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Aims: Patients with a congenital heart condition palliated with a Fontan circulation

generally present with decreased exercise capacity due to impaired cardiopulmonary

function. Recently, a study in patients with a Fontan circulation reported evidence for

abnormal vascular endothelial function in leg muscle. We investigated if abnormal skeletal

muscle hemodynamics during exercise play a role in the limited exercise tolerance

of Fontan patients. If so, abnormalities in intramuscular energy metabolism would be

expected both during exercise as well as during post-exercise metabolic recovery.

Methods: In a young patient with a Fontan circulation and his healthy twin brother

we studied the in vivo dynamics of energy- and pH-balance in quadriceps muscle

during and after a maximal in-magnet bicycling exercise challenge using 31-phosphorus

magnetic resonance spectroscopy. An unrelated age-matched boy was also included as

independent control.

Results: Quadriceps phosphocreatine (PCr) depletion during progressive exercise was

more extensive in the Fontan patient than in both controls (95% vs. 80%, respectively).

Importantly, it failed to reach an intermittent plateau phase observed in both controls.

Quadriceps pH during exercise in the Fontan patient fell 0.3 units at low to moderate

workloads, dropping to pH 6.6 at exhaustion. In both controls quadriceps acidification

during exercise was absent but for the maximal workload in the twin brother (pH 6.8).

Post-exercise, the rate of metabolic recovery in the Fontan patient and both controls was

identical (time constant of PCr recovery 32 ± 4, 31 ± 2, and 28 ± 4 s, respectively).

Conclusion: Homeostasis of quadriceps energy- and pH-balance during a maximal

exercise test failed in the Fontan patient in comparison to his healthy twin brother and

an age-matched independent control. Post-exercise metabolic recovery was normal

which does not support the contribution of significant endothelial dysfunction affecting

adequate delivery of oxidative substrates to the muscle to the lower exercise capacity

in this particular Fontan patient. These results suggest that mitochondrial ATP synthetic
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capacity of the quadricepsmuscle was intact but cardiac output to the legmuscles during

exercise was insufficient to meet the muscular demand for oxygen. Therefore, improving

cardiac output remains the main therapeutic target to improve exercise capacity in

patients with a Fontan circulation.

Keywords: congenital heart disease, univentricular cardiac disease, exercise, phosphorus-31magnetic resonance

spectroscopy, metabolism

INTRODUCTION

Patients with a univentricular heart are commonly palliated
with a Fontan circulation, where all systemic venous blood does
not enter the heart but is diverted directly into the pulmonary
arteries, without the interposition of a ventricle (1, 2). As a
consequence, the single ventricular heart provides the systemic
circulation in these individuals. Not surprisingly, these patients
generally present with decreased exercise capacity (3–7). Classic
work in exercise physiology has shown that cardiac reserve of
the healthy human heart is insufficient to support adequate blood
supply to the legs during maximal exercise (8, 9).

Cardiac output is, however, not the sole determinant of
exercise capacity. Healthy vascular as well as skeletal muscle
function also play a role (10–12). Recently, a study in patients
with a Fontan circulation reported evidence for abnormal
vascular endothelial function in leg muscle. On basis of this
finding the authors hypothesized that decreased exercise capacity
in Fontan patients may in part be caused by abnormal skeletal
muscle hemodynamics (13).

Here, this matter was further investigated. In a young patient
with a Fontan circulation and his healthy twin brother we
studied the in vivo dynamics of energy- and pH-balance in
quadriceps muscle during and after a maximal bicycling exercise
challenge using 31-phosphorusmagnetic resonance spectroscopy
(31P-MRS). An unrelated sex- and age-matched boy was also
studied as independent control. The aim was to investigate if
abnormal skeletal muscle hemodynamics during exercise play
a role in the limited exercise tolerance of Fontan patients. If
so, abnormalities in intramuscular energy metabolism would be
expected both during exercise as well as during post-exercise
metabolic recovery.

MATERIALS AND METHODS

Ethics Statement
This study was conducted in accordance with the Declaration of
Helsinki and was approved by the institutional ethics committee
(University Medical Center Groningen). Informed consent for
participation and publication was obtained from all study
participants and/or their legally authorized representative(s).

Case Presentation
In this pilot study a young patient with a Fontan circulation,
his healthy twin brother, and an unrelated sex- and age-matched
control were included.

The patient, one of monozygotic twins, was diagnosed at birth
with hypoplastic left heart syndrome due to mitral and aortic

valve atresia for which he underwent a Norwood I procedure,
followed by a bidirectional Glenn within the first year of life
and subsequent completion into a Fontan circulation (with a
fenestrated lateral tunnel) at the age of 4.5 years. Cardiac and
developmental follow-up was uncomplicated and he leads an
active lifestyle including weekly swimming classes, gymnastics,
and biking, although his exercise tolerance is limited. Currently
at the age of 11 years, he presented at the outpatient clinic.

Measurements
Patients with a Fontan circulation are followed with a standard
follow-up protocol. This includes a 2-yearly echocardiography,
cardiacmagnetic resonance (CMR) imaging, pulmonary function
test, and a cardiopulmonary exercise test (CPET). Also,
information on height, weight, heart rate, blood pressure, and
transcutaneous oxygen saturation at rest are reported.

CPET
CPETwas performed on a stationary cycle ergometer with a ramp
protocol with an increase of 20W per minute. Arterial oxygen
saturation was continuously monitored by transcutaneous pulse
oximetry placed on the forehead. Oxygen uptake was measured
using breath-by-breath analysis. The respiratory exchange ratio
was calculated as the ratio between oxygen uptake (VO2) and
carbon dioxide (VCO2) production at peak exercise. When an
RER of >1.01 was reached, the performance was classified as
adequate (14).

31P-MRS
Six weeks after the CPET, a second bicycling exercise
test inside an MRI scanner was performed. Workload
increments were derived from the results of the first CPET
to ensure maximal exercise intensity was achieved within
approximately 10min. Dynamic in vivo 31P-MRS recordings
of intramuscular energy metabolism and muscle pH were
obtained from the vastus lateralis muscle at rest, during
progressive exercise and subsequent metabolic recovery,
respectively (15). Intramuscular phosphocreatine (PCr)
concentration, a measure of muscular energy reserve, and pH
were determined from the 31P-MRS recordings as described
previously (15). The rate of post-exercise metabolic recovery,
a measure of mitochondrial ATP synthetic function (16), was
determined by non-linear curve-fitting of mono-exponential
functions to the PCr and Pi time-course data weighted by
SD of individual data points yielding estimates of the time
constants tau_PCr and tau_Pi, respectively, as described
previously (15).
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The two healthy controls likewise performed the intra-MRI
exercise test to obtain control data sets. Workload increments
for these subjects were based on reference workload values for
CPET (17).

RESULTS

The patient with a Fontan circulation reported no complaints
of syncope, dizziness, palpitations, or chest pain. He swims
once a week for 45minutes. During gymnastics at school he
sometimes needs to take a break. Besides methylphenidate, he
did not use any medication. Anthropometric measurements
were height: 157.8 cm (Z-score+1.00); weight: 40 kg (Z-score
+0.7). Physical examination revealed that he was in good
clinical condition. Blood pressures measured were 122/52
mmHg and 122/58 mmHg on his right arm and right
leg, respectively. He had a normal respiratory rate and his
oxygen saturation was 87%. Further physical examination
showed no abnormalities besides a grade 2 systolic ejection
murmur 2nd−4th left intercostal space and a palpable liver
of 1 cm.

Echocardiography showed a moderate to normal systolic
function of the systemic right ventricle, unobstructed
cavopulmonary anastomoses, only mild atrioventricular
valve insufficiency, and an open fenestration with a right to left
shunt with an estimated mean pressure gradient of 6 mmHg.

During a maximal exercise test, confirmed by a RER of 1.1,
oxygen saturation dropped from 88% at rest to 77% at maximal
workload without any subsequent drop in O2 pulse. His maximal
workload (108 Watt, 74% of predicted), maximal oxygen uptake
adjusted for bodyweight (36.6 ml/kg/min, 76% of predicted), O2
pulse (77%), and maximal heart rate (164 bpm, 88% of predicted)
were decreased compared to reference values (17). Patient’s
breathing reserve was 30% at 41 breaths/min. The VE/VCO2
slope was 40.4 and the anaerobic threshold was located at 68%
of VO2 max. ECG monitoring showed a nodal cardiac rhythm at
rest, rapidly converting into sinus rhythm during exercise.

31P-MRS Results
Total exercise time of the bicycling exercise test inside the MRI
scanner of the patient, twin brother and second healthy control
was 664, 632, and 608 seconds, respectively. PCr depletion
was 95% in the Fontan patient vs. 80% in both healthy boys
(Figure 1). End-exercise quadriceps pH was 6.6 in the Fontan
patient vs. 6.8 and 6.9 in both healthy boys (Figure 2). In
addition to these quantitative differences, we observed significant
qualitative differences between the time-course of muscle PCr
and pH in the patient and controls. Specifically, in both healthy
boys, muscle PCr level attained a steady state value after an
initial drop at the onset of exercise, followed by a monotonous
progressive depletion at workloads above 70% (independent
control) and 90% (healthy twin brother) of predicted Wmax
(Figure 1). Strikingly, in the Fontan patient no such intermittent
homeostatic plateau phase was observed (Figure 1). Similarly,
homeostasis of quadriceps pH in both healthy boys was robust
over almost the entire range of workloads, whereas in the patient
progressive muscle acidification was manifest already at early

FIGURE 1 | Quadriceps phosphocreatine (PCr) content (scaled to resting

content) during incremental exercise recorded in a young patient with a Fontan

circulation (red trace), his healthy twin brother (blue trace), and a second age-

and sex-matched healthy control (black trace). Quadriceps PCr content was

determined from 31P-magnetic resonance spectra as described

elsewhere (15).

FIGURE 2 | Quadriceps pH during incremental exercise recorded in a young

patient with a Fontan circulation (red trace), his healthy twin brother (blue

trace), and a second age- and sex-matched healthy control (black trace).

Quadriceps pH was determined from 31P-magnetic resonance spectra as

described elsewhere (15).

stages of the ramp exercise protocol (Figure 2). Post-exercise, the
rates of metabolic recovery in the Fontan patient, his twin brother
and the healthy control were identical (tau_PCr recovery 32 ±

4, 31 ± 2, and 28 ± 4 seconds, respectively; tau-Pi 24 ± 4, 32
± 2, and 30 ± 6 seconds, respectively; Supplementary Figure 1

showing the metabolic recovery in the Fontan patient). These
rates are in good agreement with earlier findings in human
quadriceps muscle (18, 19).

DISCUSSION

We have obtained in vivo evidence that exercise intolerance in
a Fontan patient presenting with cyanosis and chronotropic
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incompetence, is associated with failing homeostasis of
quadriceps muscle energy balance and pH during exercise.
Post-exercise metabolic recovery was completely normal. These
findings impact the debate on the pathophysiological basis
of exercise intolerance in patients with a univentricular heart
palliated with a Fontan circulation. Firstly, we found no evidence
for any endothelial dysfunction in the vascular bed of the
leg muscles in this particular patient. Post-exercise metabolic
recovery of resting PCr and Pi levels in the quadriceps muscle of
the patient followed first-, not zero-, order kinetics. Moreover,
the rate of recovery was identical to the rates measured in his
healthy twin brother and a second, unrelated control. The latter
finding also indicates that mitochondrial ATP-synthetic function
in leg muscle of the patient was intact (16).

The presence of skeletal muscle hemodynamic abnormalities
in response to exercise in Fontan patients was reported
by Inai et al. (13). Their near-infrared spectroscopy (NIRS)
observations in 50 patients palliated with a Fontan circulation
showed that post-exercise recovery of muscle oxygenation in
an unspecified Fontan patient was clearly dampened both
in amplitude as well as rate [Figure 2 in (13)]. It has
previously been shown that post-exercise metabolic recovery
in muscle studied using NIRS typically correlates well with
direct measurement of intramuscular metabolic recovery using
31P-MRS (20). Therefore, the fact that we failed to find
any abnormalities in post-exercise metabolic recovery in our
patient using 31P-MRS rules out that vascular dysfunction
in skeletal muscle of single ventricle Fontan patients is
a generic feature contributing to exercise limitations in
this condition.

Our results of failing homeostasis of energy- and pH-balance
in quadriceps muscle during exercise in the patient despite
intact mitochondrial oxidative capacity suggest that cardiac
output to the leg muscles during exercise was insufficient to
meet the muscular demand for oxygen. Improving cardiac
output therefore remains the main therapeutic target to improve
exercise capacity in Fontan patients. The challenge will be
to achieve this objective in a manner that is safe for the
patient. The VO2 max depends on the function of the heart,
the lungs and the muscles (17). Our results question the
contribution of impaired mitochondrial oxidative capacity of
the leg muscles in this particular Fontan patient. Although
moderate-to-vigorous aerobic and resistance exercise training
in Fontan patients has shown to improve venous return via an
augmented peripheral muscle pump and to improve exercise
capacity, the mechanism via which this is reached seems not
to be an increase in mitochondrial oxidative capacity of the leg
muscles (21).

Our results are based on a small sample size and therefore
any definite conclusions cannot be drawn. Future studies should
include more patients with a Fontan circulation. Also, using
baseline CPET values in healthy controls would be worth
considering. Future studies of this subject should preferably use
additional methods, including dynamic MRI methodology, to

investigate the presence of endothelial dysfunction in patients
with a Fontan circulation (22, 23).

An alternative strategy could be to harness the metabolic
power of dietary ketones to boost cardiac performance during
exercise in Fontan patients. Indeed, ketone body suppletion in
rodents was found to increase cardiac hydraulic work capacity
by some 25% (24, 25). A recent study in athletes has found that
ingestion of a synthetic ketone ester prior to physical exercise
improved performance (26). Evidence suggests that the heart
will switch almost completely to ketone oxidation when this
oxidative substrate is available in the bloodstream (27, 28).
In humans, mild nutritional ketosis may be safely achieved
either by ingestion of ketone ester (26, 29) or medium-chain
triglycerides [MCT; (30)]. As such, it may be interesting to study
if mild nutritional ketosis during exercise may be beneficial in
Fontan patients.
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Supplementary Figure 1 | Quadriceps phosphocreatine (PCr) recovery after

incremental exercise in a young patient with a Fontan circulation. Red line, a

mono-exponential fit of the data (16); dotted blue lines, 95% confidence interval of

the mono-exponential fit of the data (R2 = 0.84; tau_PCr recovery = 32 ± 4

seconds). Quadriceps PCr content was determined from 31P-magnetic

resonance spectra as described elsewhere (15).
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