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Abstract

A drug’s biological half-life is defined as the time required for the human body to metabolize

or eliminate 50% of the initial drug dosage. Correctly measuring the half-life of a given drug

is helpful for the safe and accurate usage of the drug. In this study, we investigated which

gene ontology (GO) terms and biological pathways were highly related to the determination

of drug half-life. The investigated drugs, with known half-lives, were analyzed based on

their enrichment scores for associated GO terms and KEGG pathways. These scores indi-

cate which GO terms or KEGG pathways the drug targets. The feature selection method,

minimum redundancy maximum relevance, was used to analyze these GO terms and

KEGG pathways and to identify important GO terms and pathways, such as sodium-inde-

pendent organic anion transmembrane transporter activity (GO:0015347), monoamine

transmembrane transporter activity (GO:0008504), negative regulation of synaptic trans-

mission (GO:0050805), neuroactive ligand-receptor interaction (hsa04080), serotonergic

synapse (hsa04726), and linoleic acid metabolism (hsa00591), among others. This analy-

sis confirmed our results and may show evidence for a new method in studying drug half-

lives and building effective computational methods for the prediction of drug half-lives.
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Introduction

A drug is any substance that contributes to the relief of various pathological symptoms, which
usually induces a pharmacological change in the human body [1–3]. In pharmacology, a phar-
maceutical drug or medicine is defined as the functional component that is extracted from bio-
logical material or synthesized by the modern pharmaceutical synthesis industry [4]. Drugs,
such as antibiotics, have been regarded as the most effectiveweapons for preventing various
diseases in humans and maintaining health. Once drugs are consumed, they are gradually elim-
inated or metabolized by a specific hepatic microsomal enzyme system [5–7]. To measure the
precise amount of time that a drug is effective and control the proper drug dosage, a specific
drug parameter, the drug half-life, serves to standardize the use of drugs and avoid side effects
[8, 9].

In pharmacology, the drug biological half-life (usually abbreviated half-life) has been
defined as the time required for the human body to metabolize or eliminate 50% of the initial
value of the functional drug dosage [10]. Similarly, the plasma half-life, another relevant
parameter, is defined as the time that it takes for the concentration of the drug in the blood to
decrease by 50% [11]. Generally, the two parameters are not equal, but they are closely related
[12]. Considering that the real half-life of a specific drug is difficult to detect and measure in
most situations (except for drugs with a high tissue residual ratio such as Digitoxin), we take
the plasma half-life of drugs as the reference value [13, 14].

Generally, the half-life of a specific drug is affected by six main factors, including plasma
protein binding, pharmacokinetic patterns, renal/hepatic diseases, active metabolites, enterohe-
patic circulation and the specific distribution of the drug volume [15]. All six factors contribute
to the regulation of the biotransformation and excretion of a drug, which are two core mecha-
nisms that affect the half-life of a drug [16].

The plasma protein binding affinity has been reported to contribute to the overall metabolic
flow in a drug’s transportation, function and elimination. The binding affinity extensively
affects the plasma half-life of drugs, which is easily detected, reinforcing the importance of this
factor in practical applications [17, 18]. For example, the drug warfarin is an anticoagulant that
has a long half-life because of its high binding affinity for plasma proteins [19]. The pharmaco-
kinetic pattern, another factor, has two main metabolic trends for common drugs, first order
kinetics and zero order kinetics. According to first order kinetics, a fixed fraction of a drug will
be eliminated in a given unit of time, while for zero order kinetics, a fixed amount of a drug
will be excreted. The metabolic variation of the two kinetic patterns are mainly influenced by
the different metabolic routes of a drug and the dosage [20]. Because of the limited metabolic
ability of human bodies,most drugs follow the first pharmacological pattern of metabolism but
follow the zero order kinetic pattern of metabolism for toxic doses [21].

As mentioned above, the metabolic ability of human bodiesmay alter the pattern and speed
of specific drugs [5–7]. In humans, the liver tissue contains various hepatic microsomal
enzymes and has been found to be the primary location of drugmetabolism [22]. Therefore,
the metabolic abilities of the hepatic microsomal enzymes may greatly affect the speed of drug
metabolism and may further influence their half-lives [23]. For the elimination processes, the
kidney is the junction of the urinary system and the circulating system and also affects the half-
life of drugs [24, 25]. For example, the accumulation of aminoglycosides has been confirmed
during diseases of the kidney [26]. Considering the functions of the liver and kidney during
drugmetabolism and elimination, the half-life of a drugmay be greatly altered by renal or
hepatic pathological conditions.

Apart from the factors above, not all drugs are in their activated states when they are
absorbed by the human body. Some drugs need to be changed into an activated state (reactive
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form) to produce pharmacological effects [27]. For example, the half-life of aspirin is fifteen
minutes, while the effectivemetabolic product of aspirin, salicylic acid, has a half-life as long as
two hours. This illustrates the crucial role of a drug’s state during its metabolism and elimina-
tion [28, 29]. During enterohepatic circulation, such factors extend the in vivo metabolic route
of drugs and may further prolong the half-life of certain drugs [30], while the volume of distri-
bution (the ratio of the plasma concentration to the total quantity of a drug (L/kg)) reflects the
overall ability to eliminate certain drugs [31]. In total, all six factors are crucial for the biotrans-
formation and excretion of drugs, reflecting the complex regulatorymechanisms that affect
their half-lives.

Based on existing experimentalmethods, it is difficult and time-consuming to screen and
verify the proteins and biological processes that may affect the half-life of a specific drug.Most
efforts made toward predicting the half-lives of drugs have been based on drug structures.
Turner et al. predicted human half-lives for 20 cephalosporins based on constitutional, topo-
logical, and quantum-chemicals descriptors [32]. Arnot et al. developed two half-life prediction
models in human based on molecular fragments and an automated iterative fragment selection
method [33]. Lu et al. predicted elimination half-life in human by sevenmachine learning
methods and molecular descriptors [34]. However, there are few studies investigating the bio-
logical mechanisms that may affect the half-lives of drugs.

Here, we applied a computational method to extract functional gene ontology (GO) terms
and biological pathways (KEGG pathways) that may affect the half-life of a specific drug. The
enrichment of GO terms and KEGG pathways was used to determine their associations with
drugs with known half-life values. A popular feature selectionmethod, minimum redundancy
maximum relevance (mRMR), was employed to analyze these features and indicated a role for
several important GO terms and KEGG pathways in drugmetabolism. An analysis of recent
publications confirmed the relevance of some of the GO terms and biological pathways that
were predicted to affect drug half-life.

Materials and Methods

Materials

The terminal half-life data of 670 drugs collected by Obach et al. [35] were used in this study
and are provided in S1 Table. According to their half-lives, these drugs were classified into the
following five categories: (1) compounds with half-lives less than 1 h; (2) compounds with
half-lives between 1 and 4 h; (3) compounds with half-lives between 4 and 12 h; (4) compounds
with half-lives between 12 and 24 h; and (5) compounds with half-lives greater than 24 h. After
mapping 670 drugs to their PubChem IDs and excluding those without PubChem IDs, we
obtained 669 drugs. Because each drug in this study was represented by the enrichment scores
of GO terms and KEGG pathways, those without these scores were discarded, resulting in 565
drugs (comprising the set S). The distribution of these 565 drugs in the aforementioned five
categories is listed in Table 1.

Table 1. The distribution of drugs in five half-life categories.

Category label Half-life (t1/2) Number of drugs

1 Compounds with half-lives less than 1 h 56

2 Compounds with half-lives between 1 and 4 h 231

3 Compounds with half-lives between 4 and 12 h 154

4 Compounds with half-lives between 12 and 24 h 61

5 Compounds with half-lives greater than 24 h 63

doi:10.1371/journal.pone.0165496.t001
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Protein-chemical interactions

In this study, we investigated which GO terms and KEGG pathways were associated with
effects on drug half-life. However, it was difficult to quantitatively evaluate the correlation
between drugs and GO terms or KEGG pathways, which complicated further analyses. The
annotated proteins for each GO term and KEGG pathway were easily obtained from public
databases. Once proteins related to a specific drug were identified, the correlation between that
drug and a GO term or KEGG pathway was measured using the proteins annotating to the GO
term or KEGG pathway and those related to the drug.

To obtain the proteins related to a specific drug, we downloaded the protein-chemical inter-
actions from the STITCH (Search Tool for Interactions of Chemicals) database [36]. The inter-
actions, including chemical-chemical and protein-chemical interactions, reported in STITCH
are derived from experiments, databases and the literature. Thus, they can be used to determine
the associations between chemicals and proteins and have been used to address several biologi-
cal problems [37–43]. We extracted the protein-chemical interactions from the downloaded
file ‘protein_chemical.links.v4.0.tsv.gz‘, such that chemicals were members in S and proteins
were in human tissues, from which a protein set denoted by P(d) could be accessed for each
drug d in S. Subsequently, the associations between one drug d and one GO term or KEGG
pathway could be converted to the correlation between two protein sets, where one was P(d)
and the other consisted of proteins annotated with the GO term or KEGG pathway. This idea
is illustrated in Fig 1.

Encoding scheme

As mentioned in Section “Protein-chemical interactions”, based on the protein-chemical inter-
actions and the GO term or KEGG pathway protein annotations, we evaluated the associations

Fig 1. A figure illustrating how the associations between drugs and GO terms or KEGG pathways were measured.

doi:10.1371/journal.pone.0165496.g001
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between one drug d and one GO term or KEGG pathway by measuring the correlation between
P(d) and the set consisting of proteins associated with a GO term or KEGG pathway. Here, we
adopted the enrichment theory to quantify the correlation between two protein sets.

GO enrichment score. For a given drug d and one GO termGOj, let PGO denote the set
consisting of proteins annotated with GOj. The GO enrichment score between d and GOj is
defined as the hypergeometric test P value [44–46] of P(d) and PGO, which can be computed by:

SGOðp;GOjÞ ¼ � log10
ð
Xn

k¼m

M

k

 !
N � M

n � k

 !

N

n

 ! Þ ð1Þ

where N and M denote the total number of human proteins and the number of proteins in PGO;
n and m represent the number of proteins in P(d) and the number of proteins both in P(d) and
PGO. The higher the score is, the stronger the correlation between drug d and GO termGOj. In
total, 17,094 GO enrichment scores were calculated in this study for each drug.

KEGG enrichment score. A similar method was used to define the KEGG enrichment
score, which can measure the associations between drugs and KEGG pathways. Let PKEGG

denote the set consisting of proteins associated with a KEGG pathway Kj. The KEGG enrich-
ment score between d and Kj is defined to be the hypergeometric test P value [46] of P(d) and
PKEGG. Its computational formula is listed below:

SKEGGðp;KjÞ ¼ � log10
ð
Xn

k¼m
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N

n

 ! Þ ð2Þ

where the parameters N and n have the same definitions as those in Eq 1, while M and m
denote the number of proteins in PKEGG and the number of proteins both in P(d) and PKEGG.
Similarly, a large KEGG enrichment score means a strong association between the drug and
the pathway. In total, 279 KEGG pathway enrichment scores were calculated in this study for
each drug.

The number of GO enrichment scores was much larger than that of the KEGG enrichment
scores. Furthermore, the principles for selecting important GO terms and KEGG pathways
were not the same. Thus, for each drug in dataset S, we obtained separate GO and KEGG
enrichment scores resulting in the two datasets of SGO and SKEGG. Drugs in SGO were repre-
sented by 17,094 GO enrichment scores, and those in SKEGG were represented by 279 KEGG
enrichment scores.

mRMRmethod. As described in Section “Encoding scheme”, each of the drugs in dataset
S had 17,094 GO enrichment scores and 279 KEGG enrichment scores that denoted the
strength of their association with a given GO term or KEGG pathway. It is obvious that not all
GO terms or KEGG pathways have an equal effect on drug half-life; some of them are more
important than others. To extract important GO terms and KEGG pathways, the mRMR selec-
tion method [47] was employed. This method is useful for analyzing various features and iden-
tifying the most important ones, and it has been widely used by investigators to address several
biological problems [48–56]. Two excellent criteria were introduced in the mRMRmethod:
Max-Relevance and Min-Redundancy, in which the former criterion guarantees that features
with high relevance with targets can receive high ranks, and the latter one guarantees that a
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feature with lowest redundancies to already-selected features has priority to be selected. Two
feature lists can be obtained by the mRMRmethod, one is calledMaxRel feature list and the
other is calledmRMR feature list. The former list only uses the criterion of Max-Relevance, i.e.,
features in this list are ranked according to their relevance with targets, while the latter list uses
both two criteria to rank features. It is clear that the mRMR feature list can be used to extract
an optimal subspace of features for classification, while the MaxRel feature list can be adopted
to access important features. Because the purpose of this study is to investigate important fac-
tors for determination of drug half-life, we only used the MaxRel feature list yielded by mRMR
method. To measure the relevance between a feature f and targets, let x denote the target vari-
able representing the drugs’ class labels, and y denote a variable representing all values under
the feature f. The relevance between the target and the feature f is defined as the mutual infor-
mation (MI) between x and y, which can be computed by:

Iðx; yÞ ¼
ðð

pðx; yÞlog
pðx; yÞ

pðxÞpðyÞ
dxdy ð3Þ

where p(x) and p(y) are the marginal probabilities of x and y and p(x,y) is the joint probabilistic
distribution of x and y. Accordingly, each feature (one GO term or KEGG pathway) was
assigned an MI value, and all features were sorted by the descending order of their MI values in
the MaxRel feature list. We selected the GO terms and KEGG pathways with highMI values
for further analyses. The mRMR program was downloaded from http://research.janelia.org/
peng/proj/mRMR.

Results and Discussion

Results of the mRMR method

As described in Section “mRMR method”, a popular feature selectionmethod, the mRMR
method, was adopted to extract important GO terms and KEGG pathways that may affect drug
half-life. The mRMR program was used to produce MaxRel feature lists for SGO and SKEGG,
which are provided in S2 and S3 Tables, respectively. Because our computational power was
limited, we only output the first 500 features in the MaxRel feature list for GO terms.

Because GO terms or KEGG pathways with highMI values were more likely to affect drug
half-life, we selected a threshold of 0.03 for the MI values of GO terms and 0.013 for theMI val-
ues of KEGG pathways. Subsequently, we obtained 23 GO terms and 18 KEGG pathways,
which are listed in Tables 2 and 3, respectively. The biological characteristics and properties are
analyzed extensively in the following section, producing several useful and important conclu-
sions or suggestions for the study of drug half-lives.

Analysis of important GO terms and KEGG terms for drug half-life

As mentioned in Section “Results of the mRMRmethod”, 23 GO terms and 18 KEGG path-
ways were identified that may have an effect on the half-lives of drugs. However, it is difficult
to analyze these GO terms and KEGG pathways because drugs with different half-lives received
different enrichment scores, even those drugs belonging to the same half-life category. To
obtain a better understanding of the associations between a GO term or KEGG pathway and a
half-life category, we calculated a “level value” for each GO term or KEGG pathway and each
category. The level value was the mean of the enrichment scores for drugs in the category
under the GO term or KEGG pathway. The level values for GO terms and KEGG pathways are
provided in S4 and S5 Tables, respectively. In addition, for easier visualization, we plotted two
heat maps of these values, one is for GO terms (shown in Fig 2), and the other is for KEGG
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pathways (shown in Fig 3). It can be observed that some GO terms and KEGG pathways are
strongly associated with certain half-life categories. Table 4 lists the related GO terms and
KEGG pathways for each half-life category. These are discussed in detail in the following
sections.

GO terms and KEGG pathways related to compounds with half-lives less than 1 h.
Nearly all the GO terms and KEGG pathways contributed to the metabolism and elimination
of compounds with half-lives less than 1 h. Considering that both the intake and excretion of
drugs require a significant amount of time, drugs that have a half-life less than 1 hour either
have a rapid biotransformation process or lack one altogether. GO terms (GO: 0046972, GO:
0043995) that contributed to histone trans-acetylation processes were found to participate in
the metabolism of drugs with half-lives less than 1 hour. Histone acetylation and deacetylation
processes have been reported to be regulated by specific activators and inhibitors [57, 58].
Most of the drugs that were associated with these two GO terms have been reported to have
half-lives less than 1 h. For example, experimental data from rats indicated that the antitumor
drug TSA has a half-life of approximately 6 minutes and a 50 μM dosage is completely inacti-
vated within 40 minutes, thus validating our classification and prediction [59]. Additionally,
some of the drugs with half-lives less than 1 hour are enriched for sodium−independent
organic anion transmembrane transporter activity (GO:0015347), as shown in Fig 2. Accord-
ing to recent publications, drugs that are associated with this biological process have very short
half-lives [60, 61]. Niacin and Alprostadil are two classical drugs that are associated with this
process and both of their half-lives are short (20–45 minutes for Niacin and approximately 42
seconds for Alprostadil (PGE1)) [61–63]. KEGG pathways enriched in drugs with half-lives

Table 2. Important GO terms obtained by the mRMR method and which may be associated with different drug half-lives.

Order GO term ID Name MI value

1 GO:0015347 sodium-independent organic anion transmembrane transporter activity 0.037

2 GO:0060033 anatomical structure regression 0.036

3 GO:0050998 nitric-oxide synthase binding 0.036

4 GO:0035115 embryonic forelimb morphogenesis 0.035

5 GO:0046972 histone acetyltransferase activity (H4-K16 specific) 0.034

6 GO:0043995 histone acetyltransferase activity (H4-K5 specific) 0.034

7 GO:0043996 histone acetyltransferase activity (H4-K8 specific) 0.034

8 GO:0050805 negative regulation of synaptic transmission 0.034

9 GO:0042364 water-soluble vitamin biosynthetic process 0.032

10 GO:0001533 cornified envelope 0.031

11 GO:0008504 monoamine transmembrane transporter activity 0.031

12 GO:0021853 cerebral cortex GABAergic interneuron migration 0.031

13 GO:0021830 interneuron migration from the subpallium to the cortex 0.031

14 GO:0021894 cerebral cortex GABAergic interneuron development 0.031

15 GO:0021534 cell proliferation in hindbrain 0.031

16 GO:0001965 G-protein alpha-subunit binding 0.03

17 GO:1901386 negative regulation of voltage-gated calcium channel activity 0.03

18 GO:0021924 cell proliferation in external granule layer 0.03

19 GO:0021930 cerebellar granule cell precursor proliferation 0.03

20 GO:0046341 CDP-diacylglycerol metabolic process 0.03

21 GO:0019992 diacylglycerol binding 0.03

22 GO:0003881 CDP-diacylglycerol-inositol 3-phosphatidyltransferase activity 0.03

23 GO:0090177 establishment of planar polarity involved in neural tube closure 0.03

doi:10.1371/journal.pone.0165496.t002
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less than one hour included the systemic lupus erythematosus pathway (hsa05322). Drugs
used to treat systemic lupus erythematosus such as prednisone, also have a very short half-life
(plasma half-life of less than 1 hour) [64], which is consistent with our results.

GO terms and KEGGpathways related to compounds with half-livesbetween 1 and 4 h.
Unlike drugs with half-lives less than 1 hour, fewer GO terms and KEGG pathways were associ-
ated with drugs that have half-lives between 1 and 4 hours. These drugs were enriched in only 3
KEGG pathways (hsa00400, hsa00531 and hsa04610) and no GO terms. The KEGG pathway
hsa00400 describes phenylalanine, tyrosine and tryptophan biosynthesis. Tetrahydrobiopterin
(modified as sapropterin dihydrochloride in drugs) is mainly applied for the treatment of spe-
cific diseases such as tetrahydrobiopterin deficiency and neurotransmitter related disorders in
the nervous system [65, 66]. The half-life of orally administered sapropterin has been reported
to be 4 hours, which is consistent with our prediction [67]. The KEGG pathway hsa00531
describes the glycosaminoglycan degradation biological process. This process is associatedwith
drugs such as chondroitin sulfate, elosulfase alfa and nadroparin [68–70]. Chondroitin sulfate
reduces the fat in the blood stream [71, 72]. Considering its chemical nature, a sulfated glycos-
aminoglycan with a half-life of less than 4 hours, the metabolism and elimination processes of
this drug likely involve the predicted KEGG pathway [73, 74]. The KEGG pathway for comple-
ment and coagulation cascades (hsa04610) also functions for intercellular substances, which sug-
gests that this metabolic route may be utilized by related drugs. The coagulation factor VIIa is a
significant component of the coagulation cascades and definitely participates in the predicted
KEGG pathway [75]. This and similar drugs have a half-life of exactly 3.5 hours (between 1 h
and 4 h), thereby confirming our prediction of the involvement of this KEGG pathway [76, 77].

GO terms and KEGG pathways related to compounds with half-lives between 4 and
12 h. Only one GO term (GO:0050998) was enriched for compounds with a half-life
between 4–12 hours. GO:0050998 describes nitric−oxide synthase binding activity. Nitric
oxide itself is a drug with a half-life of a few seconds in the blood [78]. However, a group of
drugs that contribute to the synthesis of nitric-oxide and may participate with the synthase

Table 3. Important KEGG pathways obtained by the mRMR method and which may associated with different drug half-lives.

Order KEGG pathway ID Name MI value

1 hsa04080 Neuroactive ligand-receptor interaction 0.026

2 hsa00400 Phenylalanine, tyrosine and tryptophan biosynthesis 0.024

3 hsa05322 Systemic lupus erythematosus 0.02

4 hsa04726 Serotonergic synapse 0.018

5 hsa00591 Linoleic acid metabolism 0.017

6 hsa05213 Endometrial cancer 0.016

7 hsa00531 Glycosaminoglycan degradation 0.016

8 hsa04146 Peroxisome 0.016

9 hsa00100 Steroid biosynthesis 0.015

10 hsa00603 Glycosphingolipid biosynthesis—globo serie 0.015

11 hsa04530 Tight junction 0.014

12 hsa04666 Fc gamma R-mediated phagocytosis 0.014

13 hsa00130 Ubiquinone and other terpenoid-quinone biosynthesis 0.013

14 hsa04610 Complement and coagulation cascades 0.013

15 hsa00240 Pyrimidine metabolism 0.013

16 hsa04020 Calcium signaling pathway 0.013

17 hsa04725 Cholinergic synapse 0.013

18 hsa00280 Valine, leucine and isoleucine degradation 0.013

doi:10.1371/journal.pone.0165496.t003
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Fig 2. Heat map of the level values for important GO terms in five drug half-life categories. The rows

represent GO terms and the columns represent the drug half-life categories.

doi:10.1371/journal.pone.0165496.g002
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Fig 3. Heat map of the level values for important KEGG pathways in five categories of drug half-life

categories. The rows represent KEGG pathways and the columns represent drug half-life categories.

doi:10.1371/journal.pone.0165496.g003
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binding associated pathways have been confirmed to have half-lives between 4 and 12 hours
[79]. For example, NXN-188 has been confirmed to be associated with the nitric-oxide
synthase binding processes and has a corresponding half-life of more than four hours (8–10
hours). Thus, this result also verifies our prediction and classification [80, 81] for this drug.
No KEGG pathways were enriched for drugs with half-lives of 4–12 hours.

GO terms and KEGG pathways related to compounds with half-lives between 12 and 24
h. Compared to compounds with half-lives between 4 and 12 hours, more GO terms and
KEGG pathways were enriched for drugs with half-lives between 12 and 24 hours. As shown in
Fig 2, we identified two GO terms (GO: 0050805; GO: 0008504) that may be related to com-
pounds with half-lives between 12 and 24 hours. A negative regulation of synaptic transmission
(GO: 0050805) has been shown to be regulated by various drugs such as imipramine, alfentanil
and anileridine. Imipramine is a common antidepressant drug that has a half-life of 20 hours,
which agrees with our prediction. [82, 83]. The GO termGO: 0008504 refers to monoamine
transmembrane transporter activity. The drug transdermal selegiline is involved in this process
and has been reported to have a half-life of 18–25 hours, indicating that our prediction was
accurate [84, 85]. The termGO: 1901386 is associated with voltage-gated calcium channels,
which are targeted by various drugs [86–88]. Flecainide is a crucial antiarrhythmic drug that
regulates the voltage-gated calcium channel and has a specific half-life of 12–27 hours in nor-
mal pathological conditions [89–91]. Another GO term,GO: 0021924, refers to cell prolifera-
tion in the external granule layer, which has been reported to be targeted by the drug
methylazoxymethanol. This drug has a half-life of 12 hours in solution [92, 93]. Several
enriched KEGG pathways were associated with drugs in the 12–24 hour half-life category.
Hsa04080 describes neuroactive ligand-receptor interactions, which are targeted by drugs such
as hydroxyzine [94]. The half-life of hydroxyzine has been reported to be as short as 3 hours;
however, the hydroxyzine derivative pamoate has been shown to have a half-life of approxi-
mately 20 hours [95, 96]. From the heat maps in Fig 3, it is evident that compounds with half-
lives greater than 1 hour (especially compounds with half-lives between 12 and 24 hours) are
enriched in this KEGG pathway. The serotonergic synapse pathway (hsa04726) is affected by
trimipramine, an important antihistamine and sedative with an exact half-life of 23–24 hours
[97, 98]. Fig 3 also shows that compounds with half-lives between 12 and 24 hours are enriched
in this KEGG pathway, which supports the accuracy and efficacy of our prediction.

GO terms and KEGGpathways related to compounds with half-lives greater than 24 h.
Some drugs have very long half-lives that are greater than 24 hours. Only one GO term has been
predicted to be associated with such long-acting drugs. The termGO: 0035115 refers to

Table 4. The relationship between different drug half-lives and GO terms and KEGG pathways dis-

covered in this study.

Half-life (t1/2) Related GO terms Related KEGG

pathways

Compounds with half-lives less

than 1 h

GO: 0046972, GO: 0043995,

GO:0015347

hsa05322

Compounds with half-lives between

1 and 4 h

- - - hsa00400, hsa00531,

hsa04610

Compounds with half-lives between

4 and 12 h

GO: 0050998 - - -

Compounds with half-lives between

12 and 24 h

GO: 0050805, GO: 0008504, GO:

1901386, GO: 0021924

hsa04080, hsa04726

Compounds with half-lives greater

than 24 h

GO: 0035115 hsa00591, hsa00100

doi:10.1371/journal.pone.0165496.t004
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embryonic forelimb morphogenesis. It is well known that the Hedgehog pathway contributes to
normal developmental processes in the human embryo. Therefore, Hedgehog pathway inhibi-
tors such as GDC-0449 and AAG are strongly associated with this GO term [99, 100]. Based on
recent publications, the half-lives of these drugs are longer than a day (more than 7 days and 5
days for GDC-0449 and AAG, respectively) [100, 101]. Unlike the single enrichedGO term,
more KEGG pathways were associated with the metabolism of drugs whose half-lives were
greater than 24 hours. Linoleic acid metabolism (hsa00591) is a crucial pathway for fat metabo-
lism that is used in our daily lives [102]. This process is targeted by two derivatives of linoleic
acid, di-homo-gamma-linolenic acid and alpha-linolenic acid. The half-lives of both these lino-
leic acid derivatives are greater than 24 hours (more than 60 hours for both di-homo-gamma-
linolenic acid and alpha-linolenic acid) [103, 104]. Another similar metabolic process, steroid
biosynthesis (hsa00100), was also enriched for drugs with half-lives greater than 24 hours. Path-
ways for steroid synthesis have been reported to be associated with rheumatoid arthritis. The
drug aurothioglucose, which has been used to treat rheumatoid arthritis, has a half-life of 3–27
days, which is consistent with both our prediction and classification [105, 106].

Conclusions

This study used the mRMRmethod to investigate the important GO terms and KEGG path-
ways that may affect a drug’s half-life. The GO terms and KEGG pathways identifiedmay pro-
vide new insights for studying drug half-life and help us build effective predictionmodels for
drug half-lives.We hope that this study can promote pharmacological studies of the drug
metabolismmechanism and expand the understanding of half-life-associated biological pro-
cesses. In future, we will make our efforts in the following two points: (1) Effectivemodels for
prediction of drug half-life using some advanced machine learning algorithms [107, 108] can
be built based on the extractedGO terms and KEGG pathways; (2) Refined half-life analysis of
drugs on certain disease using abundant known information of this disease, such as disease-
related target proteins, disease-relatedmicroRNA [109, 110], etc.
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