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Optimized control of the color-coating production process (CCPP) aims at reducing production costs and improving economic
efficiency while meeting quality requirements. However, because optimization control of the CCPP is hampered by model
uncertainty, a strategy that considers model uncertainty is proposed. Previous work has introduced a mechanistic model of CCPP
based on process analysis to simulate the actual production process and generate process data. The partial least squares method is
then applied to develop predictive models of film thickness and economic efficiency. To manage the model uncertainty, the robust
optimization approach is introduced to improve the feasibility of the optimized solution. Iterative learning control is then utilized to
further refine the model uncertainty. The constrained film thickness is transformed into one of the tracked targets to overcome the
drawback that traditional iterative learning control cannot address constraints. The goal setting of economic efficiency is updated
continuously according to the film thickness setting until this reaches its desired value. Finally, fuzzy parameter adjustment is
adopted to ensure that the economic efficiency and film thickness converge rapidly to their optimized values under the constraint
conditions. The effectiveness of the proposed optimization control strategy is validated by simulation results.

1. Introduction

Color-coated steel, also known as organic-coated steel, is
widely applied in many fields, including the automotive
industry, household appliances, and the real estate industry,
because of its advantages of good anticorrosive properties and
suitability for a wide range of environments. In the color-
coating production process (CCPP), colored coatings are
painted onto cleaned steel to form a thin film which imparts
the desired properties to the steel.

Disadvantages of this production process, however,
include high energy consumption, low efficiency, andwastage
of raw materials. Process optimization, aimed at minimizing
production costs and enhancing production efficiency, is
therefore particularly important. The present work proposes
an effective optimization control strategy to resolve actual
CCPP problems to enhance the productivity and reduce
production costs.

Optimization control of CCPP has rarely been reported
in the literature, although a few researchers have investigated

color-coating production in the iron and steel industry,
known as color-coating production scheduling, which aims
at maximizing productivity and minimizing production cost
[1, 2].

Mechanistic models of the coating process should be
developed for carrying out such optimization. Such process
models play several significant roles: first, the modeling will
analyze the mechanism of the coating process, identify the
important operating variables and quality indexes of colored-
coated steel, and analyze the relationship between them;
second, such models can be regarded as data generators to
produce the required production data used for simulation
and analysis. As research objectives, the mechanistic models
should be capable of linking the web film thickness—the key
quality indicator—with the operating variables (the moving
web speed, the roll speed, the tension, and the wrap angle).
For a coating process operating in reverse mode with a
web-to-roll speed ratio less than 1, the Reynolds lubrication
equation predicts the film thickness on both the web and
applicator roll [3]. This is an acknowledged color-coating
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process model [3–5] and is selected in this work to simulate
the actual process. In addition, all production costs, includ-
ing those of raw materials, electrical energy, and masking
liquid, are considered in modeling the relationship between
economic efficiency and the operating variables.

Production process data can be generated by mechanistic
models. Process data analysis mainly aims at establishing
predictivemodels that can be used to predict product indexes
[6]. Partial least squares (PLS) regression has developed into
a generalizedmultiple linear regressionmethod, and it can be
applied to establish the relationship between an input matrix
𝑋 and an output matrix 𝑌 using a linear multivariate model
[7–11]. PLS regression is a useful and effective regression tech-
nique in process modeling and product quality prediction
because of its ability to analyze data with strongly collinear
and noisy variables in both input 𝑋 and output 𝑌 values [8].
In this work, themethod of PLS regressionwas therefore used
to develop predictive models of the coating process.

In this process optimization problem, economic effi-
ciency is considered as the optimization objective, while the
moving web speed, the roll speed, the tension, and the wrap
angle are considered as decision variables, and the optimiza-
tion model is established under the constraints of product
quality. The method of sequential quadratic programming
(SQP) [12, 13] was selected to solve this optimization problem.
The optimal economic efficiency and the best set points,
including the optimal film thickness and the corresponding
operating variables, are obtained by solving the optimization
problem.

The optimal economic efficiency is based on a PLS pre-
dictivemodel, and the actual optimal economic efficiency can
be calculated by plugging the best set points into mechanistic
models. There are some discrepancies between the forecast
and actual values of the optimal economic efficiency obtained
through optimization. In practice, however, one would be
unlikely to develop an accurate (or even approximate) process
model relating the input and output variables [14, 15], so
predictive models are not capable of perfectly imitating
the coating process. Although these models are established
using actual production data, there is model uncertainty,
which hampers process optimization. This can lead to the
outcome that “optimal using the model” may not necessarily
mean “optimal for the process” [16]. The robust optimization
approach has been applied to address process optimization
problems under conditions of uncertainty [17–23]. In this
method, the uncertain parameters are represented using
uncertainty sets [21, 22], and the rationale is to transform
the process optimization problem with uncertain parameters
into a deterministic optimization problem via discretizing
the probability density function of the uncertain param-
eters [24, 25]. By introducing robust optimization, initial
operating variables with better values of economic efficiency
are obtained and the feasibility of the optimal solution is
improved, which provides a preliminary solution to the
model uncertainty problem.

Iterative learning control (ILC) is an effective technique
for controlling systems of a repetitive nature with the require-
ment that a desired reference trajectory is precisely followed
[26]. It has been widely utilized in industrial processes

with repetitive motion because of its structural simplicity
and effective learning ability [27–29]. Robust optimization,
described above, partly overcomes the drawback of model
uncertainty and improves economic performance.The results
of robust optimization provide a better initial set point for
ILC, which is then utilized to implement iterative opti-
mization control of the CCPP to further improve economic
efficiency by on-line adjustment of the operating variables.
To overcome the drawback that traditional ILC is not capable
of dealing with constraints, the film thickness is regarded
as one of the tracking targets and the goal here is to deal
with the quality constraint. The technique of iteratively
tracking goal settings based on analysis of the predictive
models is proposed. Fuzzy adaptive adjustment of target
weighted parameters is implemented with the aim of rapidly
converging the ILC andmeeting the quality constraint. Using
this approach, an effective optimization control strategy for
CCPP is proposed to solve the problem of model uncertainty
and improve economic efficiency by adjusting the operating
variables.

2. Production Technology and Mechanistic
Models of the Color-Coating Process

The kiss-roll coating system operating in reverse mode,
named so because the web and the surface of applicator roll
move in opposite directions, is the key technical equipment
in color-coating production. It works on the principle of
transferring the coating liquid film from the surface of an
applicator roll onto a moving web [3, 5]. Because of its
preferential stability characteristics, the reverse mode system
is commonly used in industry [4]. A schematic diagram of a
kiss-roll coating system operating in reverse mode is shown
in Figure 1.

Film thickness is the significant quality indicator ofCCPP.
For the purpose of optimizing CCPP, the present work
explores the impact of operating variables, such as themoving
web speed, the roll speed, the tension, and the wrap angle, on
the web film thickness.

Theflowdomain of the coating process is shown schemat-
ically in Figure 2. Gaskell has developed a one-dimensional
model [3] for a kiss-roll coating system operating in reverse
mode, based on the following assumptions:

(1) The web is completely flexible and therefore free to
bend when it is under pressure of the coating fluid.

(2) Thewrap angle𝛽 is considered to be of a small positive
number.

(3) The length scale in the direction of the 𝑥-axis is much
greater than that in the direction of the 𝑧-axis.

(4) The coating fluid film that enters the bead is uniform
and it cannot run back.

(5) The coating flow is steady and the effect of gravity is
negligible.
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Figure 1: Schematic diagram of the color-coating process.
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Figure 2: Schematic diagram of the flow domain of the coating
process.

The one-dimensional model derived to predict the film
thickness on the web can be described as follows (the detailed
derivation process is given in [3]):
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Table 1: Values of the model parameters.

Model parameters 𝑅 (m) 𝐻IN (𝜇m) 𝜇 (mPa⋅s) 𝜎 (N/m)
Value 0.1 6 0.998 0.033

where𝐻
1
is the film thickness on the web;𝑈

1
,𝑈
2
,𝑇, and𝛽 are

the operating variables, that is, themoving web speed, the roll
speed, the tension, and thewrap angle, respectively;𝑅,𝐻IN,𝜇,
and 𝜎 are the radius of the applicator roll, the film thickness
of the coating bead entrance, the viscosity, and the surface
tension of coating liquid, respectively, having the constant
values shown in Table 1.

From the analysis of actual production, the mechanistic
model of economic efficiency is described by the following
form:

𝐽 = 𝑎𝐹
1
− 𝑏𝐹
2
− 𝑐𝐹
3
− 𝑑𝐹
4
, (2)

where 𝑎, 𝑏, 𝑐, and 𝑑 are the prices of the finished color-
coated steel product, the unprocessed steel, the coating, and
industrial electricity, respectively; 𝐹

1
is the yield of color-

coated steel; and 𝐹
2
, 𝐹
3
, and 𝐹

4
are the consumptions of

unprocessed steel, the coating, and industrial electricity,
respectively. 𝐹

1
, 𝐹
2
, 𝐹
3
, and 𝐹

4
are denoted as follows in the

model.
It is assumed that the weight of the steel plate is 40 kg per

meter, so the yield of color-coated steel and the consumption
of unprocessed steel per unit time are given by

𝐹
1
= 𝐹
2
= 40 × 3600 × 𝑈

1
. (3)

The width of the steel is 1m, so the consumption of the
coating per unit time can be expressed as

𝐹
3
= 3600 × 𝐻

1
× 𝑈
1
. (4)

The power of the variable frequencymotors used in color-
coating production lines is 900 kW, and the power of the
mains-frequency motors combined with that for lighting and
other equipment is 300 kW. The consumption of industrial
electricity per unit time is therefore

𝐹
4
=
900𝑈
1

𝑈
1max

+ 300, (5)

where 𝑈
1
represents the speed of the moving steel and 𝑈

1max
has a value of 3m/s.

3. General Optimization of the Color-Coating
Production Process

The PLS method is used to develop predictive models of the
film thickness and economic efficiency. In the development
of these predictive models, the input variables are the oper-
ating variables (the moving web speed, the roll speed, the
tension, and the wrap angle) and the output variables are
the film thickness on the web and the economic efficiency.
Specifically, 70 samples were generated to train the PLS
models and 30 samples to test them. The operating variables
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Figure 3: Simulation results of predictive model of film thickness
based on PLS.
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Figure 4: Simulation results of predictive model of economic
efficiency based on PLS.

were first randomly generated within their constraints. The
operating variableswere plugged into themechanisticmodels
to calculate the corresponding film thickness and economic
efficiency.The samples that contained operating variables and
the corresponding film thickness or economic efficiency were
used to establish the predictive models and test their accu-
racy. The model simulations are shown in Figures 3 and 4.

Table 2: Ranges of the variables.

Quality constraint Operating variables
𝐻
1
(𝜇m) 𝑢

1
(m/s) 𝑢

2
(m/s) 𝑢

3
(N) 𝑢

4
(∘)

[10, 17.5] [0.3, 3] [0.3, 3] [720, 840] [0, 5]

The explicit form of the predictive models established can be
expressed as

𝐽 = PLS
1
(𝑈
1
, 𝑈
2
, 𝑇, 𝛽) = PLS

1
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4
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(6)

𝐻
1
= PLS

2
(𝑈
1
, 𝑈
2
, 𝑇, 𝛽) = PLS

2
(𝑢)

= 1.15𝑢
1
− 3.5𝑢

2
+ 6.55𝑢

3
− 0.068𝑢

4
− 2.71,

(7)

where 𝑢 = (𝑢
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) = (𝑈

1
, 𝑈
2
, 𝑇, 𝛽) and PLS

1
and PLS

2

are the PLSmodels of economic efficiency and film thickness,
respectively.

The economic efficiency of production is treated as the
optimization goal and the operating variables are treated as
decision variables. Based on these predictive models of the
coating process, the optimizationmodel is derived as follows:

max 𝐽 = PLS
1
(𝑢)

s.t. 𝐻
1
= PLS

2
(𝑢) ;

𝐻
1min ≤ 𝐻

1
≤ 𝐻
1max;

0 <
𝑢
1

𝑢
2

< 1;

𝑢
𝑖min ≤ 𝑢

𝑖
≤ 𝑢
𝑖max, 𝑖 = 1, 2, 3, 4.

(8)

In this model, the web film thickness𝐻
1
is required to be

within the range (𝐻
1min,𝐻1max) and the operating variable 𝑢

is regarded as 𝑢min ≤ 𝑢 ≤ 𝑢max. Combining all constraints,
the ranges of the variables are listed in Table 2.

An SQP algorithm [12, 13] is adopted to solve the
established optimization problem. The optimization results
are shown in Table 3. However, owing to the inherent errors
of the predictive model, it is difficult to achieve the desired
economic efficiency by applying the optimized control trajec-
tory obtained by this general optimization to the actual color-
coating process. The actual values of the economic efficiency
and quality indexes are shown in Table 4.The results in Tables
3 and 4 indicate that a discrepancy of 6.2% exists between
the predicted and actual values of economic efficiency, which
means that “optimal by the model” may not mean “optimal
for the process,” as mentioned before.

4. Use of Robust Optimization to Solve the
Problem of Model Uncertainty

To address the model uncertainty, the model error is
regarded as the uncertain parameter and the optimization
problem is described as the process optimization problem
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Table 3: Results of general optimization.

Operating variables Quality index Economic efficiency
𝑢
1
(m/s) 𝑢

2
(m/s) 𝑢

3
(N) 𝑢

4
(∘) 𝐻

1
(𝜇m) 𝐽 (USD)

1.70 2.99 720 5 10 9398.8

Table 4: Actual values of the quality index and economic efficiency based on general optimization.

Operating variables Quality index Economic efficiency
𝑢
1
(m/s) 𝑢

2
(m/s) 𝑢

3
(N) 𝑢

4
(∘) 𝐻

1
(𝜇m) 𝐽 (USD)

1.70 2.99 720 5 10.59 8816

Table 5: Results of robust optimization.

Operating variables Quality index Economic efficiency
𝑢
1
(m/s) 𝑢

2
(m/s) 𝑢

3
(N) 𝑢

4
(∘) 𝐻

1
(𝜇m) 𝐽 (USD)

1.73 2.99 720 5 10 9582.4

Table 6: Actual values of the quality index and economic efficiency based on robust optimization.

Operating variables Quality index Economic efficiency
𝑢
1
(m/s) 𝑢

2
(m/s) 𝑢

3
(N) 𝑢

4
(∘) 𝐻

1
(𝜇m) 𝐽 (USD)

1.73 2.99 720 5 10.39 9189

with the uncertain parameters. Optimization of the CCPP
based on robust optimization is proposed. Specifically, the
probability density function of the model error is obtained
by making use of the modeling data, and the process opti-
mization problemwith the uncertainmodel error is solved by
transforming it into a deterministic optimization problem by
means of discretizing the probability density function of the
model error. The model of robust optimization is expressed
as

max 𝐽 = 𝜙
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𝑖
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(9)

where 𝑑
1
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2
are the uncertain parameter vectors of

economic efficiency and film thickness, respectively and 𝜙
1

and𝜙
2
represent the predictivemodels of economic efficiency

and film thickness with uncertainty, respectively. The above
robust optimization problem can be solved by discretizing the
probability density functions 𝑝(𝑑

1
) and 𝑝(𝑑

2
). It is assumed

that the number of points of the discretized probability den-
sity function is 𝐷 and that 𝑑
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uncertain parameter that has a relative weight 𝜔
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=

1), where 𝑖 = 1, 2. This robust optimization problem can then

be transformed into the following deterministic optimization
problem:
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𝜔
1,𝑗
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= PLS
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(𝑢) +
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𝑗=1
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;

𝐻
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1
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𝑢
1
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2

< 1;

𝑢
𝑖min ≤ 𝑢

𝑖
≤ 𝑢
𝑖max, 𝑖 = 1, 2, 3, 4.

(10)

The present work treats the model errors of web film
thickness and economic efficiency as the uncertain param-
eters and analyzes their probability distributions. The proba-
bility density distributions𝑝(𝑑

1
) and𝑝(𝑑

2
) are obtained using

the ksdensity function inMATLAB, as shown in Figure 5.The
robust optimization results obtained using the SQP method
are shown in Table 5. Applying the optimal operating vari-
ables based on robust optimization to a real CCPP, the actual
values of quality indexes and economic efficiency are shown
in Table 6. These results indicate that the actual economic
efficiency based on the general optimization process is USD
8816, while the value given by robust optimization is USD
9189 (4.23% higher). Robust optimization therefore has the
ability to limit the model uncertainty to a certain degree and
enhance the feasibility of the optimal solution in the actual
production process.
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Figure 5: The probability density distribution of film thickness and economic efficiency.

5. Use of Iterative Learning Control to Solve
the Problem of Model Uncertainty

Although robust optimization improves the feasibility of the
solution, some model uncertainty still exists: it is unknown
whether the robust optimization results represent optimal
solutions to this problem. It is therefore likely that the
economic efficiency can be improved further. To further elim-
inate the impact of themodel uncertainty, the iterative nature
of numerical optimization and the repetitive properties of the
coating process can be utilized. ILC is introduced to improve
the economic efficiency.

5.1. Principle of Iterative Learning Control. In terms of the
relationship between the input and output variables obtained
from the PLS, the system output 𝑦𝑇

𝑘
of the 𝑘th trial can be

expressed as

𝑦
𝑇

𝑘
= 𝑢
𝑇

𝑘
𝜃 + �̂�
𝑇

𝑘
= �̂�
𝑇

𝑘
+ �̂�
𝑇

𝑘
, (11)

where 𝑢𝑇
𝑘
is the input control trajectory of the 𝑘th trial; �̂�𝑇

𝑘

is the predictive value of system output; 𝑘 is the number of
iterations; 𝜃 is the linear regressionmatrix coefficient between
the input and output control trajectories obtained from the
PLS algorithm; and �̂�𝑇

𝑘
is the predictive model error of the 𝑘th

trial.
Considering the influence of the establishedmodel on the

system, the purpose of ILC is to reduce the impact of model
uncertainty by handling the operating variables between the
trials and ensuring that the system output follows the desired
value. To enable the system output to attain the desired
value as early as possible and obtain the preferred input
control trajectory precisely and stably, we solve the following

quadratic form, based on the predictive model, to renew the
input control trajectory from the 𝑘th trial to the (𝑘+1)th trial:

min
Δ𝑢𝑘+1


Δ�̂�
𝑇

𝑘+1



2

𝑄
+
Δ𝑈𝑘



2

𝑅
, (12)

where 𝑄 = 𝑞 × 𝐼
𝑛
, 𝑅 = 𝑟 × 𝐼

𝑛
(𝑟 and 𝑞 are positive scalars,

and 𝐼
𝑛
is an 𝑛-dimensional positive definite diagonal matrix),

and �̂�
𝑇

𝑘+1
= 𝑦
𝑇

𝑑
− �̂�
𝑇

𝑘+1
= 𝑦
𝑇

𝑑
− 𝑢
𝑇

𝑘+1
𝜃, and 𝑦

𝑇

𝑑
is the desired

system output trajectory. This can be determined by taking
the derivative with respect to (12):

Δ𝑢
𝑇

𝑘+1
= �̂�
𝑇

𝑘
𝑄𝜃 (𝜃

𝑇
𝑄𝜃 + 𝑅)

−1

. (13)

Using (13), the increment Δ𝑢𝑇
𝑘+1

is calculated from the
output prediction error �̂�𝑇

𝑘
of the 𝑘th trial. Because an error

exists between the established predictivemodel and the actual
process, it is necessary to amend this value using the actual
error 𝑒𝑇

𝑘
of the systemoutput.The auxiliary variable trajectory

of the (𝑘 + 1)th trial can be revised to be

Δ𝑢
𝑇

𝑘+1
= 𝜆
𝑘
𝑒
𝑇

𝑘
𝑄𝜃 (𝜃

𝑇
𝑄𝜃 + 𝑅)

−1

, (14)

and then

𝑢
𝑇

𝑘+1
= 𝑢
𝑇

𝑘
+ 𝜆
𝑘
𝑒
𝑇

𝑘
𝑄𝜃 (𝜃

𝑇
𝑄𝜃 + 𝑅)

−1

, (15)

where 𝜆
𝑘
is the weight factor. The rate of convergence can

be adjusted by changing the value of 𝜆
𝑘
. Equation (14)

gives the iterative calculation of the increment Δ𝑢𝑇
𝑘+1

, which
guarantees that the error of system output 𝑒𝑇

𝑘
converges

gradually.
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5.2. Iterative Learning Control Applied to the Color-Coating
Production Process. In the actual production process, certain
requirements of the quality indexes keep the film thickness
within strict boundaries; however, the basic algorithm of
traditional ILC does not have the ability to solve optimization
problems with constraints. To overcome this problem, we
attempted to analyze the relationship between the predictive
models of film thickness and economic efficiency and deter-
mine the special relationship between them. Combining (6)
and (7), the economic efficiency 𝐽 can be denoted by𝐻

1
, 𝑢
2
,

𝑢
3
, and 𝑢

4
:

𝐽 = 𝑓 (𝐻
1
, 𝑢
2
, 𝑢
3
, 𝑢
4
)

= −927.52𝐻
1
+ 1986.55𝑢

2
− 3.84𝑢

3
+ 56.94𝑢

4

+ 14608.87.

(16)

From (16), it can be seen that

𝜕𝑓

𝜕𝐻
1

= −927.52 < 0, (17)

so the value of economic efficiency is inversely proportional
to that of the film thickness. In addition, from (6) and (7), it
can be concluded that

𝜕PLS
1

𝜕𝑢
1

𝜕PLS
2

𝜕𝑢
1

< 0,

𝜕PLS
1

𝜕𝑢
2

𝜕PLS
2

𝜕𝑢
2

< 0,

𝜕PLS
1

𝜕𝑢
3

𝜕PLS
2

𝜕𝑢
3

< 0,

𝜕PLS
1

𝜕𝑢
4

𝜕PLS
2

𝜕𝑢
4

< 0.

(18)

According to (17) and (18), under conditions of keeping
the operating variables 𝑢

2
, 𝑢
3
, and 𝑢

4
constant, the economic

efficiency will increase with decreasing film thickness. In
addition, the effects of the operating variables on film
thickness and economic efficiency show opposite trends.
Therefore, if we want to achieve optimal economic efficiency,
the film thickness should be as thin as possible. This con-
clusion is not only derived from this theoretical analysis,
but also verified through production experience. There is
a constraint for the film thickness in actual production—
it cannot be infinitely decreased; the optimized economic
efficiency should therefore correspond to the minimum
practical value of film thickness. However, this optimal
economic efficiency cannot be obtained by directly tracking
the minimum value of film thickness because there are
multiple sets of operating variables corresponding to this
minimum value; that is, the minimum value of film thickness
can correspond to multiple values of economic efficiency by
adjusting the operating variables. The economic efficiency
obtained by directly tracking the minimum value of film
thickness may therefore not provide the optimal solution.

Given the specific relationship between economic effi-
ciency and film thickness, the present work proposes a

method of transforming this optimal control problem with
quality constraints into a double objective optimization
control problem. In the ILC process, the two objectives
(economic efficiency and film thickness) are traced simulta-
neously; the drawback that ILC cannot solve an optimization
problem with constraints is overcome by treating the film
thickness as one of the tracking targets. The system outputs,
therefore, consist of film thickness 𝐻

1
and economic effi-

ciency 𝐽. The double objective optimization problem can be
described by the following form:

min 𝑞
1

𝐽𝑑 − 𝐽


2

+ 𝑞
2

𝐻1min − 𝐻1


2

+ ‖Δ𝑈‖𝑅 , (19)

where 𝑞
1
and 𝑞

2
are the weights of economic efficiency and

film thickness in matrix 𝑄, respectively; 𝐽
𝑑
is the desired

value of economic efficiency; and𝐻
1min is the minimum film

thickness.
Using the above analysis, the tracking target of film thick-

ness is set to the minimum value (𝐻
1𝑑
= 𝐻
1min = 10 𝜇m); but

setting the tracking target of economic efficiency is difficult.
Exceeding economic efficiency settings will lead to the film
thickness exceeding the restricted range while lower settings
will reduce the economic efficiency of actual production,
so the tracking target of economic efficiency cannot be set
optionally. The actual value of film thickness based on the
optimal operating variables is greater than 10𝜇m, whether
determined by robust or general optimization, as shown in
Tables 4 and 6. Under the current operating variables, the
economic efficiency is first calculated with an assigned film
thickness of 10 𝜇m. Thereafter, the increment of economic
efficiency is calculated using the following equation:

Δ𝐽 = 𝑓 (𝐻
1act, 𝑢2, 𝑢3, 𝑢4) − 𝑓 (𝐻1min, 𝑢2, 𝑢3, 𝑢4) , (20)

where 𝐻
1act is the actual film thickness based on the opti-

mized results;𝐻
1min is the minimum value of film thickness,

and𝐻
1min = 10 𝜇m, which gives Δ𝐻

1
= 𝐻
1act − 𝐻1min.

The tracking target of economic efficiency 𝐽
𝑑
can there-

fore be set as

𝐽
𝑑
= 𝐽
𝑑𝑝
+ Δ𝐽, (21)

where 𝐽
𝑑𝑝

is the previous desired economic efficiency.
With this determination of tracking target of economic

efficiency, ILC can be used to simultaneously trace the targets
of economic efficiency and film thickness. When the actual
economic efficiency approaches the target value 𝐽

𝑑
(𝐽
𝑑
− 𝐽 <

𝜀
1
), attention should be given to the convergence of the film

thickness and the value of Δ𝐻
1
. Here 𝜀

1
has a small positive

value, a factor that decides whether to carry out the next deci-
sion regarding the renewal of the tracking target of economic
efficiency. In this study, a threshold level 𝜀

2
is used as the

factor to decide whether to sequentially increase the tracking
target of economic efficiency. If the value of Δ𝐻

1
is greater

than 𝜀
2
when the actual economic efficiency approaches

the desired value 𝐽
𝑑
, that is, the condition 𝐽

𝑑
− 𝐽 < 𝜀

1
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Figure 6: Membership functions of the errors.

is met, then the tracking target of economic efficiency is
increased once again and is updated using

Δ𝐽
𝑙+1

= 𝑓 (𝐻
1act,𝑙, 𝑢2,𝑙, 𝑢3,𝑙, 𝑢4,𝑙)

− 𝑓 (𝐻
1min, 𝑢2,𝑙, 𝑢3,𝑙, 𝑢4,𝑙) ,

𝐽
𝑑,𝑙+1

= 𝐽
𝑑,𝑙
+ Δ𝐽
𝑙+1
,

(22)

where 𝑙 is the renewal number for the economic efficiency (𝑙 =
0, 1, 2, 3, . . .).

ILC is then applied to improve the economic efficiency
of actual production process. The optimization problem is
expressed as

min 𝑞
1

𝐽𝑑,𝑙 − 𝐽𝑙


2

+ 𝑞
2

𝐻1min − 𝐻1,𝑙


2

+
Δ𝑈𝑙

𝑅
. (23)

In thisway, the repetitive ILCprocesswill always continue
until the value of Δ𝐻

1
is less than or equal to 𝜀

2
. One can

therefore see that the present work takes the approach of
enhancing the tracking target settings of economic efficiency
or updating its desired values several times until the actual
film thickness is close to its minimum value.

After determining how to set the target of economic
efficiency, the next thing to consider is how to precisely and
rapidly converge the economic efficiency and film thickness
to the set goals. As is known, the convergence rate can be
changed arbitrarily by varying the value of weight 𝑄 [30]:
a larger value will increase the rate of convergence. It is
assumed that the weight of economic efficiency is 𝑞

1
(0 ≤

𝑞
1
≤ 𝛼) and the weight of the film thickness is 𝑞

2
= 1 − 𝑞

1
.

The convergence rates of economic efficiency can be changed
by adjusting the weight 𝑞

1
. The convergence rate of economic

efficiency will increase as weight 𝑞
1
increases, but if 𝑞

1
is set

as an excessive constant, the control of film thickness will
be ignored, which results in film thickness being out of its
restrained range. In such cases, if the film thickness is kept

Table 7: Fuzzy control rules.

𝑞
1

𝐸𝐽

𝐸𝐻 NB NM NS Z PS PM PB
NB NB NB NB NB NB NB NB
NM PS PS PS PM PB PB PB
NS PS PS PM PM PB PB PB
Z PM PM PM PM PB PB PB
PS PM PM PM PM PB PB PB
PM PB PB PB PB PB PB PB
PB PS PS PS PS PS PS PS

within its restrained range, then the economic efficiency will
be lower. On the contrary, if 𝑞

1
is too small, then economic

efficiency will be ignored in the ILC process compared with
film thickness and its convergence rate will be too slow. This
implies a lower economic efficiency in actual production.The
value of 𝑞

1
therefore changes constantly in the ILC process.

When the tracking errors of the economic efficiency and film
thickness are high, the value of the weight should also be
high. Moreover, the value of the weight should decrease as
the tracking error of film thickness decreases to ensure that
the film thickness is kept within the range of its constraints.

Based on this principle, the idea of fuzzy adjustment is
introduced to adjust the weight 𝑞

1
, which enables economic

efficiency and film thickness to converge rapidly to their
desired values. The fuzzy adjustment rules are shown in
Table 7, where EH and EJ represent the absolute values of
the tracking errors of film thickness and economic efficiency,
respectively. The membership functions of the absolute error
values of film thickness and efficiency in the first stage of the
ILC process are shown in Figure 6. In brief, the program flow
diagram of the proposed ILCmethod to overcome thismodel
uncertainty is shown in Figure 7.
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The desired economic efficiency Jd,l+1
is calculated by (22), and the desired film thickness is

H1d = H1min

ΔH1 < 𝜀2

Jd,l+1 − Jact,k+1 < 𝜀1

Jd,l+1 − Jact,k < 0

ΔH1 < 0
k = k + 1

k = k + 1

ΔH1 = H1act,k+1 − H1min

l = l + 1

H1act,l = H1act,k+1
ul = uk+1

The tracking error eTk = [H1d − H1act,k, Jd,l+1 − Jact ,k]
T

The values of q1, q2 are calculated according to the fuzzy rule

The operating variable uk+1 is calculated by (15)
and the actual values Jact,k+1, H1act,k+1 are obtained

Jact,0 , H1act,0 is obtained (by mechanism models), Jd,0 = Jact,0

Figure 7: Program flow diagram of iterative learning control.

Figures 8 and 9, respectively, show the evolutions of
economic efficiency and film thickness from batch to batch
based on ILC. The red curves in the figures describe their
evolutions based on fuzzy parameter adjustment and the
other curves show the trajectories of evolutions when 𝑞

1
is

set at various fixed values. These simulation curves indi-
cate that the rate of convergence of economic efficiency
increases as 𝑞

1
increases, but if the value of 𝑞

1
is too large

(𝑞
1
= 0.9, e.g.), the convergence rate will be so fast that

the film thickness will exceed the restrained range or the
economic efficiency will be lower when the constraint of
film thickness is satisfied; conversely, if the value of 𝑞

1
is

too small (𝑞
1

= 0.1), the convergence rate will be too
slow, which leads to lower economic efficiency. The idea of
fuzzy adjustment is therefore introduced to adjust the value
of 𝑞
1
and then improve the value and convergence rate of

economic efficiency (shown as the red curves in Figures 8 and
9).
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Figure 8: Evolution of economic efficiency based on iterative
learning control.
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Figure 9: Evolution of film thickness based on iterative learning
control.

The initial values of economic efficiency and film thick-
ness are USD 9189 and 10.39 𝜇m, respectively. Based on the
proposed ILC method, the first tracking target of economic
efficiency is USD 9550. After about five batches, the economic
efficiency of actual production achieved the first tracking
target, and accordingly the film thickness was reduced to
10.2 𝜇m. In the same way, after updating the tracking target
of economic efficiency several times, the economic efficiency
converges to its optimal value of USD 9960, which corre-
sponds to a film thickness of 10 𝜇m. According to the average
economic efficiency of all batches, when 𝑞

1
is set as a constant,

the economic efficiency is lower than that based on fuzzy
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Figure 10: Comparison of economic efficiency between the pro-
posed method and MARTO.

parameter adjustment: this verifies the superiority of fuzzy
adjustment parameters.

In addition to ILC, modifier adaptation real-time opti-
mization (MARTO) [31, 32] is another optimization con-
trol method to address model uncertainty and a typical
adaptive optimization approach [33]. The principle of mod-
ifier adaptation is to modify the objective and constraint
functions between successive optimization iterations using
the so-called modifiers representing the difference between
the actual plant values and the predicted values in order
to generate set points converging to the true optimum of
the plant [31, 34]. However, MARTO has not been applied
to the optimization control of CCPP. In order to test the
performance of the proposed method in this paper, this
method is implemented and applied to the optimization
control of CCPP. The results have been compared with that
of the proposed method (Figures 10 and 11). The simulations
reveal that the method proposed in this paper was superior
to MARTO in handling the model uncertainty of CCPP.

6. Conclusions

In this paper, an effective optimization control strategy for
the CCPP is proposed. First, a mechanistic model of CCPP
is introduced to simulate the actual production process and
produce the process data. Predictive models of film thickness
and economic efficiency are then developed using a PLS
method. To manage the model uncertainty, the robust opti-
mization approach is introduced to obtain a preferred initial
solution and enhance the feasibility of the optimized solution.
The effectiveness of robust optimization is validated by
simulation results. To further refine the solution to themodel
uncertainty, ILC is applied. The film thickness, as the quality
indicator, is constrained in the CCPP. Because the traditional
ILC approach is not capable of dealing with constraints,
the constrained film thickness is transformed into one of
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Figure 11: Comparison of film thickness between the proposed
method and MARTO.

the tracking targets, defined such that optimal economic
efficiency is achieved when the film thickness reaches its
minimum value of 10 𝜇m.The desired film thickness is set at
10 𝜇m, and the goal setting of economic efficiency is updated
continuously based on the desired film thickness until this
reaches the desired value. Finally, the use of fuzzy parameter
adjustment is adopted, by which the economic efficiency
and film thickness are rapidly converged to their optimal
values under the constraint conditions.The simulation results
indicate that the proposed optimization control strategy can
effectively solve the model uncertainty problem in CCPP.
The proposed method provides a strong theoretical basis for
optimizing actual production parameters.

The proposed optimization control strategy is easy to be
implemented in practical engineering applications because it
requires less accuracy of the model. Parameter 𝜆

𝑘
should be

paidmore attention, since the setting of its initial value affects
the performance of the proposed method. An excessive value
of 𝜆
𝑘
may produce unqualified products at the beginning

of iterative learning control, while a rather small value may
generate a lower economic efficiency.Therefore, the initial 𝜆

𝑘

should be set according to the actual production situation.
Similarly, the fuzzy rules should also be made based on the
actual situation. Although this optimization control strategy
is proposed for CCPP, it can also be applied to the process
optimization problems, which possess one quality constraint.
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