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Abstract

Motivation: Adverse drug reactions (ADRs) are one of the main causes of death and a major finan-

cial burden on the world’s economy. Due to the limitations of the animal model, computational pre-

diction of serious and rare ADRs is invaluable. However, current state-of-the-art computational

methods do not yield significantly better predictions of rare ADRs than random guessing.

Results: We present a novel method, based on the theory of ‘compressed sensing’ (CS), which can

accurately predict serious side-effects of candidate and market drugs. Not only is our method able

to infer new chemical-ADR associations using existing noisy, biased and incomplete databases,

but our data also demonstrate that the accuracy of CS in predicting a serious ADR for a candidate

drug increases with increasing knowledge of other ADRs associated with the drug. In practice, this

means that as the candidate drug moves up the different stages of clinical trials, the prediction

accuracy of our method will increase accordingly.

Availability and implementation: The program is available at https://github.com/poleksic/side-

effects.

Contact: poleksic@cs.uni.edu or lei.xie@hunter.cuny.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

1.1 Background
Adverse drug reactions (ADRs) are one of the main burdens in mod-

ern drug discovery (Bouvy et al., 2015). Rare and serious ADRs are

responsible for failed drug discovery pipelines and for drug market

withdrawals. Cumulative costs of the management of ADRs have

been estimated at more than 30 billion per year in the USA alone

(Sultana et al., 2013). Clinical impact, including emergency depart-

ment visits and prolonged hospital stay, account for a large portion

of health care cost. Up to one-third of emergency visits by older

adults are due to ADRs (Budnitz et al., 2007), while more than one-

third of ADRs in the pediatric population are potentially life threat-

ening (Impicciatore et al., 2001). According to a nationwide

Swedish study, ADRs rank seventh among all causes of death

(Wester et al., 2008). The figures from US studies are even more

alarming as they place ADRs as the fourth most common cause of

death, ahead of diabetes, pulmonary disease, AIDS, pneumonia,

general accidents and automobile accidents (Lazarou et al., 1998).

Finding ADRs for a drug before the drug reaches the market is a

difficult and an error prone task. The results of testing a chemical on

animals do not always correlate to those obtained when testing the

same chemical on humans. Moreover, the patient population

recruited during clinical trials is small and biased and hence the data

are not statistically robust. Most importantly, clinical trials fail to

identify rare and serious side-effects, due to relatively small study

duration.

Post marketing surveillance allows for a statistically significant

patient population that is followed for a longer period of time.

However, the results of post-marketing studies are mostly based on

combination drugs and thus are difficult to interpret. More
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specifically, it is challenging to tell which drug, among multiple ones

given to the patient, gives rise to the reported side-effect.

Recent years have seen development of computational

approaches to predicting ADRs. Pauwels et al. (2011) and Mizutani

et al. (2012) employed canonical correlation analysis (CCA) using

the information about chemical substructures and drug’s protein

targets. Huang et al. (2013) used the support vector machines to pre-

dict ADR profiles by integrating chemical structures with protein–

protein interaction networks. Bresso et al. (2013) applied machine

learning on integrated functional annotation, pathways and drug

characteristics to predict and understand ADR mechanisms. Liu

et al. (2012) use machine-learning to integrate drugs’ characteristics,

such as indications and known ADRs, with the drug’s chemical

structures, known targets and pathways. Zhang et al. (2015) viewed

ADR prediction as a multi-label learning (ML) and ensemble learn-

ing task. In their ML algorithm, drug features are associated with

side-effects while feature dimensions represent biological compo-

nents. Xiao et al. (2017) applied symbolic latent Dirichlet allocation

to learn hidden topics that represents biochemical mechanism that

associates drugs to ADRs.

While the advances in the area of computational ADR prediction

are encouraging, the field is still at its infancy when it comes to pre-

dicting rare and serious ADRs. A harmful ADR often surfaces years

or even decades after the drug has been approved. Inability to pre-

dict these events leads to complications in diseases and treatments,

which can have long-term consequences and fatal outcomes. Drug

pipeline failures and post-marketing drug withdrawals result in loss

of effective compounds (those for which the benefit-to-harm balance

is unfavorable), which in turn results in loss of revenue by the drug

manufacturer. A methodology capable of predicting ADRs long

before the drug reaches the market or even before the drug is with-

drawn from the market would significantly enhance drug discovery

and improve human health.

1.2 Compressed sensing for ADR prediction
We show that a variant of the ‘compressed sensing’ (CS) technique,

namely the ‘low-rank matrix completion’ (LRMC), from the digital

signal processing field, can be easily adapted and used to predict

drug-ADR associations with unmatched accuracy. Originally pro-

posed to solve problems arising in coding and data acquisition, CS

has proved to be an efficient way of recovering any type of signal

from few and erroneous samples (Candès, 2006; Candès et al.,

2006; Donoho, 2006). In the framework of ADR prediction, the

‘signal’ can be thought of as the set of all drug-ADR associations

(those already observed and those yet to be found). The ‘sample’

represents known (reported) associations, identified and stored in

the existing drug-ADR databases, such as SIDER (Kuhn et al.,

2010). The key observation is that the sample, defined this way, is

both sparse and noisy, due to the well-known difficulty of identify-

ing ADRs during clinical trials and post-marketing studies.

Therefore, just like the problems in imaging and face recognition, or

problems in optical systems research or wireless networking, the

drug-ADR association prediction problem is highly amenable to

‘CS’ solution.

2 Materials and methods

2.1 Algorithm
We cast drug-ADR prediction as a signal recovery problem, in which

the signal represents the collection of all drug-ADR associations, i.e.

those already observed and those yet to be found. The sample is a

weak and sparse representation of the signal, consisting only of

known (observed) drug-ADR associations, i.e. the associations

stored in the existing drug-ADR association databases (in our case

SIDER). Assuming that the true (recovered) matrix of drug-ADR

associations is of small rank, the drug-ADR signal reconstruction

becomes amenable to a variant of CS known as the ‘LRMC’. We

note that the small rank assumption is reasonable since a typical

ADR is only associated with the low dimensional space of chemical

substructures shared by the drugs.

Starting from a known (in practice, noisy and incomplete) binary

matrix of drug-ADR associations R ¼ ri;j

� �
, a pairwise ADR similar-

ity matrix M ¼ ðmi;jÞ and a pairwise drug similarity matrix

N ¼ ðni;jÞ, our algorithm outputs the ‘latent’ ADR and drug prefer-

ences F ¼ fi;j

� �
and G ¼ ðgi;jÞ by minimizing the loss function

X
i;j

wi;j ln 1þ efig
0
j

� �
� ðri;j þ qi;jÞfig

0

j þ krðjj F jj22 þ jjG jj
2
2Þ

þ kMtr F
0

DM �Mð ÞF
� �

þ kNtr G
0

DN �Nð ÞG
� �

8>>>>><
>>>>>:

(1)

In the function (1) above, F0 is the transpose of F and jj jj2 repre-

sents the Frobenius norm. We use tr to denote the ‘matrix trace’ and

DM to denote the ‘degree matrix’ of M (namely the diagonal matrix

whose diagonal element in row i represents the sum of all elements

of M that belong to row i). The lambdas (k0s) are optimizable

parameters. The output matrix of drug-ADR associations is com-

puted according to the formula P ¼ exp FG
0� �
=ð1þ exp FG

0� �
Þ,

where expðÞ represents the matrix exponential. A schematic diagram

illustrating the flow of our algorithm is given in Figure 1.

The first two terms in Equation (1) drive the ‘signal recovery’

(matrix completion) process, whereas the last two terms mandate

that similar drugs have similar side-effects and vice versa. Although

our method is capable of factoring in the drug-ADR frequency val-

ues wi;j and the drug-ADR impute values qi;j, this information is cur-

rently not been taken advantage of and wi;j and qi;j are set to 1’s and

0’s, respectively.

The matrices of latent ADR and drug preferences (F and G,

respectively) are found during the standard minimization procedure.

For the sake of brevity, we skip technical details, but emphasize that

the key idea behind our approach is to demand that F and G are

small in one dimension. That way, the output matrix P of predicted

interaction probabilities (recovered signal) must be of small rank

Fig. 1. Algorithm flow. R: known drug-ADR associations (sample); M: pairwise

ADR similarity matrix; N: pairwise drug similarity matrix; W: drug-ADR fre-

quencies; Q: impute values; F: latent ADR preferences; G: latent drug prefer-

ences; P: output drug-ADR probabilities (recovered signal)

2836 A.Poleksic and L.Xie



and, in turn, free of noise. An efficient optimization of the objective

function (1) is achieved using a stochastic gradient descent method

(Duchi et al., 2011). For more details on that method, we refer the

reader to Lim et al. (2016) and the accompanying Supplementary

Material.

While the pairwise drug similarity scores (NÞ are computed using

the classical Jaccard index (Rogers and Tanimoto, 1960), the notion

of pairwise ADR similarity scores (along with the notion of frequen-

cies and impute values) is unique to our method and improves the

prediction accuracy. Our pairwise ADR similarity scores are defined

as the average of semantic and relatedness measures (path and lesk,

respectively) and are computed by running the umls-similarity soft-

ware (McInnes et al., 2009) on MedDRA vocabulary (Brown et al.,

1999).

An added benefit of our loss function (1) is that it allows one to

take advantage of the frequencies of known drug-ADR associations

and the drug-ADR impute values. Each wi;j represents the frequency

at which the drug j causes the side-effect i, while each qi;j can be

used to explicitly specify the likelihood of a drug-ADR association.

To explain how the impute values can be useful in predicting drug-

ADR associations, consider, for instance, an ambiguous case of a

newly discovered drug-ADR association that has not yet been

observed and recorded in the database (ri;j ¼ 0). This new knowl-

edge can be easily incorporated into our method by setting qi;j ¼ 1,

while adjusting the corresponding weight wi;j to account for any

uncertainty in the imputed value. Unfortunately, our current experi-

ments use neither the weight nor the impute value functionality, due

to the lack of data on drug-ADR frequencies. This might change in

the future, as more comprehensive databases, containing frequency

information, become available.

While we have originally developed and published the analytical

framework (1) for the drug–target interaction problem (Lim et al.,

2016), we subsequently noticed that the CS is much more amenable

to predicting ADRs. In contrast to drug–target interaction problem,

where the baseline data are already clean but incomplete, the drug-

ADR association data are both incomplete and noisy. CS is particu-

larly suited to deal with such data.

We compared our approach to two recent state-of-the-art algo-

rithms for drug-ADR association prediction: ML (Zhang et al.,

2015) and CCA (Mizutani et al., 2012; Pauwels et al., 2011). In

recent benchmarking studies, these two methods exhibited superior

accuracy when compared to other methods for the same problem

(Zhang et al., 2015). For a fair comparison, the benchmarks pre-

sented here use the same dataset and the same test protocols as in

Zhang et al. (2015).

In an attempt to gain insight into the progress in the field, we

also submitted to our benchmark a naı̈ve, reference method (here

called REF). This straightforward method sets the probability that a

given drug will give rise to a particular ADR to the overall promiscu-

ity of that ADR. In other words, the probability of a side-effect i

being associated with any drug is the same for all drugs and is set to

the overall frequency of occurrence of i.

2.2 Description of the methods compared
ML and CCA are conceptually different from one another and dif-

ferent from the method we propose. CCA attempts to find the

weight vectors u and v that maximize the correlation between the

side-effects and drugs’ chemical substructure feature vectors

(Pauwels et al., 2011; Mizutani et al., 2012). To accomplish this, the

algorithm uses the penalized matrix decomposition (PMD) which

can be viewed as a regularized version of the singular value

decomposition method. More specifically, let R denotes an (incom-

plete) m� n matrix of drug-ADR association and let Y denotes a n

�p matrix of binary fingerprints for n drugs (each represented by a

PubChem substructure feature vector of length p ¼ 881). Using the

PMD technique, the CCA algorithm finds the representation

(approximation) ~X of the matrix X ¼ RY of the form
~X ¼

PK
k¼1 dkukv

0

k, where dk, uk and v
0

k minimize the squared

Frobenius norm, subject to penalties on vectors uk and vk. The more

advanced variant of the CCA algorithm, which we tested here, uses

the L1 penalties (where the L1 norm of a vector is defined as the sum

of the absolute values of its coordinates), yielding a decomposition

of X that utilizes sparse vectors uk and vk. The recovered matrix of

drug-ADR associations is computed as the matrix product ~XY 0. For

technical details on PMD, the reader is referred to Witten et al.

(2009).

In the ML algorithm, the side-effect prediction problem is

viewed as a ‘ML’ task (Zhang et al., 2015). Specifically, let yi repre-

sents the binary side-effect vector defined by

yi lð Þ ¼
1 if drug i causes ADR l

0 otherwise

(

The ML algorithm calculates yi lð Þ for a test drug as

yi lð Þ ¼ argmax
s2f0; 1g

P Hl
sjEl

CiðlÞ

��

In the above formula, Hl
1 represents the event that a drug has lth side

effect, Hl
0 is the event that it does not, El

j is the event that a drug has

j neighbors with lth side-effects in its k nearest neighbors and Ci lð Þ is

the number of nearest neighbors of the drug i inducing the side-

effect l. Using the Bayesian rule, yiðlÞ can be written as

yi lð Þ ¼ argmax
s2f0; 1g

PðHl
sÞP El

CiðlÞjH
l
s

��

PðHl
sÞ and PðEl

Ci lð ÞjHl
sÞ are computed from the training set.

2.3 Description of the test set and benchmarking

measures
We ran several cross-validation tests on the set of all drug-ADR asso-

ciations from the SIDER database. SIDER 4.1 contains drug-ADR

association data for 1430 FDA approved drugs and 5868 ADRs.

This data are represented as a binary matrix R, whose entry ri;j is

equal to 1 if the drug j is known to cause ADR i and 0 otherwise.

Each method submitted to our benchmarks was run using its

default parameters. Consistent with the procedure in Zhang et al.

(2015), we provided CS and ML with the same matrix of Tanimoto

similarity scores (Rogers and Tanimoto, 1960) between pairs of

drugs. In contrast to CS and ML, the CCA algorithm takes encoding

of drugs’ chemical structures as input. To ensure a fair comparison,

we supplied CCA with the set of PubChem fingerprints of lengths

881 (Li et al., 2010), identical to those used by the authors of the

CCA algorithm.

To test the accuracy of CS in various settings, we performed mul-

tiple cross-validation experiments on different sets of selected drug-

ADR pairs. In all but one experiment, we ran five rounds of 10-fold

cross-validation on selected drug-ADR pairs. To assess the algo-

rithm’s accuracy in predicting ADRs for chemicals of novel struc-

tures, we resorted to leave-one-cross-validation (LOOCV) due to

technical reasons (details given in the Results section).

Our tests employ two classical performance measures, namely

the area under the ROC curve (AUC) and the area under the PR
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curve (AUPR). The receiver operating characteristic (ROC)

represents the relationship between the false-positive and the true-

positive rate while the precision-recall (PR) curve represents the rela-

tionship between the sensitivity (true positive rate or recall) and the

positive predictive value (precision).

3 Results

Below we show that the CS algorithm is able to reliably infer new

chemical-ADR associations using existing noisy, biased and incom-

plete data stored in the SIDER database. Not only is CS highly toler-

ant to database errors (mislabeled drug-ADR associations), but it

also handles sparse data (yet unknown/unrecorded associations)

well. Our method is particularly accurate in predicting severe rare

ADRs in cases where some (but not necessarily rare) ADRs for the

drug are already known.

3.1 State of the field of computational ADR prediction
To assess methods’ accuracies on rare ADRs, we first ran multiple,

independent and statistically robust, cross-validation experiments,

one for each selected ADR promiscuity cutoff (12, 25, 50, 100, 200,

400, 800, 1), where the ‘promiscuity’ of an ADR is defined as the

number of FDA approved drugs that are known to cause the ADR.

For each promiscuity cutoff x, a cross-validation experiment was

performed on the set of randomly selected drug-ADR pairs in which

the ADR’s promiscuity is below x. It should be emphasized that the

ADR promiscuity can only serve as a crude estimate of how harmful

an ADR is (mild ADRs tend to be frequent while harmful ADRs are

relatively rare).

The analysis presented in Figure 2 not only confirms the pub-

lished accuracy of current methods but also provides an insight into

the performance of the state-of-the-art algorithms as well as the

accuracy improvement offered by CS.

We can summarize the results shown in Figure 2 as follows:

i. The existing algorithms are unable to predict serious rare side-

effects. While published accuracies of current methods are more

or less satisfactory (balanced and unbalanced AUC and bal-

anced AUPR �0.9; unbalanced AUPR �0.35), they should be

interpreted properly as they only represent the average accura-

cies computed for all ADRs combined (the right side of Fig. 2).

The cumulative accuracies are driven strongly by easy predic-

tions of frequent and innocuous ADRs, those of little interest in

drug discovery. For rare and serious ADRs, the accuracy of cur-

rent algorithms quickly approaches the accuracy a purely ran-

dom classifier (AUC �0.5).

ii. To date, the progress in the field of computational prediction of

rare severe ADRs has been dismal at best. To assert this claim,

it is enough to glance over the line that traces the performance

of the naı̈ve and straightforward REF method in Figure 2.

Going beyond this simple approach and implementing more

sophisticated techniques, such as ML and CCA, yields a low

diminishing return.

iii. CS overcomes current obstacles in predicting drug-ADR associ-

ations. Our method is so efficient in extracting relevant infor-

mation from noisy, biased and incomplete data (stored in the

SIDER database) that its performance in predicting severe ADR

(left part of Fig. 2) matches or even exceeds the cumulative per-

formances of current methods on all side-effects combined

(right part of Fig. 2).

3.2 Compressed sensing learns on the fly
Not only is CS able to predict rare ADRs, but also, as we will dem-

onstrate later, the performance of CS in predicting ADRs for a par-

ticular chemical improves with the increasing knowledge of other

ADRs associated with the chemical. In practice, this means that the

ability of CS to predict a serious ADR for a candidate chemical

would increase as the drug moves up the different stages of clinical

trials. Other methods are unable to take advantage of accumulating

information on ADRs. This comes as no surprise to us, since a closer

look into the ML algorithm reveals that, when predicting whether a

drug j is likely to cause an ADR i, ML utilizes the information on

other drugs that cause the side-effect i, but not the information on

other ADRs associated to j.

Before running a more comprehensive benchmark, we tested the

performance of CS in predicting selected serious side-effects, includ-

ing hepatotoxicity, cardiotoxicity, carcinogenicity, neurotoxicity, as

well as thrombocytopenia, leukopenia, anaemia, nepropathy and

death. Those nine ADRs represent some of the main side-effects

responsible for drug market withdrawals (Onakpoya et al., 2016).

Starting with hepatotoxicity, we selected all drugs that, accord-

ing to SIDER classification, are known to cause that ADR (‘cases’)

and the same number of randomly selected drugs that are known

not to cause hepatotoxicity (‘controls’). We let each method access

different amount of information on other ADRs caused by the drugs

(10%, 25%, 50%). Figure 3 illustrates the differences in normalized

raw scores obtained by CS, ML and CCA on ‘case’ and ‘control’

drugs.

While it is obvious that only CS can differentiate between the

two sets of drugs (‘cases’ and ‘controls’), it should be noted that the

performance of our method might be better than suggested in

Figure 3. For instance, the ‘control’ outlier shown in the middle sub-

figure of Figure 3 corresponds to the drug minoxidil and clearly

stands out by its high CS score. Despite being classified as a non-

hepatotoxicity drug in SIDER, minoxidil is, according to FDA

reports, in fact, known to cause hepatotoxicity in patients over the

age of 60.

The performance statistics (AUC and AUPR) obtained from the

algorithms’ raw scores (after averaging the raw scores over a dozen

of randomly chosen sets of ‘control’ drugs) is presented in Figure 4.

Summary performance data for cardiotoxicity, hepatotoxicity, and

neurotoxicity are shown in Figure 5. As illustrated in the

Supplementary Figure S1, the results for the remaining six ADRs

show similar trends.

Fig. 2. State-of-the-art in ADR prediction and the value added by CS, ML,

CCA, REF: naı̈ve (reference) method. The values on the x-axis represent ADR

promiscuities. The y -axis represents the performance metrics, defined as the

AUC. The results were obtained using a statistically rigorous cross-validation

experiment on the set of drug-ADR pairs (STDERR is too small to show)
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3.3 Significant performance gains of CS in

comprehensive cross-validation benchmarks
We now return to the comprehensive benchmark from the beginning

of this section to provide a more detailed and more illustrative per-

formance analysis.

Aside from showing the raw scores, Figure 6 illustrates the ‘fold

enrichment’ offered by the methods compared. The ‘fold enrichment’

represents the improvement in a method’s performance over the ran-

dom predictor (one that generates prediction scores uniformly at ran-

dom). In other words, defined as the quotient of two scores, ‘fold

enrichment’ shows how many times is the method’s AUC (or AUPR)

better than the AUC (respectively, AUPR) obtained by the purely ran-

dom classifier. This measure is particularly useful when interpreting

the AUPR scores (Fig. 6B), because (in contrast to the intuitive AUC

scores) the AUPR scores depend on the property of the test set. It is

important to note that the AUPR score achieved by the purely ran-

dom classifier is equal to the fraction of condition positives in the test

set (
P

cond:pos=ð
P

cond:posþ
P

cond:negÞ).
As seen in Figure 6, CS enriches prediction of ADRs at an almost

uniform rate, irrespective of the ADR promiscuity and the type of

test performed (AUC or AUPR). For extremely rare ADRs, those

associated with less than 12 FDA drugs (such as carcinogenicity),

the performance of

CS, as measured by AUPR, is about 27 times better than the per-

formance of the random classifier, while the performance of the bet-

ter of the two remaining methods (in this case ML) is only about

eight times better. For the more frequent serious ADRs, those associ-

ated with<50 drugs (such as, for example, neurotoxicity or cardio-

toxicity) the AUPR fold enrichments of CS and SOA are 34 and 12,

respectively.

We also tested the methods accuracy using the Matthews corre-

lation coefficient (MCC) (Matthews, 1975. For this purpose, each

method was turned into a binary classifier by splitting the SIDER

Fig. 5. Predicting ADRs responsible for drug market withdrawals. The x-axis

represents the percentage (0%, 10%, 25%, 50%) of other ADRs for the drugs

made available to the algorithms under study. The y-axis represents the AUC

values. The mean AUC values shown in the figures are obtained over multiple

runs on ‘control’ drugs to achieve robust statistics (STDERR too small to

show). Corresponding figures for other selected ADRs are given in the

Supplementary Material

Fig. 3. Predicting hepatotoxicity of drugs. Drugs known to cause hepatotoxicity (‘cases’) are shown in “yes” column, while “no” column (“controls”) represents

randomly chosen drugs known not to cause hepatotoxicity. The vertical axis gives normalized prediction scores

Fig. 4. Accuracy of hepatotoxicity predictions. The ROC (top) and PR (bottom)

curves are generated based upon the raw scores obtained on ‘case’ and ‘con-

trol’ drugs. We performed a number of different tests, each time letting the

methods under study (CS, ML, CCA) access different amount of information

(10%, 25%, 50%) on other, non-hepatotoxicity ADRs associated with ‘case’

and ‘control’ drugs, thus mimicking methods’ accuracy and reliability during

clinical trials. We use “balanced” AUPR for better visualization. Unbalanced

AUPR scores are easily obtained by multiplying the balanced scores by the

fraction of condition positives in the test set

Fig. 6. Value added by CS in AUC and AUPR benchmarks. The data tables

beneath the graphs give the mean methods’ AUC (A) and AUPR (B) scores

obtained in five rounds of 10-fold CV benchmark (STDERR too small to show)
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data into training, validation and test set, in the ratio 80/10/10. The

benchmarking results are given in Supplementary Figure S2. As

shown in this figure, the MCC score of CS is significantly higher

than that of ML and CCA.

We note that the cutoff scores required by MCC provide a single

set of predictions for a given dataset and each method compared.

This approach is advantageous as it provides insight into the bench-

marking performance beyond what is available using the cutoff

independent metrics such as AUC and AUPR. It is important to

emphasize that the actual MCC scores achieved by the three classi-

fiers should be viewed in light of an incomplete and biased test set.

First, we note that SIDER contains only ‘positive’ data, namely only

the drug-ADR associations observed during clinical trials, which are

of limited duration and performed on small patient population

groups. More specifically, on average SIDER has 69 ADRs per drug

while, in reality, this number is several times higher (Tatonetti et al.,

2012). For instance, a study of FAERS (FDA Adverse Event

Reporting System) postmarketing data reveals at least 329 ADRs

per drug on average (Tatonetti et al., 2012). This makes the MCC

scores close to 1 out of reach of highly accurate classifiers. Even if

one errs on conservative side and assumes only 200 ADRs per drug,

the top MCC score achieved by a perfect classifier would only be

about 0.5807. On the other hand, each classifier in our study uses

information beyond what is encoded in SIDER (e.g. the pairwise

similarity of drug chemical structures) and thus is potentially capa-

ble of detecting the true drug-ADR associations that have not been

observed during clinical trials. Liver injury caused by minoxidil ther-

apy, discussed earlier, is one such example.

3.4 Predicting ADRs for novel chemicals with no known

ADRs
A cross-validation benchmarks segregated by drugs was performed

to assess the methods’ accuracy in predicting ADRs for chemicals

with no known ADRs. The results of AUC and AUPR benchmarks

are summarized in Figure 7A and B and are consistent with those

seen on example ADRs presented earlier.

Figure 7C and D show the methods performance in the CV segre-

gated by ADRs using the AUC and AUPR measures, respectively. As

seen in those figures, the accuracies of ML and CCA in predicting

drugs associated with ‘new’ ADRs do not improve the accuracies of

the random classifier.

The results of the previously described MCC benchmark in ‘cold

start’ setting are given in Supplementary Figure S3. As seen in this

figure, the MCC scores achieved by CS range from<0.1 to about

0.4. Nevertheless, CS outperforms ML and CCA, especially on rare

ADRs.

3.5 Predicting ADRs for chemicals with no known

rare ADRs
Figure 7 shows that CS has advantage over the other methods when

applied to chemicals with no known ADRs. Furthermore, Figure 5

suggests that such an advantage might sharply increase with the

increasing number of ADRs discovered for the drug (right side of the

Fig. 5 plots). To test this hypothesis, we removed and then tried to

re-discover all associations between drugs and their severe, rare

ADRs (those that have promiscuity below the specified cutoff). The

results of our analysis are summarized in Figure 8.

As seen in Figure 8B, the AUPR fold enrichment achieved by CS

is significant and, in case of very rare ADRs, about twice as large as

the one obtained using the better of the two remaining methods.

Supplementary Figure S4 illustrates the results of the MCC bench-

mark in this setting.

It should be noted that the benchmark presented in this section

measures methods’ accuracy and reliability in predicting severe rare

ADRs for a drug of interest, given that some (relatively mild) side-

effects for the drug have already been observed. Unlike the other

two methods, CS is capable of taking advantage of the information

of other ADRs associated with a drug of interest. In practice, this

means that the ability of CS to predict rare ADRs for a candidate

chemical increases as the drug progresses through various stages of

clinical trials. Moreover, the results of this benchmark suggest

potential ability of CS to predict drug market withdrawal ahead of

time.

3.6 Predicting ADRs for chemicals of novel structure
Finally, we used cross-validation to test the ability of our method to

correctly predict side-effects of novel chemicals. For the purpose of

this study, a chemical is considered to have a ‘novel’ structure if its

Tanimoto similarity to each other database chemical is below the

upfront specified cutoff.

To perform cross-validation, the training set had to be altered by

removing all chemicals (along with their ADR associations) that had

Fig. 7. Value added by CS in the ‘cold-start’ setting. AUC and AUPR scores shown in subfigures (A) and (B) represent the mean values obtained in five rounds of

the 10-fold cross-validation on the set of ‘new’ drugs, those with all ADRs hidden (masked out). Subfigures (C) and (D) show the methods’ performances in CV

segregated by ADRs (enrichment scores given in parentheses). STDERR values are too small to show
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above the threshold Tanimoto similarity to any chemical from the

test set. This intervention rendered 10-fold cross-validation unfeasi-

ble, due to the training set in each fold being nearly or completely

empty. Hence, in order to gain insight into methods’ performance in

discovering rare ADRs for novel drugs, we resorted to LOOCV on

the set of drugs. For each drug in the test set, we hide, and then try

to recover, all rare ADRs (those of drug-promiscuity below the

specified cutoff).

The plot in Figure 9 shows a head-to-head comparison between

CS, ML and CCA in recovering hidden ADRs associated with less

than 25 drugs, using varying Tanimoto cutoffs for excluding ‘simi-

lar’ drugs from the training set. As seen in this figure, even if pro-

vided with a severely reducedtraining set (Tanimoto cutoff¼0.1),

our algorithm exhibits accuracy superior to the accuracies of other

state-of-the-art methods even in cases where the other methods are

trained on comprehensive data sets (Tanimoto cutoff¼1.0).

Additional data are presented in the table beneath the graph.

Complete benchmarking results are given in the Supplementary

Tables S1 and S2.

Using a subset of drugs (of the same size as the test set) from

SIDER as ‘validation’ drugs, we derived the optimal cutoff score for

each method and tested the method’s accuracy in a benchmark that

uses MCC as the test measure The results are given in the

Supplementary Table S3.

3.7 Algorithm’s complexity
The running time of our program is comparable to that of CCA but

worse than the running time of ML. When tested on a 2.5 GHz

IntelV
R

Core i7 CPU with 16GB of RAM, the running times of the

three algorithms in completing the SIDER matrix are as follows: CS

58 s, ML 2 s and CCA 93 s. It should be noted that the straightfor-

ward parallel implementation can make CS program practical, even

for large-scale studies.

4 Discussion

ADRs play a major role in drug discovery and human health.

Despite significant efforts made over the last decade, the progress in

developing computational tools capable of predicting serious side-

effects of novel chemicals and market drugs has been dismal at best.

No current computational method is able to predict whether a novel

and promising compound will eventually cause hepatotoxicity, car-

cinogenicity, cardiotoxicity, neurotoxicity, immune reaction throm-

bocytopenia, leukopenia, anaemia or any other harmful and

potentially fatal ADRs. Moreover, advances in the area of drug-

ADR association prediction are hindered by a lack of clean and

comprehensive databases that store drug-ADR associations and by

the difficulty of current methods to deal with noisy and sparse

information.

Using the ‘CS’ framework from the digital signal processing field,

we developed a computational method that can reliably infer new

chemical-ADR associations using existing noisy, biased and incom-

plete databases. Not only is our method able to detect rare ADRs

associated with novel chemicals, but also our data demonstrate that

the accuracy of CS in predicting a serious ADR for a candidate drug

increases with increasing knowledge of other ADRs associated with

the drug. In practice, this means that, as the candidate drug moves

up the different stages of clinical trials, the prediction accuracy of

our method will increase accordingly.

CS represents an important first step in the development of a

fully automated and accurate computational method for predicting

serious ADRs. Ultimately, accurate and reliable prediction of ADRs

will accelerate drug discovery and reduce the risks of drug

treatment.

Fig. 9. LOOCV on chemicals of novel 3 D structure. Recorded are the mean

values obtained in five rounds of the LOOCV test on the sets of 100 randomly

chosen drugs. The top figure shows the AUC values obtained on ADRs asso-

ciated with<25 FDA approved drugs. The table beneath the figure shows the

AUC values for selected Tanimoto and ADR promiscuity cutoff values. The

fold enrichment is given in parentheses

Fig. 8. Test for rare ADRs. The mean values obtained in five rounds of 10-fold

CV test on the set of drugs with no known rare ADRs. STDERR is too small to

show
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The difficulty in identifying ADRs during clinical trials and the

complexity of parsing side-effect data from drug package inserts and

post-marketing reports gives rise to incomplete and noisy databases

of drug-ADR associations. On the other hand, clean and compre-

hensive databases represent a straightforward way of improving the

performance of prediction methods. For instance, we were able to

increase the accuracy of our method in predicting drug-induced liver

injury by replacing the hepatotoxicity associations stored in SIDER

by those stored in LTKB-BD (Chen et al., 2011). LTKB-BD repre-

sents an expert classification of only 287 drugs with respect to drug-

induced liver injury.

Aside from utilizing cleaner data, we believe that much more

accurate predictions of drug-ADR associations can be made by tak-

ing advantage of gender-, age- and demographics-specific drug-ADR

associations, drug-dose specific associations and data on side-effects

arising from combination drugs (Tatonetti et al., 2012).
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