figure 4 Comparison of adjusted observed grain yield values (best
linear unbiased predictors, BLUPs) and genomic estimated breeding
values (GEBVs) for lines tested in 2012 (a) and 2013 (b) preliminary
yield trials (PYTs). The lines advanced in each year from the 2012 and
2013 PYT nursery until 2016 are highlighted with different colors and
shapes. The two vertical lines represent the mean of the BLUPs of the
PYT nursery and the mean of the BLUPs of the 57 PYT lines selected for
advancement to the advanced yield trial nursery. The two horizontal
lines indicate the mean (solid) and the 75th percentile of the genomic
estimated breeding values (dashed).
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wettest month of any month on record (NOAA 2016). The high
amounts of rain resulted in unusually severe disease pressure in 2015,
primarily due to stripe rust (causal organism Puccinia striiformis
f. sp. tritici) and Fusarium head blight (causal organism Fusarium
graminearum Schwabe [teleomorph Gibberella zeae (Schwein.)
Petch]) (Baenziger et al. 2015). The 2014 crop year did not witness
any extreme weather events such as drought, flooding, or hailstorms
and was a relatively normal year (Baenziger et al. 2014). In both the
extreme weather years (2012 and 2015), GS was comparable or better
than phenotypic selections, whereas in a normal year (2014) the GS
PA was nearly 50% lower than the phenotypic selection. It is inter-
esting to note that GS did better than phenotypic selection while the
predictive abilities for the nurseries grown in 2012 and 2015 were
0.22 and 0.17. This suggests predictive abilities alone are most likely
not a true indicator of the success of genomic predictions, and the
low values obtained may be due to the quality of the underlying
phenotype data during extreme weather years. Based on these results
in the PYT nursery, GS alone is effective for making selections when
extreme weather events occur during the growing season.

The results obtained in 2013were quite different fromall other years.
The GS abilities were quite low compared to phenotypic selection.

Also, the predictive abilities obtained for NA10 to NA90 were relatively
lower. This is despite the fact that the kinship of lines grown in PYT
2013 with lines grown in PYTs in other years was similar to the
kinship among other PYTs. In addition to kinship, we specifically
looked at the clustering of the lines advanced from PYT 2013 to AYT
2014 with the rest of the PYT lines (Figure S5 in File S1). A plot of PC1
vs. PC2 and a parallel coordinate plot with five PCs did not suggest
that these lines were different from the rest (Figure S5 in File S1). This
result is expected because each experimental line in the University of
Nebraska wheat breeding program is derived from a cross made with
one or more lines adapted to the Nebraska region, and thus strong
population structure is not expected among the breeding program
lines. The possible reasons that may have affected the PA values are:
(1) the phenotype of lines grown in 2013 was influenced by the quality
of seeds harvested in 2012 coupled with the soil and field conditions
affected following severe drought stress in 2012 (Baenziger et al.
2013); (2) the broad-sense heritability values of PYT 2013 and
AYT 2014 are lowest compared to PYTs and AYTs in other years
(3) the selections performed in 2012 OYT nursery to advance lines
to PYT nursery grown in 2013 would have been difficult to make
accurately due to the drought stress; and (4) the GBS data of �92
lines grown in 2013 was of relatively lower quality (but still accept-
able for including it in the analysis based on per base sequence
average quality scores .20 along the length of the GBS tags). The
most common reasons for lower quality scores is a degradation of
quality over the duration of long sequencing runs or a problem with
the sequencing run such as bubbles passing through a flowcell (http://
www.bioinformatics.babraham.ac.uk/projects/fastqc/).

Genomic selection is promising for increasing
selection accuracy
In the PYT, lines with both above average BLUP andGEBV values were
retained for more years compared to lines with either just GEBV or
BLUP alone. A limitation of using phenotype data alone for making
selections is that they are based on the performance of lines only in the
growing year. But, the expectation is that the selected line performs well
in multiple years with potentially varying environmental conditions.
TheGEBVestimatesbasedon lines grown inmultipleyears andmultiple
environmental conditions leveraged information across years and en-
vironments and overcomes the limitation of phenotype-based single-
year selection. Thus, using both BLUP and GEBV independently and
selecting lines that are having both their GEBV and BLUP above the
respectivemeans and excluding lineswith just theGEBVor BLUPalone
above themeanprovidedanincreasedopportunity toselect lines likely to
performwell across environments and years compared to lines selected
based on the phenotype alone in one year.

Atpresent,with the current trainingdataset, the PA is approximately
0.22 for predicting all lines in thePYTnursery in anewyear.Hence,with
the current selection intensity (selection of 57 of the 270 lines; Figure S3
in File S1) for the subsequent nursery (AYT nursery), we can make
highly accurate selections by using both phenotype and GEBV values.
Another possibilitywould be to lower the selection intensity by selecting
all lines above the averageGEBV for the subsequent nursery.Thiswould
allow skipping the PYT, but the downside is the cost of manymore lines
advanced to the elite trials replicated and grown in many locations,
which makes this approach practically challenging and potentially cost
ineffective in a breeding program.

Thepercentageof lineswithaboveaverageGEBVandBLUPretained
formore years in the breeding program increasedwhen 50% of the lines
tested in the prediction year are added to the training dataset and
predictions are made on the remaining 50% of the lines. The predictive

Figure 5 Comparison of adjusted observed grain yield (best linear
unbiased predictors, BLUPs) and genomic breeding values estimated
using all lines in other years and 50% of the lines randomly selected
from 2012 (a) and 2013 (b) from preliminary yield trials (PYTs). The lines
advanced in each year from the 2012 and 2013 PYT nursery until 2016 are
highlighted with different colors and shapes. The two vertical lines
represent the mean of the BLUPs of the PYT nursery and the mean of
the BLUPs of the 57 PYT lines selected for advancement to the advanced
yield trial nursery. The two horizontal lines indicate the mean (solid) and
the 75th percentile of the genomic estimated breeding values (dashed).
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abilities for this NA50 scenario are higher than the NA100. In 2014, the
predictive ability was greater than 0.37, and very few lines were in the
quadrant with above average GEBV and lower than average BLUP.
Our data suggest that growing only a subset of PYT and combining
the information from previous years will effectively utilize GEBV for
making selections for yield. Also, these results indicate when the pre-
dictive ability surpasses the average predictive abilities observed in the
NA50 scenario (�0.40), we may be able to use just GEBV alone for
making selections with the current selection intensity for the subse-
quent nursery and skip the PYT. We have more than �1,000 g of
seed for most of the lines in the OYT (F3:5), and thus enough seed is
available to skip the PYT and test lines in the AYT. In addition, we
now genotype the lines in OYT and the marker data will be available
for lines selected for PYT prior to testing them in the field.

In summary, our recommendation while the predictive abilities for
forward breeding are lower (�0.20), is to either use both the GEBV and
BLUP values to make better selections or grow only a selected subset
of lines (especially lines that are difficult to predict) advanced to the
PYT nursery and use GS to predict the rest and make selections in the
PYT nursery. The subset of lines whose phenotype is difficult to predict
can be determined by using the reliability criterion recently described
by Yu et al. (2016) and the training set can be updated annually as
described by Neyhart et al. (2017).

Current use of genomic selection in the University of
Nebraska wheat breeding program
The results obtained in this study are encouraging, and this has
motivated implementation of GS in the breeding program for grain
yield starting in2016.Here,wedescribe threeexamplesof the currentuse
of GS. First, in 2016, we used both GEBV and BLUP to make more
accurate selections from the PYT nursery. Preliminary observations
indicate in 2017 more lines with both above average GEBV and BLUP
were advanced to 2018 and lines with either just above averageGEBVor
BLUP alone were dropped. Second, lines with both above average
GEBVs and BLUPs were shortlisted as top performing lines in the
PYTnursery andusedasparental lines for the subsequentyear’s crossing
block. Recycling elite lines sooner saved one to two years in the breed-
ing cycle. Third, hailstorms damaged more than half the OYT nursery
(F3:5) containing nearly 2,000 lines mostly grown at one location in
2016.We used a training dataset comprising PYT nurseries plus 50% of
the lines from the OYT nursery that were less hail damaged to predict
the phenotype of the remaining 50% of the lines in the OYT nursery
damaged due to hail and recovered lines that had the potential for
high-yielding based on GS and advanced these to the PYT nursery
for harvest in 2017.

Overall, integration of GS for grain yield in the University of
Nebraska wheat breeding program is positioned to successfully im-
prove the efficiency of the breeding program.We currently are testing
PAs of other traits and investigating approaches to improve the use
of GS in the breeding program.
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