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Abstract
Objective: The goal of this study was to determine whether the degree of weight loss 
after 6 months of a behavior-based intervention is related to baseline connectivity 
within two functional networks (FNs) of interest, FN1 and FN2, in a group of older 
adults with obesity.
Methods: Baseline functional magnetic resonance imaging data were collected fol-
lowing an overnight fast in 71 older adults with obesity involved in a weight-loss inter-
vention. Functional brain networks in a resting state and during a food-cue task were 
analyzed using a mixed-regression framework to examine the relationships between 
baseline networks and 6-month change in weight.
Results: During the resting condition, the relationship of baseline brain functional 
connectivity and network clustering in FN1, which includes the visual cortex and sen-
sorimotor areas, was significantly associated with 6-month weight loss. During the 
food-cue condition, 6-month weight loss was significantly associated with the rela-
tionship between baseline brain connectivity and network global efficiency in FN2, 
which includes executive control, attention, and limbic regions.
Conclusion: These findings provide further insight into complex functional circuits in 
the brain related to successful weight loss and may ultimately aid in developing tai-
lored behavior-based treatment regimens that target specific brain circuitry.
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INTRODUC TION

The US population aged 65 years and older was 54.1 million in 2019 
and is projected to reach 94.7 million by 2060 (1). Of concern is that, 
in 2018, the prevalence of obesity was 40.2%, a figure that varied 
little as a function of age (2). Given the vulnerability of older adults 
to chronic disease and physical disability, coupled with the increas-
ing risk that obesity poses to healthy aging (3), there is an urgent 
need to increase our understanding of success with weight-loss 
interventions.

As noted in a 2016 review (4), most obesity-related studies in 
neuroscience have been cross-sectional, examining specific brain re-
gions of interest (ROIs). This approach is limited by the use of static 
group designs and the fact that eating behavior involves commu-
nication between multiple ROIs (5). In reviewing evidence for the 
dynamic vulnerability theory of obesity (4), Stice and colleagues 
identified incentive sensitization and reward valuation as key pro-
cesses in food choice and overeating. Donofry and colleagues 
echoed this position, with emphasis on a third process: executive 
function (5). A limitation of this research is that the bulk of evidence 
reviewed has not involved weight loss, and very few studies have 
involved older adults. The lack of attention on aging is a critical gap 
because, within the field of network science, a consistent observa-
tion has been that there is a decrease in the functional connectivity 
of brain networks with aging (6,7).

The current study addresses these shortcomings by collecting 
baseline functional magnetic resonance imaging (fMRI) data on 
a subset of older adults with obesity within a randomized clinical 
trial (NCT02923674) that involved 6 months of intensive weight loss 
(8). In a previous predictive study (9), the top two functional net-
works (FNs), FN1 and FN2, that explained variance in weight loss 
at 18 months captured communication between key brain regions 
important in reward valuation, incentive sensitization, and executive 
function. This original discovery of these networks did not examine 
features such as connectivity strength or network topology. Here, 
we evaluated the generalizability of these two networks to a com-
pletely unique sample, hypothesizing that FN1 and FN2 would ex-
hibit significant relationships in their brain network connectivity and 
topology during both the resting state and task-evoked imagery of 
food cues with 6-month weight loss.

METHODS

Participants

A sample (n = 71) of older adults with obesity were recruited from 
a weight-regain study, Empowered with Movement to Prevent 
Obesity and Weight Regain (EMPOWER; ClinicalTrials.gov identi-
fier: NCT02923674) (8). All eligible and willing participants without 
contraindications for an MRI scan completed an in-person screen-
ing visit and a 45-minute MRI scan after an overnight fast. MRI data 
were collected at baseline before participants initiated treatment. Of 

the 71 participants who consented, 4 participants were removed be-
cause of excessive head motion, and 4 were removed owing to lack 
of 6-month weight-loss data. Therefore, the final sample included 63 
participants. This study protocol was approved by the Wake Forest 
School of Medicine Institutional Review Board.

Overview of the EMPOWER study

Inclusionary criteria for EMPOWER included the following: age = 65 
to 85 years; BMI = 35 to 45 kg/m2; and low activity, defined as <20 
min/d of exercise (8). Participants were excluded if they had evi-
dence of cognitive impairment (10). See Fanning and colleagues (8) 
for detailed descriptions of the methods.

Study Importance

What is already known?

►	Obesity is associated with deleterious health effects in 
older adults.

►	There is evidence that functional brain networks are im-
portant in weight loss.

What does this study add?

►	In a sample of older adults with obesity undergoing a 
weight-loss intervention, we found significant relation-
ships between amount of weight loss and topology 
within two previously discovered brain circuits.

►	In the resting state, significant relationships between 
weight loss and network topology were observed within 
a set of brain regions that include the visual cortex and 
sensorimotor processing areas.

►	During a food-cue condition, significant network topo-
logical relationships with weight loss existed in a dif-
ferent set of brain regions that include areas of the 
attention network and limbic circuitry.

How might these results change the direction of 
research or the focus of clinical practice?

►	Two distinct brain network biases are related to the 
degree of success with weight loss: within the resting 
state, there is a sensorimotor motivational bias to pur-
sue food, whereas, when processing food cues, there is 
a deficit in the executive control/attention network.

►	These findings support interventions that directly coun-
ter these nonconscious brain network biases, such as 
implementation intentions coupled with mindfulness-
based training and daily weigh-ins coupled with adap-
tive, personalized treatment.
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Procedure for the MRI ancillary study

Initial in-person visit

Documented consent was obtained for this ancillary study, and MRI 
compatibility information was gathered. Participants also named 
their four favorite foods for use in the MRI scanning protocol.

MRI scanning visit: resting and food-cue states

Participants arrived in the morning after at least 8 hours of fasting. 
The MRI scan session included two conditions: resting state and a 
food-cue visualization task. During the resting state, participants 
were instructed to keep their eyes open and focus on an on-screen 
fixation cross for 6 minutes. During the food-cue visualization task, 
participants viewed the words of their favorite food items. As each 
word was presented in 30-second intervals for a total of 6 minutes, 
participants were instructed to imagine the taste, the smell, and the 
satisfaction of consuming the food.

MRI scanning protocol

See online Supporting Information.

FNs of interest

This study examined the generalizability and network properties of 
two FNs, FN1 and FN2, that we had found in prior research to be pre-
dictive of 18-month weight loss in older adults with obesity (9). These 
FNs were identified using machine-learning techniques. The two FNs 
captured key regions that play a role in incentive sensitization, reward 
valuation, and executive function (4,5). FN1 and FN2 were chosen 
from several possible FNs because they were the top two predictive 
networks and because they had a priori scientific credence (5,11) and 
theoretical importance (9,12) within the context of a hypothesis-based 
study design. These FNs were based on regions within the Shen func-
tional atlas (Supporting Information Figure S1 and Table S1) (13). For 
FN1, the nodes in the most posterior area are in the visual cortex, and 
the nodes in the more anterior locations occupy lateral motor and so-
matosensory regions, the anterior cingulate and posterior insula. The 
nodes located in the inferior posterior aspect of the brain occupy the 
cerebellum. For FN2, the nodes located in the superior aspect of the 
brain are part of the attention-processing circuit. The nodes in the in-
ferior aspect of the brain localize to the amygdala, temporal pole, hip-
pocampus, fusiform gyrus, and inferior insula. On an a priori basis, we 
chose clustering coefficient (CC) and global efficiency (GE) to examine 
the small-world network properties (14) of FN1 and FN2 because they 
are the hallmark metrics of functional segregation (specialized/local 
neural processing) and integration (fast integration of specialized neu-
ral processing) in the brain (15).

It is important to note that, although FN1 and FN2 were the top 
two networks ranked by captured population variance in the original 
study, there were actually 21 networks used to perform the pre-
dictions. We limited the analyses here so that focused hypotheses 
could be tested with limited multiple comparisons. Testing all 21 net-
works for significant topological associations with weight loss would 
be more of a data-driven study design rather than a hypothesis-
based design. It remains possible/probable that some of the other 
predictive networks exhibit topological properties essential for a 
more complete mechanistic understanding of the neural processes 
underlying weight loss that may emerge from future studies.

Statistical analysis by mixed-regression 
framework and associated covariates

We used a mixed-modeling framework for our analyses on FN1 and 
FN2. Absolute weight loss in kilograms was the continuous covariate 
of interest in our models. A two-part model examined the probability 
(presence or absence) of network connections as well as the strength 
of existing connections (16,17). Negative correlations (connection 
strengths) were set to zero because of the challenge of defining CC 
and GE in networks containing negative edges (18) and because the 
positive and negative edges lead to very different interpretations (19). 
This framework quantified the relationship between strength and 
probability as the outcome (dependent) variable and network and non-
network covariates (including interactions between the two sets) as 
the independent variables. The model included average CC and aver-
age GE as network variables (20). Age, sex, race, and baseline weight 
were included in the model as covariates. For a summary of the co-
variate uses, see Supporting Information Tables S2 and S3. To account 
for potential effects of participants’ brain sizes, the spatial euclidian 
distance and squared distance between network nodes were included 
as confounding variables (21). For a discussion of statistical power for 
this approach, see the online Supporting Information.

Planned post hoc analyses

In post hoc analyses, we estimated appropriate contrast statements 
of already estimated residuals (from fitted mixed models) for cor-
responding parameters to obtain inference about whether and how 
the relationship between brain connectivity and network metrics 
(i.e., clustering and GE) was modified by 6-month weight loss. The 
contrast statements for continuous variables were made through a 
unit change in that variable. For more detail, see Bahrami and col-
leagues (17).

Population average networks

To aid in visualizing the results from our analyses, we generated repre-
sentative group networks. Owing to the noneuclidean nature of complex 
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brain networks, it is not possible to generate group mean networks 
without affecting topological variables (22). Therefore, to generate 
meaningful visualizations, representative group networks were esti-
mated with respect to the observed modification effect of the 6-month 
weight loss (our covariate of interest) on the brain connectivity-network 
metric associations. For simplicity, we simulated group representative 
networks for low (minimum) and high (maximum) 6-month weight-loss 
groups. For more detail, see online Supporting Information.

RESULTS

Table 1 displays relevant demographic information. Participants’ 
mean (SD) age was 70.4 (4.6) years, with an average baseline weight 
of 95.1 (1.6) kg. The average weight change (baseline weight − 6-
month weight) was −7.4 (5.0) kg. Figure 1 shows the histogram of 
6-month weight loss for the 63 participants.

Mixed-regression results

To examine the associations between weight loss with GE and CC for 
the two FNs during two independent conditions (i.e., resting state 
and food cues), we conducted four separate analyses, with each 
analysis modeling both the probability and strength of brain con-
nections within a two-part, mixed-effects regression framework. 
Table 2 presents the statistical summary of the significant findings.

Bold values in Table 2 show significant weight-loss-related infer-
ential results for both models. In summary, during the resting con-
dition, the baseline relationship between brain network clustering 
and connectivity in FN1 was associated with 6-month weight loss, 
whereas for FN2, it was network GE and connectivity. Later in this ar-
ticle, we provide more specific explanations, with estimates for other 
parameters fully presented in Supporting Information Tables S4 to S7.

Resting state data

•	 The relationship between baseline connection probability and 
CC in FN1 was significantly associated with 6-month weight 

loss. Specifically, as CC increased, participants with greater 
(more successful) 6-month weight loss were less likely to have 
connections between highly clustered nodes within this FN 
compared with those who lost less weight.

•	 The relationship between connection strength and CC in FN1 was 
also significantly associated with 6-month weight loss. Within this 
FN, as CC increased, participants with greater (more successful) 
6-month weight loss had stronger connections compared with 
those who lost less weight.

These significant effects are illustrated in Figure 2, which shows 
the relationships between both connection probability and strength 
with CC and their associations with 6-month weight loss. The sur-
faces are colored by the slope of the connection probability (or 
strength) and its relationship to clustering by the degree of weight 
loss. As the surface plots show, the relationship between connection 
probability and clustering in FN1 became more negative as weight 
loss increased (darker blue in Figure 2). However, for the relationship 
between connection strength and clustering, a reverse pattern was 
observed, supporting the conclusion that participants with greater 
weight loss had stronger connections for higher clustering in FN1. 
Also, in Figure 2, the findings detailed earlier in this article have 
been transformed back into brain space using representative group 
networks to illustrate differences in the topology of FN1, with re-
spect to their association with weight loss. Nodes in this network 
are sized by their actual clustering values and colored by the sum 
of their connection probability-clustering slopes (top networks) and 
connection strength-clustering slopes (bottom networks). The more 
blue and red nodes in the top and bottom right networks for those 
with higher 6-month weight loss clearly demonstrate that they ex-
hibited more negative and positive relationships at baseline with the 
relationship between connection probability and strength with clus-
tering, respectively.

In addition to the slope differences, the brain maps also reveal 
spatial differences within FN1 that were associated with weight 
loss. Most notably, the cerebellum had a different topological rela-
tionship to weight loss in the low-weight-loss group relative to the 
rest of the FN. However, in the high-weight-loss group, the cere-
bellum’s topology and slopes were more like the other regions in 
this FN.

TA B L E  1  Participant demographics and measures

Variable Overall (n = 63) Male (n = 13) Female (n = 50)

Age (y) 70.4 (4.6) 70.6 (5.2) 70.3 (4.5)

Baseline weight (kg) 95.1 (11.6) 108.7 (7.1) 91.6 (9.8)

Race, n (%)

African American or Black 18 (28.6) 1 (7.7) 17 (34.0)

White 45 (71.4) 12 (92.3) 33 (66.0)

Weight change: baseline − 6 months (kg) −7.4 (5.0) −9.7 (5.6) −6.8 (4.8)

Note: Data given as mean (SD) or frequency (%).
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Food-cue data

•	 The relationship between connection probability and GE in FN2 
at baseline was significantly associated with 6-month weight loss. 
Within this ROI, as GE increased, participants with greater (more 
successful) 6-month weight loss were more likely to have connec-
tions when compared with those who lost less weight.

•	 The relationship between connection strength and GE in FN2 at 
baseline was significantly associated with 6-month weight loss. 
Within this FN, as GE increased, people with greater (more suc-
cessful) 6-month weight loss had stronger connections when 
compared with those who lost less weight.

The significant findings are shown through surface plots and 
representative group networks in Figure 3. As shown, the relation-
ship between connection probability (top) or connection strength 
(bottom) and GE in FN2 was significantly associated with 6-month 
weight loss, with a stronger effect observed for connection proba-
bility and GE in this FN. The relationship between both connection 
probability and strength and GE in FN2 became more positive as 
weight loss increased. The representative group networks support 
this effect as well. The nodes are sized by their actual GE values and 
colored by the sum of their connection probability (or strength)-GE 
slopes.

By mapping these relationships back into brain space 
(Figure 3), it is evident that the attention and limbic circuitry 
have different topological relationships with weight loss. Most 
notably, weight loss had a weaker association with network to-
pology in the limbic circuitry than the nodes located in attention-
processing regions. This was evident by the fact that the limbic 
nodes had slopes closer to zero (whether the slopes were nega-
tive or positive).

DISCUSSION

Using functional brain networks from 63 older adults and a mixed-
regression framework, we examined how 6-month weight loss was 
associated with baseline network connectivity in two previously 
identified FNs of the brain that evolved from predictive analyses 
using machine learning: FN1 and FN2.

FN1 is dominated by interactions between the cerebellum, lat-
eral sensorimotor areas (including the face, mouth, and throat), pos-
terior insula, and mid-anterior cingulate cortex, as well as the early 
visual cortex (9). It is important to note that this network involves 

F I G U R E  1  Histogram of 6-month weight change showing a 
normal distribution of weight loss [Color figure can be viewed at 
wileyonlinelibrary.com]

TA B L E 2 Parameter estimates and p value summaries of the contrast statements showing the modulating effects of 6-month weight loss (COI) 
on the interaction of the brain topological variables (CC and GE) and brain connectivity (strength and probability of connection) in FN1 and FN2

Probability model Strength model outputs

Parameter Estimate *p value Parameter Estimate *p value

Resting

βr, COI × CC + βr, COI × FN1 × CC −0.0741 0.0189 βs, COI × CC + βs, COI × FN1 × CC 0.0117 0.0016

βr, COI × GE + βr, COI × FN1 × GE 0.0597 0.0529 βs, COI × GE + βs, COI × FN1 × GE −0.0041 0.3032

βr, COI × CC + βr, COI × FN2 × CC 0.0081 0.8236 βs, COI × CC + βs, COI× FN2 × CC 0.0010 0.8278

βr, COI × GE + βr, COI × FN2 × GE 0.0382 0.3565 βs, COI × GE + βs, COI × FN2 × GE 0.0069 0.1583

Food cue

βr, COI × CC + βr, COI × FN1 × CC −0.0002 0.9938 βs, COI × CC + βs, COI × FN1 × CC 0.0057 0.1172

βr, COI × GE + βr, COI × FN1 × GE −0.0339 0.2681 βs, COI × GE + βs, COI × FN1 × GE −0.0001 0.9753

βr, COI × CC + βr, COI × FN2 × CC −0.1210 0.0002 βs, COI × CC + βs, COI × FN2 × CC −0.0051 0.1942

βr, COI × GE + βr, COI × FN2 × GE 0.1186 0.0005 βs, COI × GE + βs, COI × FN2 × GE 0.0134 0.0032

Note: Bold values show COI-related inferential results discussed here. Highlighted values show COI-related inferential results, which were significant 
for both probability and strength models and, therefore, are discussed in more detail in this study.
Abbreviations: CC, clustering coefficient; COI, covariate of interest; FN, functional network; GE, global efficiency.
*Adjusted using the adaptive false discovery rate procedure described in Benjamini and Hochberg (39).
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both unconscious sensory, motor, cognitive, and affective processes 
that are likely responsible for the intrusive quality of food craving, 
and conscious cognitive and affective processes that serve to elabo-
rate on these intrusive cues fueling the desire for food consumption, 
a position consistent with Kavanagh’s Elaborated Intrusion Theory 
of Desire (12). Within this network, we observed a significant as-
sociation of 6-month weight loss with brain connectivity-clustering 
relationships during the resting state. As weight loss increased, the 
probability that brain regions in FN1 with higher clustering would 
become connected to each other decreased (a negative slope); how-
ever, the strength of existing connections increased. This implies 
that, for older adults who lost more weight, higher-clustered regions 
in FN1 were less likely to be connected to each other yet established 
strong connections when they were connected. In other words, for 
older adults who lost more weight, FN1 contained pools or groups 
of highly clustered, strongly connected nodes that are relatively iso-
lated from each other. In participants who lost less weight, the pools 
of clustered nodes are more likely to be interconnected but have 
weaker connections. Therefore, for participants who lost the least 
weight, the results for FN1 imply the existence of an independent 
big clique “talking” to itself but not to the rest of the network; that 

is, it is segregated from the rest of the brain. Interestingly, portions 
of the cerebellum are included in FN1, but, as shown in Figure 2, 
the cerebellum’s network topology is different from the rest of FN1 
among those who lost less weight but was similar to the rest of the 
FN1 subnetwork in those who lost more weight. These cerebel-
lar findings warrant further study to determine whether there are 
unique properties of this structure as related to weight loss.

From a clinical perspective, the strong sensorimotor dynamics 
inherent to FN1 imply that, when the brain is in a resting state, those 
who are more successful at weight loss segregate the motivational 
influence of these brain structures from the remainder of the brain. 
By contrast, those who lost less weight exhibited sensorimotor dy-
namics that are integrated with other areas of the brain, a quality 
that implies that they are more broadly susceptible to the influence 
of food cues. It is worth pointing out that the pattern of connectivity 
within FN1 for those who struggled to lose weight is consistent with 
dysfunction in interoceptive awareness and the integration of these 
body and sensory cues into personal identity that has been observed 
in individuals with eating disorders (12,13). Within the context of 
weight loss, we would argue that connectivity within this network 
is a manifestation of reward valuation and incentive sensitization 

F I G U R E  2  Connection probability and strength as functions of CC and 6-month weight loss in FN1. The surface plots show how the 
relationship between connection probability (top) and connection strength (bottom) and clustering in FN1 changes with 6-month weight 
loss. The surfaces are colored by the slope of connection probability (or strength)-network metric (clustering) relationships at each weight-
loss value. The more blue and yellow colors demonstrate the more negative and positive relationships for the connection probability-
clustering and connection strength-clustering, respectively, as the weight loss increases. The corresponding representative group networks 
for the adults with minimum (dashed line) and maximum (solid line) are shown as well. The nodes are sized by their actual network metric 
(clustering) and colored by the sum of the connection probability (or strength)-network metric (clustering) slopes. The representative group 
networks clearly show the significant effect of 6-month weight loss on the connection probability (and strength)-clustering relationships. 
The y-axis in this figure and in Figure 3 is the log odds of connection probability. Because changes in the log odds of connection probability 
reflect similar change in the connection probability, we labeled the y-axis as connection strength for simplicity. CC, clustering coefficient. 
FN, functional network
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that have been emphasized by Stice and Burger as central theories in 
obesity and overeating (11). This interpretation is supported, in part, 
by prior cross-sectional data on this cohort that we have published 
previously, in which FN1 was found to be related to self-reported 
ratings on the Power of Food Scale (23).

A bilateral interacting pattern between the executive attention 
network and hedonic/goal-directed network, including the amyg-
dala, hippocampus, and inferior insula, was found to serve as the 
core for FN2, with results supporting a significant association be-
tween 6-month weight loss and brain connectivity within this FN-
GE relationship during the food-cue condition. As weight loss for 
the older adults increased, the probability that brain regions with 
higher GE in FN2 become connected and the strength of existing 
connections also increased. These findings suggest that, during the 
food-cue condition, older adults who had greater weight loss exhib-
ited high efficiency in FN2, with nodes that were tightly and strongly 
connected to each other. In essence, those participants who lost 
more weight have an FN2 that is behaving like a so-called “Rich 
Club” of highly efficient nodes sharing information, especially within 
the attention circuit, which is functioning as a superhighway (24). In 
these individuals, the executive attention circuit appears to act as an 
intermediary between the rest of the brain and the limbic circuitry. 
On the other hand, in those who lost less weight, the limbic portions 
of FN2 likely interact with the rest of the brain without using the at-
tention network as an intermediary superhighway. One could argue 

that, in effective weight loss, the executive attention network helps 
optimize what the more primal limbic regions attend to rather than 
allowing the limbic regions to communicate freely with the rest of 
the brain.

As we have previously postulated, FN2 captures top-down con-
trol that the attention network projects onto limbic regions known 
to be important in goal-oriented behavior (25,26). Prior research has 
shown that these limbic regions are implicated in the obesity epi-
demic (27). Droutman and colleagues (28), consistent with work by 
others (29,30), have argued that the anterior insula is an integrative 
interoceptive site connecting autonomic, affective, and cognitive 
processing. Therefore, within the context of weight loss, FN2 high-
lights the importance of executive function, as recently emphasized 
in a review by Donofy and colleagues (5); however, it would appear 
that elements of reward valuation and incentive sensitization are 
also integrated with FN2. In combination with the data from FN1, 
our findings suggest that concepts important to weight loss are dis-
tributed throughout the brain, as opposed to being associated with 
specific regions of the brain. Of note is that, in cross-sectional analy-
sis on this cohort mentioned earlier in this article, we also found that 
connectivity within both FN1 and FN2 was significantly associated 
with a measure of self-efficacy that assesses people’s ability to re-
sist consuming favorite foods when exposed to internal states, en-
vironmental cues, and social contexts that pose a risk for promoting 
hedonic eating (23).

F I G U R E  3  Connection probability and strength as functions of GE and 6-month weight loss in FN2. The surface plots show how the 
relationship between connection probability (top) and connection strength (bottom) and efficiency in FN2 changes with 6-month weight 
loss. The surface plots and the representative group networks show that the relationship between both connection probability and strength 
and efficiency in FN2 becomes more positive as the 6-month weight loss increases. For the surface color and node size and color, see Figure 
2 caption. FN, functional network; GE, global efficiency
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Clinically, these findings underscore two distinct biases that 
many older adults with obesity confront when embarking on a 
program of weight loss. First, within the resting state, there is the 
existence of a nonconscious sensorimotor motivational bias to 
pursue food. Second, when processing food cues, there is a defi-
cit in the attentional network that optimizes processing goals of 
the more primal, limbic regions of the brain. From the perspective 
of behavior change, nonconscious processes play a central role 
in self-regulatory failure (31) that warrants the design of inter-
ventions that directly target these biases, a clinical perspective 
suggested by Stice and Burger (11) and reinforced by the cur-
rent findings. It is possible that a mechanism underlying partici-
pants’ use of electronic scales to communicate daily weights to 
clinics in real time for the purpose of enhancing self-monitoring 
and for implementing just-in-time treatment (32) is that it uses 
the FN2 to help override attentional deficits through top-down 
self-regulatory processes. Of interest is a pilot study of response 
and attention training by Stice and colleagues (33) that produced 
significant reductions in the responses of reward and attention 
regions to high-calorie food images. Also, in a weight-maintenance 
study, Chumachenko and colleagues (34) found that mindfulness-
based stress reduction improved functional connectivity between 
the prefrontal cortex and the amygdala compared with a control 
group. Although the sample size was underpowered to detect 
change in weight, the mindfulness-bases-stress-reduction group 
remained weight stable, whereas the control group increased their 
BMI by 3.4%.

As mentioned in the introduction, within the field of net-
work science, a consistent observation has been that there is a 
decrease in the connectivity of brain networks with aging (6,7). 
Interestingly, although fMRI studies of older adults with obesity 
have been limited and results have been mixed (35-37), in the cur-
rent study, both resting and task-evoked responses to food cues 
are consistent with observations in young and middle-aged adults 
(5,11); however, because we did not have a middle-aged group for 
comparison, it is not possible to know whether the effects on our 
network metrics were influenced by age. Because Morley (38) has 
provided strong evidence that food intake decreases with aging, 
an effect that is multifactorial involving both central and periph-
eral mechanisms, future research is warranted on adults across the 
lifespan.

This study is not without limitations. First, although the data are 
longitudinal by design and are superior to cross-sectional analyses, 
they do not determine cause and effect. Randomized, controlled 
clinical trials are needed on behavioral and/or pharmacological 
treatments that target control over conditioned behavior to deter-
mine whether these networks can be altered and their effect on 
weight loss. Second, these data can only be generalized to older 
adults with obesity who are free of cognitive impairment. Third, 
there are some limitations imposed by the sample size, such as not 
permitting a deeper exploration into brain network differences as 
a function of either sex or race. Fourth, it would have been ideal to 
have included behavior-inhibition tasks such as the Stroop food-cue 

task to further assess the clinical relevance of these networks, and 
this would be a valuable addition to subsequent research. Fifth, none 
of the analyses used here was predictive in a nature that was com-
parable to our original study (9). Therefore, we do not know how 
the most-predictive networks in this population compare with the 
original study population. We also do not know how well the original 
networks would perform in predicting weight loss in this new pop-
ulation. Given the strong associations that were observed between 
network topology and weight loss, we anticipate that such future 
studies will further support the role of these (and other networks) 
in successful weight loss. Finally, a related issue is that we chose 
a hypothesis-driven approach to the selection of the two FNs em-
ployed in this study that were supported by both research and the-
ory. However, some readers might object to this choice and would 
have preferred a data-driven approach searching for significant to-
pological associations and using all available networks uncovered in 
our prior predictive study (9).

CONCLUSION

To our knowledge, this is the first study to link key concepts that have 
been identified as important in understanding obesity and overeat-
ing to success with behavioral weight loss among older adults with 
obesity. The significant association between 6-month weight loss 
and hallmark network metrics in two critical FNs of the brain sug-
gests the existence of differential segregation and integration of 
neural processing in these networks with respect to the amount of 
weight lost. These are complex functional circuits in distributed re-
gions of the brain that are known to be responsible for the intrusive 
quality of food craving and goal-oriented behavior.O
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