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Mitochondrial origins of fractional control
in regulated cell death

Luis C. Santos', Robert Vogel%3, Jerry E. Chipuk'#4, Marc R. Birtwistle® >, Gustavo Stolovitzky® 23 &
Pablo Meyer® 23

Individual cells in clonal populations often respond differently to environmental changes;
for binary phenotypes, such as cell death, this can be measured as a fractional response.
These types of responses have been attributed to cell-intrinsic stochastic processes and
variable abundances of biochemical constituents, such as proteins, but the influence of
organelles is still under investigation. We use the response to TNF-related apoptosis inducing
ligand (TRAIL) and a new statistical framework for determining parameter influence on
cell-to-cell variability through the inference of variance explained, DEPICTIVE, to demonstrate
that variable mitochondria abundance correlates with cell survival and determines the
fractional cell death response. By quantitative data analysis and modeling we attribute this
effect to variable effective concentrations at the mitochondria surface of the pro-apoptotic
proteins Bax/Bak. Further, our study suggests that inhibitors of anti-apoptotic Bcl-2 family
proteins, used in cancer treatment, may increase the diversity of cellular responses,
enhancing resistance to treatment.

TDepartment of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA. 2IBM T.J. Watson Research Center, 1101
Kitchawan Road, Yorktown Heights, NY 10598, USA. 3 Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York,
NY 10029, USA. 4 The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, T Gustave L. Levy Place, New York, NY 10029, USA. ° Systems
Biology Center New York, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA. 6Department of Chemical and Biomolecular Engineering,
Clemson University, Clemson, SC 29634, USA. These authors contributed equally: Luis C. Santos, Robert Vogel. Correspondence and requests for materials
should be addressed to M.R.B. (email: mbirtwi@clemson.edu) or to G.S. (email: gustavo@us.ibm.com) or to P.M. (email: pmeyerr@us.ibm.com)

| (2019)10:1313 | https://doi.org/10.1038/541467-019-09275-x | www.nature.com/naturecommunications 1


http://orcid.org/0000-0002-0341-0705
http://orcid.org/0000-0002-0341-0705
http://orcid.org/0000-0002-0341-0705
http://orcid.org/0000-0002-0341-0705
http://orcid.org/0000-0002-0341-0705
http://orcid.org/0000-0002-9618-2819
http://orcid.org/0000-0002-9618-2819
http://orcid.org/0000-0002-9618-2819
http://orcid.org/0000-0002-9618-2819
http://orcid.org/0000-0002-9618-2819
http://orcid.org/0000-0001-5281-4661
http://orcid.org/0000-0001-5281-4661
http://orcid.org/0000-0001-5281-4661
http://orcid.org/0000-0001-5281-4661
http://orcid.org/0000-0001-5281-4661
mailto:mbirtwi@clemson.edu
mailto:gustavo@us.ibm.com
mailto:pmeyerr@us.ibm.com
www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

sogenic populations of cells in homogeneous environments

have the seemingly paradoxical capacity to generate many

unique cell states. This ability is found in many, if not all, types
of single-celled organisms and in the distinct cell types of mul-
ticellular organisms. For example, Bacillus subtilis cells were
shown to independently and transiently switch between vegeta-
tive and competent states!, hematopoietic progenitor cells can
differentiate into either erythroid or myeloid lineages?, and can-
cerous tissue maintain distinct subpopulations throughout the
course of disease3. A cell’s propensity for a particular state is
attributed to the intrinsic stochasticity of low-copy number bio-
molecular reactions*~® or extrinsic variations in the abundances
of its components, in all such cases’~%. Taken together, it is clear
that stochastic transitions of cell state, that are driven by non-
genetic sources of cell-to-cell variability (CCV), are fundamental
to the maintenance of single-cell populations, the function of
distinct tissues, and structure of clinical lesions in diseases such
as cancer.

One commonly studied source of CCV is protein abundance.
Its premier status as a dominant source of non-genetic CCV is
due to its stochastic production®1?, and the sensitivity of cellular
decision-making machinery to variations in their components.
For example, in biological signal transduction, information
regarding the cell’s environment is processed by a cascade of
biomolecular reactions. Variation from one cell to another in any
one of the corresponding biomolecules varies the signal magni-
tude across the population, making unique the cell’s perception of
environmental conditions and its corresponding response!l-14.
While it has been definitively shown that CCV in protein abun-
dance influences cellular decisions, little attention has been given
to other non-genetic sources of CCV.

There are numerous examples in which non-genetic and non-
protein sources of CCV are conjectured to impact biological
phenomena. For example, centrosome abundancel®, the size of
the Golgi apparatus!®, and mitochondria abundance!”’-20 all
have been shown to vary from cell to cell. To determine if
diversity in cell behaviors may be attributed to CCV in organelle
abundance, our study focuses on the role of mitochondria in the
context of TNF-related apoptosis-inducing ligand (TRAIL)-
induced apoptosis.

Indeed, the abundance of mitochondria per cell has been
shown to positively correlate with a cell's propensity for
apoptosis2’. The mechanism of this phenomena was attributed to
CCV in protein abundances, which were previously shown to
correlate with mitochondria abundance?!. However, in this study
we show through the analysis and interpretation of TRAIL dose
response curves that, in fully TRAIL-responsive cell lines, cell
survival correlates with a higher density of mitochondria and a
large portion of the CCV in cell death can be attributed to var-
iations in mitochondria abundances influencing the effective
concentrations of Bax/Bak on the mitochondrial surface.

Results

Mitochondria density correlates with resistance to TRAIL. To
assess whether mitochondria abundance correlated with single-
cell sensitivity to TRAIL-induced apoptosis (Fig. 1a), we mea-
sured the binary life-or-death status and the abundance of
mitochondria of individual cells by flow cytometry. During
extrinsic apoptosis, TRAIL stimulates cell death by binding to its
cognate death receptors on the cell surface, forming a complex
that activates Caspase 8 (Fig. la), the so-called initiator caspase
(IC). Active IC activates pro-apoptotic BH3-only proteins, which,
directly or indirectly, activate pro-apoptotic Bcl-2 family proteins
Bax/Bak. Active Bax/Bak can commit a cell to apoptosis by
translocating from the cytosol to the outer mitochondrial

membrane, where they oligomerize and form pores?223, which
allow for the diffusion of pro-apoptotic molecules from the
intermembrane space of the mitochondria into the cytosol?42>.
The pro-apoptotic activities of Bax/Bak are counteracted by pro-
survival Bcl-2 proteins such as Bcl-xL, which constantly retro-
translocates Bax/Bak from the mitochondria back into the
cytosol?%27, thus protecting cells from committing to apoptosis
by shifting relative subcellular localization of Bax/Bak?%%°. In
effect, these molecules dynamically regulate each other’s activity
so that the continuous values of TRAIL concentration can be
converted to a binary dead-or-alive response.

The human T-lymphoblastoid leukemia-derived cells (Jurkat),
a human breast adenocarcinoma cell line (MDA-MB-231), and
HeLa cells were exposed to different doses of TRAIL for 4h, a
time frame in which cells died readily but the single-cell
mitochondria abundances remained largely unchanged (Supple-
mentary Notes 1 and 2, Supplementary Figs. 1-4). For each dose
of TRAIL, we measured in single cells the abundance of
mitochondria and the cell state by concomitant labeling with a
fluorescent Annexin V and MitoTracker Deep Red and analysis
of flow cytometry measurements (FCM). Living cells, Annexin V
negative and MitoTracker high are well separated from the dead
cells, Annexin V positive and MitoTracker low and medium
(Fig. 1b, see Supplementary Fig. 1 for complete gating strategy).
Importantly, the fact that the living and apoptotic cell populations
shared almost no MitoTracker population led us to conclude that
the apoptosis process corrupted the MitoTracker signal. Conse-
quently, the apoptosis process precludes assessment of mitochon-
dria abundance by MitoTracker in Annexin V-positive cells.

From the FCM and our live cell gate we confirmed that Jurkat
and MDA-MB-231 cell lines were sensitive to TRAIL (Fig. 1c, f),
but HeLa cells were not as responsive (see Supplementary
Fig. 11). Furthermore, from fitting the Hill model to each dose
response we found that these cell lines had wvastly different
sensitivities (IC5p) to TRAIL, 3.81 +0.26 ng/mL for Jurkat cells,
76.4 + 8.77 ng/mL for MDA-MB-231 cells and more than 300 ng/
mL for HeLa cells. To facilitate comparison between cell lines, we
color coded the effective TRAIL dose so that we may track the
mitochondria abundance with the effective, as opposed to the
experimental, dose of TRAIL (Fig. lc, h and Supplementary
Fig. 11).

Next, we found that mitochondria abundance of living cells is
correlated with cell size, as measured by forward scatter (FSC)
(Fig. 1d, g). To eliminate analyzing effects due to cell size, as
opposed to mitochondria, we focused our attention to the
mitochondria density, p, defined as the MitoTracker signal
normalized to FSC signal. With these data we estimated the
probability density of single-cell mitochondria density in live cells
for each dose of TRAIL. Here we found that with successively
increasing doses of TRAIL the probability distribution of p
becomes increasingly enriched for cells with high mitochondria
density (Fig. le, h). Moreover, we found that the degree of the
enrichment is unique to each cell line—Jurkat cells were more
readily biased in their mitochondria density than were MDA-
MB-231 and Hela cells (for all HeLa cell analysis see
Supplementary Note 5 and Supplementary Fig. 11).

We hypothesize that the observed enrichment of cells with high
mitochondria density is established by a differential sensitivity of
single cells to TRAIL. An intuitive result considering that the
sensitivity of a signaling pathway to its cognate ligand is tuned by
the abundances of its components. In apoptosis for example, we
would expect that the number of TRAIL receptors on a cell’s
surface, the number of pro-caspase molecules, the number of Bax/
Bak molecules, the number of mitochondria, etc. contribute to
that cell’s response to a single dose of TRAIL. If each one of
these molecules varied from one cell to the next, the so-called
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Fig. 1 TRAIL administration enriches for cells with high density of mitochondria. a An overview of TRAIL-induced apoptosis. b Flow cytometry
measurements (FCM) of mitochondria (MitoTracker Deep Red) and phosphatidylserine (FITC-conjugated Annexin V) in Jurkat cells. Complete flow
cytometry gating strategy can be seen in Supplementary Fig. 1. The fractional response of Jurkat cells (¢) to TRAIL. Each color corresponds to a unique
fractional response to a specific TRAIL dose. Cell size measurements (FSC-A) in Jurkat cells (d) are correlated with mitochondria abundance (MitoTracker
Deep Red). The inset shows that the Pearson correlation marginally changes for each TRAIL dose. The probability density of mitochondria density (p) for
each dose of TRAIL that elicits a unique response in Jurkat cells (e). The fractional response of MDA-MB-231 cells to TRAIL (f). Cell size measurements
(FSC-A) in MDA-MB-231 cell (g) are correlated with mitochondria abundance (MitoTracker Deep Red). The inset shows that the Pearson correlation
marginally changes for each TRAIL dose. The probability density of mitochondria density (p) for each dose of TRAIL that elicits a unique response in MDA-
MB-231 cells (h). In (e) and (h) the single-cell measurements from each of the lowest three doses of TRAIL are aggregated prior to probability density
estimation (Violet). Visual inspection of the respective dose response curves suggests that these three doses of TRAIL are effectively identical. Data
presented with error bars represent the mean % one standard error of the mean over triplicate experiments

CCV, we should expect that the individual response of cells to
TRAIL are unique.

Indeed, the probability density of p shows that the endogenous
density of mitochondria varies from cell to cell (Fig. le, h). If each
cell’s sensitivity to TRAIL were anticorrelated with mitochondria
abundance, we would expect an enrichment of high mitochondria
density cells with TRAIL stimulation. Such an effect can be
quantitatively studied by using probability considerations. By
applying Bayes’ theorem we may associate the changes in the
probability density p with the quantitative change in the fraction
of living cells. From this simple property of probability, we were
able to develop a quantitative strategy to gauge whether the

observed endogenous variability of biological components are
responsible for functional population diversity.

Variability in all-or-none biological responses. As found in
other biological systems, e.g. MAPK and NF«B3031, the conver-
sion of a continuous input to a binary response limits the influ-
ence of CCV in cellular components to CCV in sensitivity to
perturbations. Also, previous methods have been developed to
determine how non-genetic CCV of protein levels influences the
fractional responses of cell fate decision in cell populations during
mitotic checkpoint signaling®? and apoptosis®3, but none takes

NATURE COMMUNICATIONS| (2019)10:1313 | https://doi.org/10.1038/541467-019-09275-x | www.nature.com/naturecommunications 3


www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

a
TRAIL
v *
*K
E 3
- Single cells
o}
[e]
a P(k > s)

'S = log ([TRAIL])

b
TRAIL
o® v -
o *%
—— - Singl I
o \\w | Ingle cells
< 7/ NN
o N P(k>5s)
1 b= >
S=log ([TRAIL])
c
o(n) = L
V3n
=
n

Fig. 2 Cell-to-cell variability in the binary response to TRAIL. Hill response
function with respect to TRAIL dose (blue) and the corresponding
probability density of the single-cell sensitivities (orange) for populations
with a low CCV and b high CCV. ¢ The theoretical correspondence between
the variance of single-cell sensitivities to TRAIL (¢) and the Hill coefficient
n. Here, (na, 6a) and (ng, o) represent the Hill coefficient and
corresponding single-cell variances from a and b, respectively

advantage of the information available in a full dose response
curve to perturbations. In apoptosis, each cell, with its unique
concentrations of molecular components, should require a
specific concentration of TRAIL to induce cell death. At the
population level the diversity in single-cell sensitivities to TRAIL
gives rise to the fractional control of cell death.

As an example, consider two separate ensembles of cells, one
with near-identical biomolecular composition (low CCV) and the
other with variable numbers of its components (high CCV).
In the scenario where all components are near equal, the
individual cells will undergo the life-death transition at nearly the
same dose of ligand (Fig. 2a). In contrast, when CCV is relatively
high, the individual cells of the ensemble will transition from live
to dead at diverse doses of TRAIL (Fig. 2b). The resulting
fractional control of the population response to TRAIL would
then take a steep or gradual sigmoid shape, respectively.

This interpretation of the empirical dose response curve
represents the cumulative distribution of single-cell sensitivities,
from which we may derive the corresponding probability density
of single-cell sensitivities. Indeed, from this simple interpretation,
the empirical dose response curve of binary biological responses
contains a complete statistical description of the functional
diversity in the population. Fitting this dose response to a Hill
function, we find that the mean sensitivity of single cells to a
perturbation is simply the logarithm of the ICsy, and the variance
of single-cell sensitivities to be inversely proportional to the
squared Hill coefficient (Fig. 2c).

Matching the dose response parameters to statistical quantities
is useful because now we may use the tools of probability theory
to analyze our data such as taking conditional moments. In the
context of TRAIL-induced apoptosis, we may ask what is the

average sensitivity of cells given a specific mitochondria density.
This statistical question is equivalent then to asking how does
the IC5y of individual cells changes with the mitochondria
density. Or we may ask, what is the variance of single-cell
sensitivities given that we measured mitochondria density, which,
intuitively, quantitatively measures the remaining diversity in the
population once we remove the contribution of mitochondria
density. With this information we may then compute the fraction
of the functionally relevant population diversity attributable to
a measured component.

Decomposing sources of CCV. Let us assume that the sensitivity
of cells to TRAIL is wholly dependent on the biological compo-
nents of the apoptotic signaling pathway. For simplicity let us
designate the mitochondria density p as x, and all other con-
tributing components as x1, X5, ..., X,,. A priori any mathematical
function that describes the intricate relationships of these com-
ponents and the dose of TRAIL to the single-cell sensitivity (k) is
unknown; however, we may expand this a priori unknown
function to an arbitrary order by

x = log(ICs) + Z kidlog(x;) + - -- (1)
i=0

where k; = dx/0log(x;)|,,, and &log(x;) = log(x;) — log((x;))
(see Supplementary Note 3 for details). The order in which we
expand to will dictate the degree of complexity we wish to
understand. If we limit our understanding to first order, then the
details of the specific pathway are bundled into phenomenological
parameters k;. If then we infer k; from data, we can estimate the
extent to which each component contributes to a cell’s sensitivity
to TRAIL.

Indeed, Eq. (1) provides a framework for constructing a single-
cell interpretation of the Hill model, which incorporates the
abundance of biological components with the stimulation
strength. The biological species are introduced into the Hill
model parameters by their influence on the first and second
statistical moments of single-cell sensitivities, x. For example,
incorporating our measurements of mitochondria density p to the
ICso amounts to computing the average sensitivity conditioned
on mitochondria density,

log(ICs(p)) = log(ICs) + kpalog(/’)- (2)

Then, in like fashion, the resulting Hill coefficient comes from
estimating the variance of sensitivities conditioned on mitochon-
dria density,

. 2 _ 322
P with Tei = kio;

5t @

where o? represents the variance of the ith biological component
and ¢2, is the variance of x attributed to species i. Note that in Eq.
(3) the sum is from 1 to m and consequently the diversity in
single-cell sensitivities attributable to mitochondria are absent. In
consequence, the removal of sources of CCV manifests as a
smaller term in the denominator of Eq. (3) and consequently
larger Hill coefficient. If we apply the moments from our first-
order expansion Egs. (2) and (3) to the Hill model, we arrive at
our single-cell Hill model,

P(alivelp, T) = (p/ (P (4)

k,n n

(p/(p))™"™ + ([T]/1C50)"™
Equation (4) gives us a detailed understanding of the influence
of mitochondria density, or in general any measured components.
If, for example, mitochondria density does not contribute to the
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cell’s sensitivity to TRAIL then k, = 0 and Eq. (4) reduces to the
standard dose response Hill function. If however k, is not zero
and positive, then mitochondria density effectively promotes cell
survival, and if k, is negative then it increases the effectiveness of
TRAIL. Together we can probe the influence of each measured
component at unprecedented resolution. We call this strategy
DEPICTIVE, which is an acronym for DEtermining Parameter
Influence on Cell-to-cell variability Through the Inference of
Variance Explained.

To see this in detail, let us consider an example of an arbitrary
pathway consisting of five components that takes s as input and
provides a binary output y (Fig. 3a). For each dose s of the
synthetic stimulus we generate virtual single-cell FCM (Fig. 3b)
consisting of a subset of each cell’s constituents (x, z, and g).
Using these data, we compute the population response to the
stimulus, and from the single-cell nature of the data interrogate
the influence of each molecular constituent. In Fig. 3¢ we observe
the influence of each constituent on the response. First, we see
that the distribution of biological species x does not change when
we subset single cells upon their state y (Fig. 3c). Consequently,
the contribution of species x will negligibly contribute to each
cell’s sensitivity to s, a fact corroborated by P(y =1|x, s) being
weakly dependent on the abundance of x. Unlike species x,
species z and g do influence each cell’s behavior, which is
apparent in analyzing the single-cell data. Intuitively, the changes
of the distribution of molecular components conditioned by the
cell state are the signal required for inferring each parameter k;
from Eq. 1.

The inference each of the k; in the simulation data is trivial,
because we have measurements of each biological component

o ¥
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for each cell state y. Uniquely, our experimental data consist of
MitoTracker measurements from live cells exclusively. This was
because MitoTracker Deep Red signal is dependent on the
electro-chemical properties of the mitochondria, which are
different for live and dead cells. To infer the values of k from
such data we developed a new inference strategy for semi-
supervised logistic regression and embed it as a module within the
DEPICTIVE statistical framework (see Supplementary Note 3.3
for details). We apply our method to the synthetic data that is
analogous to our measurements, that is the measurements
associated with each virtual cell with a binary label y=1.
Quantitatively, we see that we can infer the constants k; (Fig. 3d),
the corresponding variances explained (Fig. 3e), and lastly the
dependence of the single-cell sensitivities on each biological
component (Fig. 3f).

Mitochondria density is a source of CCV. We apply our new
statistical framework, DEPICTIVE, to quantitatively dissect the
dependence of single-cell sensitivities to TRAIL with mitochon-
dria density (Fig. le, h). We see that the fractional response of the
Jurkat cells to each dose of TRAIL, P(alive|p, T) is strongly
dependent on mitochondria density (Fig. 4a, see Supplementary
Figs. 5-7 for goodness-of-fit analysis). Moreover, we see that the
single-cell dose response curve translates from low TRAIL to high
TRAIL doses with increasing mitochondria density (Fig. 4b). The
MDA-MB-231 cells' fractional response (Fig. 4c, d) is less steep
than that of Jurkat, indicating that the single-cell sensitivities of
MDA-MB-231 cells to TRAIL are not as sensitive to CCV in
mitochondria density as Jurkat (see Supplementary Figs. 8-10 for

C
— Fit
1.0 Q Stimulation P(xly=1, s)
— % A
2 g / =
~— [<}
I 05 & /\ S|l
> . ALY .
a [ ” -
0.0 P(zly=1, s)
T T T ’('nt‘
108 100 10| 4| = ‘/
. o L
Stimulus (s) o / \ &' -
f l ] ]
P(gly =1, s)
-5 : o
8 10" 5 P =
&_3/ $ /\ ] /
= 10073 N\ & .
3 3 I g ©
O 107" g~
1077 100 10'
i(x, z or q)

Fig. 3 Decomposing sources of cell-to-cell variability. a Schema for a simple cellular response, y € {0, 1}, to the activation of pathway components w;, wy, x,
z, and g representing the natural logarithm of abundances of each biological constituent subject to a dose of stimulus s. b Single-cell data were simulated to
demonstrate the feasibility of CCV decomposition by sampling virtual cells (see Supplementary Note 3.3.4 for details). € The dose response of N =
10,000 simulated cells and n =100 replicate experiments in which k, = 0.25, kW1 =0.5k,=1k;=15,and kWz = 2. Error bars represent + one standard
deviation about the mean. The probability density of the components given the cell state being live or dead from a single replicate experiment reveals how
the logarithm of abundances of each biological entity correlates with cell state (left column). We further examine the dependence of cell survival on TRAIL
by examining the probability of the cell state, y =1, given the dose, the DEPICTIVE inferred parameters associated with a single replicate simulation, and
the abundance of each biological component (right column). Quantitative assessment of the true (black) and the average DEPICTIVE inferred (gray)
parameters k,, k;, k; * one standard deviation (d) and the corresponding variance explained by each component (e). f The scaling of the IC5(i) withi=x, z,

or g = one standard deviation
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Fig. 4 CCV in mitochondria density influences fractional response to TRAIL. The inferred fractional response determined by the single-cell Hill model and
the average model parameters, over triplicate experiments, for Jurkat cells (a, b) and MDA-MB-231 cells (¢, d) as a function of p and TRAIL dose,
respectively. (e) The dependence of single-cell sensitivities to TRAIL as a function of mitochondria abundance computed from the inferred model
parameters. f The fraction of the variance in single-cell TRAIL sensitivities explained by CCV in mitochondria density. Error bars represent standard error
of the mean of experimental triplicates. Detailed analysis of each replicate set are presented in Supplementary Figs. 5-10

goodness-of-fit analysis), a result that can be summarized by
plotting the ICso(p) for each cell line (Fig. 4e). Moreover, we find
that 30% and 2% of the diversity in single-cell sensitivities to
TRAIL may be attributed to mitochondria density in Jurkat and
MDA-MB-231 cells, respectively, while less than 2% is attributed
to side scatter (SSC) that functions as an internal control (Fig. 4f
and Supplementary Note 4 Supplementary Tables 1-4). Impor-
tantly, surviving cells with higher mitochondria density have
stable levels of Bak at all TRAIL doses, indicating that mito-
chondria density is indeed the important factor for cell survival
(Supplementary Figs. 14 and 15).

Bax/Bak concentration depends on mitochondria surface area.
To gain mechanistic insight into the functional role of mito-
chondria density in the cell death decision, we developed a
coarse-grained dynamic model of apoptosis (Fig. 5a). Our
description aims to reproduce the dominant dynamical features
of initiator caspase reporter protein (IC-RP) first measured and
published by ref. 24, these being a slow but accelerating initial
increase of IC followed by a fast increase in both IC and the
Effector Caspase (EC). To such end our model includes (i) a slow
auto-catalytic increase in IC activation, (ii) a quasi-steady-state
approximation for Bax/Bak pore formation dynamics and
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Fig. 5 Mechanism of ICsq dependence on mitochondria density. a Simple model of apoptosis. The dynamics of initiator caspase reporter protein (IC-RP)
from ref. 24 and the model-inferred dynamics corresponding to b MDA-MB-231 and ¢ Jurkat cell lines. The model bifurcation diagrams for [TRAIL] = O ng/
mL in d MDA-MB-231 and e Jurkat cells. The influence of TRAIL dose on the model fixed points for f MDA-MB-231 and g Jurkat cells. The dependence of
single-cell sensitivities to TRAIL on p for h MDA-MB-231 and i Jurkat cells. The ICsq was estimated from Hill function fits of simulated data (blue circles),
which were then fit to a power law (black line). Simulations consisted of 100 cells per 20 doses of TRAIL and 12 densities of mitochondria considered

mitochondrial outer membrane permeabilization (MOMP), and
(iii) the strong positive feedback from EC to IC (see Supple-
mentary Note 6 for details, Supplementary Tables 6 and 7 for
variable definitions and Supplementary Table 8 and Supple-
mentary Figs. 12 and 13 respectively for model parameter values
and inference approach).

We conjectured that TRAIL-induced activation of IC in Jurkat
and MDA-MB-231 cells match the biphasic increase of IC-RP
measured in HeLa cells?>, but both differ in their propensity to
form Bax pores (Fig. 5b, c). Specifically, we consider the unique
susceptibilities of Bax/Bak pore formation to Bcl-2-mediated
inhibition for each cell line. As Bax/Bak pores reside in the
mitochondria, the effective Bax/Bak concentration for a given
amount of Bax/Bak decreases with mitochondria density.
Implementing this insight into the model equations we see that
the influence of mitochondria density can be understood through
the corresponding bifurcation diagrams (Fig. 5d, e).

The dynamic properties of IC in MDA-MB-231 cells in the
absence of TRAIL are either bistable or monostable depending on
mitochondria density. In these diagrams, the high IC fixed point
corresponds to cells that have integrated sufficient signal for
MOMP and consequently represent apoptotic cells. Cells with
relatively low mitochondria density are bistable and may undergo
apoptosis only if their IC abundance exceeds a critical amount

designated by the dashed line (Fig. 5d). This bistable region does
not preclude cell death—cells may acquire sufficient abundances
of IC for death by fluctuations in biomolecular reactions. Indeed,
the likelihood of such an event decreases with the difference of IC
abundance between the unstable fixed point (dashed line) and
low IC stable fixed point (solid line). Meanwhile, cells with
relatively high mitochondria density only have a single fixed point
of low IC, indicating that these cells will never spontaneously
undergo apoptosis in the absence of TRAIL.

In contrast, the bifurcation diagram representing Jurkat cells
shows three distinct regions (Fig. 5e): (1) cells with low density
of mitochondria having a single fixed point of high IC, where
consequently all die; (2) cells with medium density of
mitochondria that are bistable, for which the fractional response
to TRAIL decreases with the concomitant increase in the
IC unstable fixed point and mitochondria density; and (3) cells
with high density of mitochondria that are monostable with
low IC abundances, and hence all cells survive. Next, we extend
these analyses to the full range of TRAIL doses.

The influence of increasing TRAIL dose in each cell type-
specific parameterized model is evident in their bifurcation
diagrams. MDA-MB-231 cells respond to TRAIL by increasing
the IC abundance of the lower fixed point (Fig. 5f). In doing so,
cells with mitochondria density in the bistable region equally
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increase their susceptibility to cell death from fluctuations in IC
abundance. The Jurkat model’s response to TRAIL exhibits an
increase of the density of mitochondria that separates the
monostable high and bistable IC abundance regions (Fig. 5g).
Therefore, an individual cell’s mitochondria density determines
its sensitivity to TRAIL-induced cell death. Together, these
model-based observations propose an explanation for how CCV
in mitochondria density influences the response of Jurkat but to a
lesser extent MDA-MB-231 cells to TRAIL (Fig. 5h, i).

Sensitizing MDA-MB-231 cells to CCV in mitochondria den-
sity. While inspecting the model parameters associated with each
cell type, we noticed that MDA-MB-231 cells were more sus-
ceptible to Bcl-2-mediated inhibition of Bax/Bak pore formation
than Jurkat. We hypothesized that this effect would be abated by
incorporating a small-molecule inhibitor to Bcl-2 in MDA-MB-
231 cells (Fig. 6a, see Supplementary Note 6.1 for derivation).
By incorporating Bcl-2 inhibition, we found that the sensitivity of
the fractional response of the cell population to TRAIL increases
(Fig. 6b). Furthermore, and as intuited, Bcl-2 inhibition increased
the dependence of single-cell sensitivities to TRAIL on mito-
chondria density (Fig. 6d). We corroborated these theoretical
predictions by measuring the influence of the clinically relevant
small-molecule inhibitor of Bcl-2 family proteins ABT-26334
(Fig. 6¢, e, see Supplementary Figs. 8-10 for goodness-of-fit
analysis). Remarkably, Bcl-2 inhibition alone increased the var-
iance of sensitivities attributable to mitochondria density from
about 2% to between 10 and 25% (Fig. 6f), but had no effect on
HeLa cells (see Supplementary Table 5) although for the lower
values the variance attributed to the internal SSC control was
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barely lower (see Supplementary Note 4.2 and Supplementary
Tables 2-4).

Discussion

We have unveiled a connection in the CCV of mitochondria
density to the fractional control of TRAIL-induced cell death.
Importantly, we find that the dependency of single-cell sensitiv-
ities to CCV in mitochondria abundance is cell line dependent.
Presumably this dependence originates in the unique composition
of components across cell lines. In that, the functional manifes-
tation of CCV in mitochondria on the sensitivity of single cells to
TRAIL-induced apoptosis is dependent on the relative abundance
and diversity of mitochondria in relation to the other biological
constituents in the apoptosis pathway (see Supplementary Fig. 16
for BH3-like protein levels in different cell lines). Indeed, Jurkat
cells readily responded to TRAIL and its ICs, scaled with mito-
chondria abundance, MDA-MB-231 cells showed scaling and
responded readily to TRAIL only in the presence of a pan-Bcl-2
inhibitor, while scaling was never observed and only a minority of
HeLa cells responded to TRAIL even during Bcl-2 inhibition.
Consequently, the seemingly contradictory results of our study
and thoset of Marquez-Jurado? are manifestations of the unique
biological systems being studied. In particular, it is possible that
Mairquez-Jurado's observations could be highly modified when
considering mitochondrial density and not mass given that it is
known that gene expression levels can change with cell size. We
also think that our observations are highlighting a different phe-
nomenon than Marquez-Jurado et al, who are measuring a
mitochondrial mass dependence in HeLa cells that have died as a
function of TRAIL dose, but show that, as in our setup, the mean
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Fig. 6 Plasticity in fractional response to TRAIL. a Bcl-2 inhibitor reduces the effective abundance of Bcl-2 by formation of Bcl-2:Bcl-2 inhibitor complex.

b Simulation results of the population ICI3AT
TRAIL

by a square, circle or triangle marker—of the populationICs

response to Bcl-2 inhibition in MDA-MB-231 cells. ¢ Experimental measurement sets—uniquely represented
response to Bcl-2 inhibition for MDA-MB-231 cells. d Estimated ICsq for changing p from

MDA-MB-231 parameterized model simulations. e The experimental dependence of ICso on p, from a single representative experiment of three replicate
experiments (Supplementary Figs. 8-10), as computed in Fig. 4e for [0, 1, 10, 20] pM doses of the Bcl-2 Inhibitor ABT-263. f The fraction of the observed
diversity in single-cell sensitivities explained by mitochondria density CCV from triplicate experiments. Note that all simulations were conducted with
100 cells for each of the 20 doses of TRAIL, 12 densities of mitochondria, and 9 doses of inhibitor
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mitochondria abundance among the live cells remains relatively
constant and independent of the dose (see Fig. 2a in their
manuscript and Supplementary Note 5 and Supplementary
Fig. 11). In addition, we infer that mitochondria density being the
main driver for cell survival is also complementary to results
showing that Bax/Bak mitochondrial localization determines
apoptosis?829:3>,

Our findings were established by a new statistical framework,
DEtermining Parameter Influence on Cell-to-cell variability
Through the Inference of Variance Explained, namely DEPIC-
TIVE, we developed to measure the impact of CCV on the binary
response of cells to perturbation. It is composed of two parts, the
first part is to infer the parameters of the logistic regression model
when data from one or both of the binary cell state labels are
available, while the second part provides the mathematical bases
for interpreting the logistic regression model parameters to
compute useful quantities.

Indeed, inferring the parameters of a logistic regression model
from data is commonplace. However, it is only commonplace when
data representative of both of the corresponding binary states are
well established. To our knowledge, there is no method to infer
these parameters from data where only one of the binary classes is
readily available. In our study, data from live and dead cells were
unavailable because our experimental label of mitochondria abun-
dance, MitoTracker Deep Red, was not reliable for dead cells.

The second part of DEPICTIVE statistical framework is to use
the logistic model parameters to estimate the contribution of the
measured biological component(s) to the variable binary response
of single cells. Applying this tool, we found that mitochondria
density accounts for nearly 30% of the variable response to
TRAIL in Jurkat cells and varies from 2% to up to 25% in MDA-
MB-231 cells when Bcl-2 is inhibited. Conversely, HeLa cells
showed no mitochondrial density dependence. Together, the two
parts of the DEPICTIVE statistical framework can extract
quantitative insights into sources of CCV.

We attribute the measured connection of TRAIL sensitivity and
mitochondria density to the dilution of Bax/Bak on the outer
mitochondrial membrane in cells by mathematical modeling.
From the quantitative insights of DEPICTIVE, we found that the
functional manifestation of mitochondrial CCV is plastic—readily
and predictably tunable by small-molecule inhibitors of Bcl-2. It is
plausible that this plasticity is a tool accessible to cells, and
therefore may be co-opted by pathological cellular populations.
For example, high mitochondria abundance can be a non-genetic
mechanism of resistance to pro-apoptotic therapeutics. Incor-
poration of such knowledge may be an important consideration in
developing therapeutic strategies, such as combination therapies.

The observed advantage of cells with high mitochondria den-
sities may manifest in time scales much longer than the life span
of a single cell or the disease in a human, but propagate to the
long time scales of evolution. To date, the evolutionary hypothesis
of mitochondria is as a symbiotic bacterium inside a proto-
eukaryotic cell3°, exchanging safety for energy. However, another
such evolutionary advantage may be expected, that this symbiosis
would create a survival advantage such as the one described here.
These results suggest that environmental constraints can select
subpopulations not only based on genetic composition, protein
abundances, but also based on CCV in organelle abundances.

Methods

Cell culture. Jurkat E6-1 cells originate from a male human acute T-cell Leukemia
and were purchased from ATCC (TIP-152). Cells were cultured in RPMI-1640
medium (Corning cat. 10-040-CV) supplemented with 10% heat-inactivated fetal
bovine serum (Corning cat. 35-011-CV), 2 mM L-glutamine (Corning cat. 25-005-
CI), and 1 mM sodium pyruvate (Corning cat. 25-000-CI). Cells were cultured at

37°C in 5% CO; in a humidified incubator and maintained at a cell density not
exceeding 3 x 10¢ by addition of fresh medium, or by centrifugation with sub-
sequent resuspension at 1 x 10° cells/mL.

MDA-MB-231 cells originate from a human female adenocarcinoma that was
harvested from a metastatic site in the breast and purchased from ATCC (no.
HTB-26). Cells were cultured in DMEM medium (Corning cat. 10-017-CV)
supplemented with 10% fetal bovine serum and 2mM 1-glutamine (Corning cat.
25-005-CI). Cell were cultured at 37 °C in 5% CO, in a humidified incubator and
subcultured every 2-3 days with 0.25% trypsin (Corning cat. 25-053-CI) to
maintain sub-confluent density.

HeLa cells were purchased from ATCC (ATCC CCL2). Cells were cultured in
DMEM medium (Corning cat. 10-017-CV) supplemented with 10% fetal bovine
serum and 2 mM 1-glutamine (Corning cat. 25-005-CI). Cells were cultured at
37°C in 5% CO; in a humidified incubator and subcultured every 2-3 days with
0.25% trypsin (Corning cat. 25-053-CI) to maintain sub-confluent density.

Apoptosis assay and data acquisition. Jurkat cells were pelleted by centrifugation
for 5min at 100 x g and then resuspended in 1x PBS and stained with 200 nM
MitoTracker Deep Red (Life Technologies, cat. M22426) for 10 min at 37 °C. Mito-
Tracker staining was quenched with full cell culture medium, followed by cen-
trifugation for 5 min at 100 x g. Cells were resuspended in cell culture media at a
density of 1 x 10° per mL, in which 1 x 10° were transferred to each experimental well
of a flat-bottom 96-well plate. Cells were then incubated at 37 °C for 4 h with different
doses of Superkiller TRAIL (Enzo Life Sciences cat. ALX-201-115) and/or ABT263
(ApexBio cat. A3007). After drug treatment, cells were transferred to a v-bottom 96-
well plate, pelleted by centrifugation at 1000 x g, stained with FITC-conjugated
Annexin V (Biolegend cat. 640945), and then measured by flow cytometry.

MDA-MB-231 or Hela cells were seeded on 12-well plates at 5 x 10° cells per
well in 400 uL, incubated overnight at 37 °C in 5% CO, in a humidified incubator
until 80% confluent. Cells were then washed once with PBS and stained with 200
nM MitoTracker Deep Red (Life Technologies, cat. M22426) for 10 min at
37 °C. MitoTracker staining was quenched with full cell culture medium, and then
incubated at 37 °C for 4 h with different doses of Superkiller TRAIL (Enzo Life
Sciences cat. ALX-201-115) and/or ABT263 (ApexBio cat. A3007). After drug
treatment, the supernatant containing floating cells was collected, and the remaining
adherent cells were trypsinized, pooled with the supernatant, and pelleted by
centrifugation for 5 min at 1000 x g. Cells were then stained with FITC-conjugated
Annexin V (Biolegend cat. 640945), and then measured by flow cytometry.

FCM were conducted on a BD LSRII maintained by the Icahn School of
Medicine at Mount Sinai flow cytometry core facility.

FCM gating. FCM were gated as follows: to exclude debris (Supplementary

Fig. 1A), then gated for singlets (Supplementary Fig. 1B), MitoTracker Deep Red
positive (Supplementary Fig. 1C), and lastly for living cells by Annexin V (Sup-
plementary Fig. 1D). The fraction of cells alive was computed by dividing the
number of cells in the Annexin-V-negative gate by the number of cells of the
MitoTracker Deep Red-positive gate. Subsequent single-cell analysis was then
conducted exclusively using cells from the Annexin-V-negative gate.

Modeling and statistical analysis. Detailed derivations of our DEPICTIVE sta-
tistical framework, application of DEPICTIVE to data, dynamic models, and
inference of dynamic model parameters can be found in Supplementary Notes 3-6
and 6.4, respectively.

Reporting summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this article.

Code availability

DEPICTIVE: Detailed derivation of the DEPICTIVE strategy can be found in
Supplementary Note 3. We developed a user-friendly Python package to run the
DEPICTIVE analysis strategy. The code is freely available as a GitHub repository, https://
github.com/DEPICTIVE. Along with these tools we provide two tutorials that
demonstrate how to generate synthetic data and to apply DEPICTIVE analysis.
Dynamics simulations: Detailed derivations and parameter values of model equations for
simulation can be found in Supplementary Note 6. We developed a user-friendly Python
package to runour model. The code is freely available as a GitHub repository, https:/
github.com/DEPICTIVE. Along with these tools we provide a series of tutorials that
demonstrate the use of our tools by examples. These tutorials can be found on the
repositories’ wiki pages, https://github.com/DEPICTIVE.

Data availability

The data presented in the main text of this paper can be found on Mendeley data37-43.
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