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a b s t r a c t 

Aim: Currently, a new coronavirus called COVID-19 is the biggest challenge of the human at 21st century. Now, the spread of this virus is such that mortality has 

risen strongly in all cities of countries. Therefore, it is necessary to think of a solution to handle the disease by fast and timely diagnosis. This paper proposes a 

method that uses chest X-ray imagery to divide 2-4 classes into 7 different Scenarios, including Bacterial, Viral, Healthy, and COVID-19 classes. The aim of this study 

is to propose a method that uses chest X-ray imagery to divide 2-4 classes into 7 different Scenarios, including Bacterial, Viral, Healthy, and COVID-19 classes. 

Methods: 6 different databases from chest X-ray imagery that have been widely used in recent studies have been gathered for this aim. A Convolutional Neural 

Network-Long Short Time Memory model is designed and developed to extract features from raw data hierarchically. In order to make more realistic assumptions 

and use the Proposed Method in the practical field, white Gaussian noise is added to the raw chest X-ray imagery. Additionally, the proposed network is tested and 

investigated not only on 6 expressed databases but also on two additional databases. 

Results: On the test set, the proposed network achieved an accuracy of more than 90% for all Scenarios excluding Scenario V, i.e. Healthy against the COVID-19 

against the Viral, and also achieved 99% accuracy for separating the COVID-19 from the Healthy group. The results showed that the proposed network is robust to 

noise up to 1 dB. It is worth noting that the proposed network for two additional databases, which were only used as test databases, also achieved more than 90% 

accuracy. In addition, in comparison to the state-of-the-art pneumonia detection approaches, the final results obtained from the proposed network is so promising. 

Conclusions: The proposed network is effective in detecting COVID-19 and other lung infectious diseases using chest X-ray imagery and can thus assist radiologists 

in making rapid and accurate detections. 

I

 

h  

a  

c  

1  

b  

h  

n  

v  

𝛿  

e  

t  

h  

t  

b  

[  

s  

m  

c  

o  

d  

f  

o  

n  

h

2

C

ntroduction 

The root of the coronavirus word is Greek ( 𝜅ο𝜌�́� 𝜈𝜂), i.e. crown or

alo, which refers to the virus appearance, means Viral infection, under

n electron microscope which is similar to a royal crown. That’s why

oronavirus is also referred to as the crowned virus [1] . The COVID-

9 emerged as an epidemic disease in China, Wuhan City, in Decem-

er 2019. Today, this has altered to a pandemic as a dangerous public

ealth problem all around the world [2] . The COVID-19 also has other

ames, e.g. SARS-COV-2 virus [3] . This virus is a type of large-family

iruses divided into four types including 𝛼-coronavirus, 𝛽-coronavirus,

-coronavirus, and 𝛾-coronavirus [4] . To date, seven of the 40 differ-

nt species in the coronavirus family have been found to be transmitted

o humans due to common diseases such as cold [5] . Previous studies

ave presented that some viruses such as SARS and MERS are transmit-

ed from cats or camels to humans. It is thought that the COVID-19 has

een transmitted from anteaters and bats to humans for the first time

5] . Common symptoms of this virus are dry cough, fever, and breath

hortness. Also, muscle pain, sputum production, and sore throats are
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ild symptoms of the COVID-19 [6] . In more serious cases, the virus

an cause pneumonia, acute respiratory disorders, septic shock, multi-

rgan failure, and death [7] . The virus is spread mainly through the tiny

roplets of the carrier during coughing. It takes between 2 and 14 days

or the virus to develop [7] . The structure of this virus consists of two

uter and inner layers. The internal structure of COVID-19 includes the

ucleus of the virus that contains genetic material. The outer layer of
ac.ir (N. Shahini), s.sheykhivand@tabrizu.ac.ir (S. Sheykhivand). 

aboratory Automation and Screening. This is an open access article under the 

https://doi.org/10.1016/j.slast.2021.10.011
http://www.ScienceDirect.com
http://www.elsevier.com/locate/slast
mailto:zohreh.mousavi@tabrizu.ac.ir
mailto:shahini.nahal@aut.ac.ir
mailto:s.sheykhivand@tabrizu.ac.ir
https://doi.org/10.1016/j.slast.2021.10.011
http://creativecommons.org/licenses/by/4.0/


Z. Mousavi, N. Shahini, S. Sheykhivand et al. SLAS Technology 27 (2022) 63–75 

t  

t  

o  

l  

i  

t  

n  

R  

s  

[  

a  

p  

m  

p  

c  

f  

n  

t  

o  

a  

p  

n  

[  

l

 

a  

t  

a  

t  

n  

t  

B  

d  

p  

o  

b  

o  

d  

n  

C  

d  

t  

o  

t

 

i  

X  

b  

e  

f  

a  

s  

t  

1  

C  

b  

p  

a  

c  

–  

[  

a  

s  

i  

D  

S  

w  

r  

(  

m  

s  

w  

t  

o  

i  

p  

n  

a  

p  

w  

s  

l  

f  

o  

r  

t  

a  

f  

s  

r  

b  

V  

p  

s  

w  

c  

1  

t  

w  

u  

a  

s  

u  

i  

a  

f  

8  

I  

1  

i  

m  

c  

w  

S  

C  

C  

t  

r  

I  

n  

V  

s  

r  

T  

t  

s  

v  

1  

m  

i  

e  

R  
he virus is made of protein crowns [8] . The virus genome enters the cy-

oplasm after entering the host cell. According to studies, the incidence

f coronavirus in men is higher than in women. Also, children are less

ikely to get the virus than adults [9] . The mortality rate of COVID-19

s estimated to be between 1% and 5% for children [10] . According to

he instructions of hospitalization published by the World Health Orga-

ization (WHO) recently, the essence of coronavirus must be verified by

everse Transcription Polymerase Chain Reaction (RT-PCR) or a gene

equence as a key indicator for respiratory or blood specimen symptoms

11] . But, because of the sample collection, transportation limitations,

nd kit results, the overall positive RT-PCR rating for throat swab sam-

les stated at the initial presentation is around 30-60% [12] . Further-

ore, the long diagnosis time based on the RT-PCR kits causes many

atients to not be quickly identified with COVID-19 as well as not re-

eive appropriate treatment. Just because the RT-PCR kits are limited

or the diagnosis of COVID-19. So, the patient may die due to a lack of

ecessary treatment to be hospitalized, the highly contagious nature of

he virus, the low sensitivity as well as the duration for diagnosis based

n RT-PCR Kits until the outcome of the diagnosis is known [13] . In

ddition, considering the extremely infectious nature of this virus, the

atient carries a risk of infection to more people. Thus, the fast diag-

osis of COVID-19 is essential for controlling and treating this disease

14] . Also, a scan of the chest compared to RT-PCR kits makes nurses

ess likely to be infected with the virus. 

Among the chest imaging methods, Computerized Tomography (CT)

nd X-ray scans are prevalent. X-ray is a scan of the body for the symp-

oms of lung infections, fractures, tumors, and pneumonia. CT scan is

 developed X-ray machine for providing clearer images from bones,

issue, and organs. The X-ray method is easier, quicker, and more eco-

omical than CT, but it is a more harmful method than that [15] . By

aking X-ray images from the chest, doctors can visually diagnose Viral,

acterial, COVID-19 infections, and so on. Visual diagnosis is usually a

ispleasing, time-consuming, and incorrect process. Because it needs ex-

ert human resources and can lead to low accuracy. Moreover, this type

f image has certain weaknesses, such as overlapped organs, blurred

arriers, and less contrast, which may not lead to a correct diagnosis

f pneumonia [16] . So, according to these facts, recently the automatic

etection of virus types including coronavirus on the basis of chest scan-

ing imagery has attracted more attention. The automatic analysis of the

OVID-19 causes the workload of hospital staff to decrease by a rapid

iagnosis. This analysis is very effective for preventing mortality and

reating timely. To date, different computational methods on the basis

f chest scanning have been developed to observe, analyze and detect

he COVID-19 automatically, which will be discussed below. 

Fie et al. [17] presented an automatic algorithm with a Deep Learn-

ng (DL) approach for the detection of contagious points in the lungs.

iawi et al. [18] created a primary screening model using CT imaging

ased on DL method to separate COVID-19 from Viral pneumonia. Narin

t al. [19] detected pneumonia from X-ray images by three Deep Trans-

er Learning (DTL) networks – i.e. Inception v3, Inception-ResNet v2,

nd ResNet 50. In this research, the ResNet 50 model is the most con-

iderable network among the others. In this network, the precision of

he 2-stage classification algorithm is 98%. Loannis et al. [20] employed

427 X-ray imagery for automatic classification of Bacterial, Viral, and

OVID-19 pneumonia. They utilized five DTL networks including Mo-

ileNet v2, VGG, ResNet v2, Inception, and Xception to classify three

neumonia diseases. This study depicts that the VGG network is the best

mongst others. The precision of 2-class classification – i.e. Healthy and

ovid19 – and 3-class classification – i.e. Viral, Bacterial, and COVID-19

has been recorded 98.75% and 93.48%, respectively. Loannis et al.

21] also utilized deep Convolutional Neural Networks (CNNs) to sep-

rate pulmonary viruses from X-ray imagery, automatically. The preci-

ion of that for 2-class and 7-class classification on the basis of MobileNet

s 99.18% and 87.66%, respectively. Pabira et al. [22] have utilized a

eep Neural Network (DNN) approach to detect COVID-19, MERS, and

ARS infections from X-ray imagery, automatically. Using ResNet 50 as
64 
ell as Support Vector Machine (SVM), this model reached 95% accu-

acy in disease classification. Also, the Generative Adversarial Networks

GANs) have been used along with fine-tuned DTL infections for auto-

atic pneumonia detection from chest X-ray images [23] . Another re-

earch [24] has shown that automatic pneumonia detection is practical

ith X-ray images, five DTL networks – i.e. DenseNET, AlexNet, Incep-

ion v3, GoogLeNet, and ResNet 18 – and Data Augmentation (DA) meth-

ds. The precision of the 2-class pneumonia classification in this model

s 96%. Stephen et al. [25] have proposed an effective DL model for

neumonia classification by chest X-ray imagery. The architecture of the

etwork includes 4 convolutional layers and 2 dense. These researchers

chieved 93.7% accuracy in the 2-class classification of Healthy and

neumonia. In the following, a Transfer Learning (TL) method along

ith a deep residual network has been introduced for the automatic clas-

ification of 2-class pneumonia. This network includes 49-convolutional

ayers and 2-dense. Ultimately, they found 96.70% accuracy with 92.7%

1 score [26] . DL networks have also been used for automatic detection

f 3-class pneumonia such as Viral, COVID-19, and normal by chest X-

ay imagery [27] . This network has 5 convolutional layers for feature ex-

raction. The SVM, decision tree, and K-Nearest Neighbors (KNN) have

lso been used for the network classification section. Here, the best per-

ormance – i.e. accuracy, sensitivity, specificity and precision on the ba-

is of SVM classifier is 98.97%, 89.39%, as well as 99.75%, and 96.72,

espectively. The X-ray images for automatic COVID-19 detection have

een used in many papers. Brunese et al. [28] have utilized a developed

GG16-TL network to detect two COVID-19 and Healthy classes. The

recision of this report is about 98% and the detection time is about 2.49

ec. On the basis of CT scan images, Ardakani et al. [29] used DTL net-

orks to recognize 2-class (non) COVID-19. Here, ten DTL networks in-

luding Xception, ResNet-50, VGG-16, ResNet-18, SqueezeNet, ResNet-

01, AlexNet, MobileNet-V2, GoogleNet, and VGG-19 were used, and

he Xception network reached hopeful results. The accuracy of this net-

ork reported about 99%. Jaiswal et al. [30] used the chest CT images

sing a combination of a DenseNet TL with convolutional networks for

utomatic diagnose of 2-class (non) COVID-19. In this study, the preci-

ion for separating reported approximately 96%. Horri et al. [31] have

sed three types of medical imagery– i.e. Ultrasound, CT, and X-ray – to

dentify 2-class Healthy and COVID-19 automatically. In this research,

n enhanced VGG TL network has been used. The classification accuracy

or Ultrasound, CT, and X-ray modes has been reported 100%, 84%, and

6%, respectively. Sharma et al. [32] presented a smart ontology-based

oT method for remote patient monitoring and early detection of COVID-

9 using biomedical signals. This method provided the most up-to-date

nformation on corona patients as well as identifiable data for remote

onitoring. For detection, the aforementioned method achieved an ac-

uracy of 96.33%. Le et al. [33] proposed a novel IoT enabled Depth-

ise separable Convolution Neural Network (DWS-CNN) with a Deep

upport Vector Machine (DSVM) for COVID-19 detection. The DWS-

NN model was designed to detect both binary and multiple classes of

OVID-19. This model’s accuracy on binary and multiclass was reported

o be 98.54% and 99.06%, respectively. Dansana et al. [34] used an X-

ay and CT scan image dataset to train a CNN model-based VGG-19,

nception V2 and decision tree model for binary classification pneumo-

ia. The validation accuracy of the fine-tuned version VGG-19, Inception

2, and decision tree model was found to be 91%, 78%, and 60%, re-

pectively. Oh et al. [35] presented a patch-based CNN approach with a

elatively small number of trainable parameters for COVID-19 diagnosis.

he mentioned method was inspired by statistical analysis of the poten-

ial imaging biomarkers of the CXR radiographs. Experimental results

howed that this method achieves state-of-the-art performance and pro-

ides clinically interpretable saliency maps, which are useful for COVID-

9 diagnosis and patient triage. Nayak et al. [36] proposed a DL auto-

ated method for early detection of COVID-19 infection using X-ray

mages. They compared the performance of eight pre-trained CNN mod-

ls, including AlexNet, VGG-16, GoogleNet, MobileNet-V2, SqueezeNet,

esNet-34, ResNet-50, and Inception-V3, in distinguishing COVID-19
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Table 1 

Various Scenarios are considered for this study. 

Case Account 

I Healthy against of COVID-19 

II Healthy against of Pneumonia (Bacterial, COVID19, and Viral) 

III Healthy against of COVID-19 against of Bacterial and Viral 

IV Healthy against of COVID-19 against of Bacterial 

V Healthy against of Covid-19 against of Viral 

VI COVID-19 against of Bacterial against of Viral 

VII Healthy against of COVID-19 against of Bacterial against of Viral 
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𝑥

rom normal cases. The models were validated using publicly available

hest X-ray images, and the best performance was obtained by ResNet-

4, which had an accuracy of 98.33%. Wang et al. [37] suggested a

ovel DTL algorithm based on Pre-Trained Models (PTMs) to extract

eatures. A selection algorithm of a pre-trained network for fusion to

etermine the best two models was designed in this method. Further-

ore, deep chest CT fusion using discriminant correlation analysis was

roposed to aid in the fusion of the two features from the two models.

n four classes, this method achieved sensitivities of 95.61%, 96.25%,

8.30%, and 97.86%, respectively. 

Review of pneumonia detection studies shows that, although many

tudies have been performed in this regard so far, there are limitations

n these studies. In most of these studies, traditional methods or DNN ap-

roaches have been used for pneumonia detection. Traditional methods

or extracting and selecting optimal features require specialized knowl-

dge, whereas DNN approaches extract features hierarchically and can

roduce end-to-end learning. In most studies that are based on DNN ap-

roaches, the TL models are generally used to train them, which often

ave a high computational time in the training process. Furthermore,

ost of these studies have emphasized only on separation of 2-class

ealthy and pneumonia. It means that the number of 2-class research

one for pneumonia detection is higher than multi-class research con-

ucted for that. As a result, it is essential to investigate more compre-

ensive Scenarios for the classification of various pneumonia types. Ac-

ording to these different issues, in the current study attempts have been

ade to overcome the related issues. From this standpoint, the current

tudy presents a novel deep Convolutional Neural Network-Long Short

ime Memory (CNN-LSTM) model with the proposed architecture that

as been trained by scratch, not TL models, for extracting features hi-

rarchically from raw data in order to detection of various pneumo-

ia types. For this aim, X-ray imagery (based on different categories)

rom different databases that have been widely used in recent studies

as been collected. The current research has examined 7 various Sce-

arios of Bacterial, Viral, COVID-19, and Healthy from the chest X-ray

magery in 4 classes to provide high accuracy to separate classes from

ach other. The fusion of the CNN and Long Short Time Memory (LSTM)

etworks can reduce feature dimensions, increase stability, improve the

raining process, increase the speed of convergence, and detection ac-

uracy. The proposed model is an end-to-end classifier and it does not

eed any feature extraction as well as feature selection. Therefore, the

ptimal features of every class are learned with the deep CNN-LSTM

odel, automatically. Since noise is an evitable problem, in order to

ake more realistic assumptions and use the Proposed Method (P-M) in

he practical field, white Gaussian noise is added to the raw chest X-ray

magery. In addition, the proposed network is tested and investigated

ased on two databases that were not used in the network training pro-

ess. Finally, DTL networks commonly used for pneumonia detection,

uch as ResNet 50, Inception, Xception, and VGG 19, are used as com-

arisons. The main contributions of the present study are summarized

s follows: 

• Designing a CNN-LSTM model to detect both binary and multiple

classes of pneumonia. 

• Designing a network that is an end-to-end system and does not re-

quire any feature extraction or selection. 

• Fusion of the CNN and LSTM networks to reduce feature dimensions,

increase stability, improve the training process, increase the speed

of convergence, and detection accuracy. 

• Evaluating the proposed network in the presence of environmental

noises. 

• Testing and evaluating the proposed network by using two databases

that were not used in the network training process. 

The rest of this paper is organized as follows. First of all, section 2

s about the database collected (on the basis of the chest X-ray imagery)

nd the mathematical background of CNN and LSTM networks. Section

 presents the P-M. Section 4 exhibits the simulation results and com-
 𝑦

65 
ares the P-M with the common methods. In the end, the conclusion is

resented in section 5. 

aterials and methods 

In this section, the dataset of chest X-ray imagery is examined first.

fterward, the mathematical backgrounds of CNN and LSTM are pro-

ided. 

atasets of chest X-ray images 

This study has used chest X-ray imagery from 6 different databases

hat have been widely used in recent studies [38–43] . The dataset con-

ists of the posterior/anterior chest image of cases with pneumonia. This

ataset is divided into four categories. The following categories include

923 images of Healthy people, 2840 images of people with Viral pneu-

onia, 2778 images of people with Bacterial pneumonia, and 371 im-

ges of people with COVID-19 pneumonia. Fig. 1 . shows these four dif-

erent categories. As you see, it does not exist any noticeable difference

etween COVID-19 and Viral groups. So, this disease is not recognized

isually. In this study, 7 various Scenarios for chest X-ray imagery have

een employed that are very useful in the medical field. These Scenarios

re shown in Table 1 . 

In addition to the 6 databases considered in this study, Datasets 1

Scenario III) [44] and 2 (Scenario V) [45] with more COVID-19 sam-

les were used separately as test sets to evaluate the proposed algorithm.

atasets 1 and 2 are divided into three categories. Categories in Dataset

 include 317 Healthy images, 855 Bacterial and Viral pneumonia im-

ges, and 116 COVID-19 pneumonia images, while categories in Dataset

 include 939 Healthy images, 942 Viral pneumonia images, and 800

OVID-19 pneumonia images. 

In total, data from 8 benchmark databases have been used to evaluate

he proposed algorithm. Of these 8 databases, 6 were used together to

ssign training, validation and test sets. Also, 2 databases separately are

nly intended for the allocation of test sets (considering 6 datasets as

raining sets). 

onvolutional neural network 

CNN is considered as a stronger substitute for the conventional Neu-

al Network (NN). It is very efficient to develop classification techniques

ased on machine vision [46] . CNN has two phases including feed-

orward and BackPropagation (BP) phases [47] . It has three essential

ayers including Fully Connected (FC), convolution, and pooling layers

48] . The convolution layer output is known as the feature mapping.

his work uses the max-pooling layer to choose the maximal values for

eature map. Then, the dropout method is utilized to prevent overfitting;

hus, every neuron is thrown out from this network at every training

tage to decrease network. Then, for normalizing data in this network,

he Batch Normalization (BN) layer is employed as follows [49] : 

̂ ( 𝐿 −1 ) = 

𝑥 ∗ ( 𝐿 −1 ) − 𝜇𝐵 √ 

( 𝜎2 
𝐵 
+ 𝜀 

 

∗ ( 𝐿 ) = 𝛾 ( 𝐿 ) �̂� ( 𝐿 −1 ) + 𝛽( 𝐿 ) 

(1) 
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Fig. 1. The X-ray images of Chest for four groups (from left to right) including healthy, Bacterial, Viral, and COVID19, respectively. 
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here, in this BN layer, 𝑥 ∗ ( 𝐿 −1 ) is an input vector. The 𝑦 ∗ ( 𝐿 ) is an output

esponse accociated with a neuron at layer L . The 𝜇𝐵 = E[ 𝑥 ∗ ( 𝐿 −1 ) ] , 𝜎2 
𝐵 
=

ar [ 𝑥 ∗ ( 𝐿 −1 ) ] , and 𝜀 presents a little constant for numerical stability. The
( 𝐿 ) and 𝛽( 𝐿 ) are the scale and shift parameters, respectively, which are

btained by learning. After every layer, an activation function is used.

n this study, two types of activation functions were used: Softmax and

eakyRelu. LeakyRelu (see Equation 2 ) is employed for the convolution

ayers due to being nonlinearity and sparseness. 

 ( 𝑓 ) = 

{ 

𝑓 𝑓 > 0 
𝑏𝑓 𝑓 ≤ 0 𝑏 = 0 . 3 (2)

The Softmax activation function computes the likely distribution of

utput classes. So, it is employed in the last FC layer as follows: 

 ( 𝑑) 𝑖 = 

𝑒 𝑑 𝑖 ∑𝑘 

𝑗=1 𝑒 
𝑑 𝑗 

for 𝑖 = 1 , ...𝑘 𝑎𝑛𝑑 𝑑 = ( 𝑑 1 , ..., 𝑑 𝑘 ) ∈ 𝑅 

𝑘 (3)

here 𝑆 is the input vector. The output values, 𝑆( 𝑑) , are between 0 and

, and their summation is equal to 1 [50] . 

ong short-term memory network 

A Recurrent Neural Network (RNN) is widely utilized for dealing

ith variable-length sequence inputs. A recurrent hidden vector is re-

ponsible for storing the long-distance history and it has dependency

pon on before hidden vector [51] . The LSTM is commonly used in

he RNN [52] . The duty of LSTM is to solve the RNN instability and

radient vanish problems. This network is used to compute a balanced

ummation of input signals. Next, by passing as an activation func-

ion ℎ 𝑡 , every LSTM unit utilizes memory 𝐶 𝑡 at time 𝑡 . So, we have

 𝑡 = Γ𝑜 . tanh ( 𝐶 𝑡 ) , where Γ𝑜 is the output gate for monitoring the amount

f content resulted in memory. The calculation of the output gate is done

y Equation 4 [53] . 

𝑜 = 𝜎
(
W o ⋅

[
h t−1 , X t + b 0 

])
(4)

here 𝜎, 𝑊 𝑜 and 𝑏 0 are the activation function, initial weight matrix

nd initial bias vector, respectively. Equation 5 is used to update the

emory cell, 𝐶 𝑡 , where �̂� 𝑡 is the content of the new memory obtained

y Equation 6 as follows [54] : 

 𝑡 = Γ𝑓 ⋅ 𝐶 𝑡 −1 + Γ𝑢 ⋅ �̂� 𝑡 (5)

̂
 𝑡 = tanh ( 𝑊 𝐶 ⋅

[
ℎ 𝑡 −1 , 𝑋 𝑡 

]
+ 𝑏 𝐶 ) (6)

The current memory is not handled by forgetfulness gate, Γ𝑓 , and that

f new memory content must be added up to the memory cell to be con-

rolled by updating entrance gate, Γ𝑢 . This work is done by Equations 7 - 8

52] . 

𝑓 = 𝜎( 𝑊 𝑓 ⋅
[
ℎ 𝑡 −1 , 𝑋 𝑡 

]
+ 𝑏 𝑓 ) (7)

[ ]

𝑓 = 𝜎( 𝑊 𝑢 ⋅ ℎ 𝑡 −1 , 𝑋 𝑡 + 𝑏𝑢 ) (8) a  
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roposed method 

In this section, the P-M is presented based on DNNs to automatic

etection of pneumonia (Bacterial, Viral, COVID-19, and Healthy) from

he chest X-ray imagery. The block diagram of the P-M has been depicted

n Fig. 2 . 

reprocessing 

The preprocessing operations on chest X-ray imagery have three vari-

us steps that this section describes them. All images are first converted

o RGB format. They are then resized to 224 × 224 × 3, due to the

act that databases have different colors and formats. Afterward, they

re normalized between 0 and 1. Because the COVID-19 cases are lim-

ted, the number of chest X-ray images for each group is not balanced,

s shown in Section 2.1. As a result, it can lead to poor classification

erformance as well as overfitting issues; thus, the DA method is used

o dominate these issues. As a result, in the third step, the number of

magery of the COVID-19 group is artificially increased. This process

mproves the generalization ability of the model during training. The

otation range refers to the range of randomly rotated images during

raining, which is considered to be 40 degrees in the P-M. Also, both the

idth shift – i.e. the horizontal translation of the imagery – and height

hift – i.e. the vertical translation of the images – are 0.2%. The number

f COVID-19 samples before and after DA is 371 and 2842, which is

early equal to the other groups. 

roposed network 

The proposed deep model is designed by fusing CNN and LSTM net-

orks. The benefits of both networks can be used simultaneously by fus-

ng these networks. The fusion of LSTM networks with CNN networks

as been used in many studies to reduce feature dimensions, increase

tability, improve the training process, increase the speed of conver-

ence, and detection accuracy [52] . According to this, in the proposed

etwork’s architecture, the fusion of 5-convolution 2-D layers and 3-

STM layers has been used to detect automatically pneumonia (Bacte-

ial, Viral, COVID-19, and Healthy) from chest X-ray imagery. To im-

lement the proposed CNN-LSTM model, a cross-library is used by the

ython programming language. Here, the selection of the proposed ar-

hitecture is done by 1) a dropout layer. 2) a convolution layer with

onlinear Leaky-Relu function, next a max-pooling layer followed by a

N layer, 3) before step is rehearsed 4 times, 4) the output of the before

tep is connected to a 2D matrix, 5) also, the output of before step con-

ects to 3 layers of LSTM with Leaky-Relu nonlinear functions in series,

hen these layers are followed by a BN layer, and 6) two FC layers are

mployed to access the output layer. In the following, Table 2 depicts

he number of filters, the size of the strides, and the architectural de-

ails of the proposed network. As you see in Table 2 , the dimensionality

ecrease of hidden layers continues from 224 × 224 × 3 to 50. In the

nd, the selected feature vector is connected to the FC layer with the

onlinear Softmax function. The architectural details of the proposed

lgorithm are shown in Fig. 3 . Here, two main interferences have an
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Fig. 2. The block-diagram of the P-M for automatic detection of pneumonia (Bacterial, COVID-19, Viral and Healthy). 

Table 2 

The size of filters and steps recommended for the proposed model. 

L Layer Type Activation Function Number of Filters Padding Output Form Size of Filter and Pooling Strides 

0-1 Convolution2-D Leaky ReLU 16 yes (None, 16, 38,38) 128 × 128 6 

1-2 Max-Pooling2-D - - no (None, 16, 19,19) 2 × 2 2 

2-3 Convolution2-D Leaky ReLU 32 yes (None, 32,19,19) 3 × 3 1 

3-4 Max-Pooling2-D - - no (None, 32, 9, 9) 2 × 2 2 

4-5 Convolution2-D Leaky ReLU 64 yes (None, 64, 9, 9) 3 × 3 1 

5-6 Max-Pooling2-D - - no (None, 64, 4, 4) 2 × 2 2 

6-7 Convolution2-D Leaky ReLU 64 yes (None, 64, 4, 4) 3 × 3 1 

7-8 Max-Pooling2-D - - no (None, 64, 2, 2) 2 × 2 2 

8-9 Convolution2-D Leaky ReLU 64 yes (None, 64, 2, 2) 3 × 3 1 

9-10 Max-Pooling2-D - - no (None, 64, 1, 1) 2 × 2 2 

10-11 LSTM Leaky ReLU - (None, 60) - - 

11-12 LSTM Leaky ReLU - (None, 60) - - 

12-13 LSTM Leaky ReLU - (None, 60) - - 

13-14 FC Leaky ReLU - (None, 50) - - 

14-15 FC Softmax - (None, 2-3-4) - - 
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ffect on the proposed CNN-LSTM model, the wide kernel in the first

onvolution layer and small kernels in the remaining convolution lay-

rs. The first interference enables to removal high frequency noises in

ontrast to small kernels, and the second interference can present in-

ut features well; so, these interferences enhance the overall network

erformance. 

All parameters of the proposed CNN-LSTM model are carefully mod-

fied using the trial and error method in order to achieve the best rate

f convergence. Different types of optimizers and different numbers and

izes of filters were used in the design of the proposed network architec-

ure. At last, the training process is accomplished by the cost function,

ean Squared Error (MSE) [52] , and RMSProp optimizer [52] with a

atch size 10 and learning rate of 0.001. The selected optimal parame-

ers are shown in Table 3 . 

The overall number of samples and their allocation for training, val-

dation, and testing sets for every Scenario are shown in Table 4 . As it
67 
s shown in Table 4 , 70% of samples are randomly chosen for the train-

ng process, 10% of samples chosen for the validation process, and the

emaining 20% are chosen for the testing process. 

esults 

In this section, the P-M results for the pneumonia automatic de-

ection from the chest X-ray imagery based on the CNN-LSTM model

re presented and discussed. All of simulations were carried out on the

oogle Collaborator system with 14 GB of RAM plus Tesla K80 GPU

raphics card. 

To investigate the performance of the P-M, the proposed CNN-LSTM

odel error and accuracy (based on validation data) for Scenarios I and

II, as well as the confusion matrix, t-SNE charts, and bar chart dia-

ram of precision, sensitivity, accuracy, and specificity (based on test-

ng data) for all Scenarios (I-VII) are provided in Fig. 4 . According to
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Fig. 3. The proposed network architecture for automatic detection of pneumonia based on CNN-LSTM model. 

Table 3 

Optimal parameters selected for the proposed network architecture. 

Parameter Search Space Optimal Value 

Optimizer RMSProp, Adam, Sgd, Adamax, Adadelta RMSProp 

Cost function MSE, Cross-entropy MSE 

No. of Convolution layers 3, 5, 10, 15 5 

No. of LSTM layers 2, 3, 5, 10 3 

No. of FC layers 2, 4, 6 2 

No. of Filters in the first Convolution layer 16, 32, 64, 128 16 

No. of Filters in the second Convolution layer 16, 32, 64, 128 32 

No. of Filters in the third Convolution layer 16, 32, 64, 128 64 

No. of Filters in the fourth Convolution layer 16, 32, 64, 128 64 

No. of Filters in the fifth Convolution layer 16, 32, 64, 128 64 

No. of neurons in LSTM layers 30, 60, 120 60 

No. of neurons in the first FC layer 10, 30, 50, 80 50 

The size of filter in the first convolution layer (3,3), (16,16), (32,32), (64,64), (128,128) (128,128) 

The size of filter in another Convolution layers (3,3), (16,16), (32,32), (64,64), (128,128) (3, 3) 

Dropout rate 0, 0.2, 0.3, 0.4, 0.5 0.3 

Batch size 4, 8, 10, 16, 32, 64 10 

Table 4 

The number of samples and their allocation in the proposed model. 

Scenarios Sample No. No. of Cases No. of Testing (20%) Sample No. of Training (70%) Sample No. of Validation (10%) 

I 5765 1153 4035 576 

II 5845 1169 4092 584 

III 8687 1738 6081 868 

IV 8543 1709 5980 854 

V 8543 1709 5980 854 

VI 8460 1692 5922 846 

VII 11383 2277 7968 1138 

68 
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Table 5 

The running time of the proposed network for classification of 

all Scenarios in 150 iterations. 

Scenarios Test(for all of the data) Train(for each iteration) 

I 1.5 s 15 s 

II 2.7 s 17 s 

III 3 s 23 s 

IV 3 s 22 s 

V 3 s 21 s 

VI 3 s 20 s 

VII 8 s 31 s 

r  
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X  

t  
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ig. 4 (a), the network error for Scenario I decreases with the number of

terations, and after 40 iterations, it reaches its steady-state value, and

he network error eventually decreases from 0.1929 to 0.0024. Further-

ore, in Fig. 4 (a), the steady-state value of Scenario VII is on its 130th

teration, and the network error eventually decreases from 0.1186 to

.0426. Furthermore, the network’s accuracy for 2-class (Scenario I) and

-class (Scenario VII) pneumonia classification is 99.42% and 91.70%,

espectively. As you see in Fig. 4 (b), the network’s accuracy for all Sce-

arios is above 90% except Scenario V (i.e. Healthy against of Covid-19

gainst of Viral). This could be because the viral and Covid-19 images

ook so similar and are more difficult to distinguish than in other cases.

n the Scenario I associated with the 2-class classification of Healthy and

OVID-19, 563 COVID-19 samples from the testing set are well identi-

ed, while only 2 samples are misdiagnosed. Also, the final accuracy of

he COVID-19 class separation from the Healthy class is approximately

9%, which is very promising. The visualization of the feature repre-

entations of all the testing samples extracted from the last FC layer via

-SNE method is given in Fig. 4 (c). The feature representations are de-

icted as a scatter diagram with distinct colors, which express different

lasses. According to Fig. 4 (c), as can be seen from the visualization of

he last FC layer, almost all samples are separated from each other for

cenarios I and VII, and this indicates that the proposed model is able to

xtract high-level features from raw data and relatively has a good per-

ormance in discriminating of different classes. Fig. 4 (d) shows that the

alues of all classification Scenarios are very promising. The results of

recision, specificity, accuracy and sensitivity separation of the Healthy

roup from COVID-19 (Scenario I) are about 99%. 

To more investigate the performance of the P-M based on the CNN-

STM model, Scenario VII – i.e. Healthy against of COVID-19 against

f Bacterial against of Viral – is simulated using four DTL networks.

esNet 50 [55] , VGG 19 [56] , Inception v3 [57] , and Xception [58] are

our comparative DTL networks that have been extensively used in re-

ent studies. Fig. 5 shows the proposed model’s accuracy in comparison

o DTL networks for various iterations (See Fig. 5 (a)), as well as the

ar chart diagram of each DTL network’s sensitivity, specificity, accu-
ig. 4. The proposed CNN-LSTM model error and classification accuracy (based on 

harts, and bar chart diagram of precision, sensitivity, accuracy, and specificity (based

atrix, (c) t-SNE charts, (d) Bar chart diagram. 

69 
acy, and precision (See Fig. 5 (b)). From Fig. 5 (a), after 150 iterations,

he accuracy of the proposed CNN-LSTM model, Inception, ResNet 50,

ception, and VGG 19 reaches 91%, 86%, 84%, 83%, and 80%, respec-

ively. Comparing performance of the proposed model and DTL models

hows that proposed model, provides better results than DTL models.

lso, the proposed model converges to the desired value faster of DTL

odels (See Fig. 5 (a)). These results are highly related to the proposed

NN-LSTM model’s unique architecture, which can automatically ex-

ract useful features from raw images layer by layer and achieve higher

ccuracy at a faster rate. The running time of testing and training phases

s given for the classification of all Scenarios in Table 5 . As shown in

able 5 , the running time of the testing and training phases for Scenario

II is longer than for the other Scenarios. In addition, the running time

f the Scenario VII based on the proposed CNN-LSTM model comparing

he ResNet 50, VGG 19, Xception, and Inception v3 in 150 iterations

s depicted in Table 6 . As can be seen from Table 6 , the running time

f the proposed model for both phases is less than other comparative

ethods. This is due to the fact that DTL networks frequently have a

igh computational time. 

To make more realistic assumptions, white Gaussian noise with vary-

ng Signal-to-Noise Ratios (SNRs) is added to the raw chest X-ray im-

gery in testing phase which is depicted in Fig. 6 . Also, the classifica-
validation data) for Scenarios I and VII, as well as the confusion matrix, t-SNE 

 on testing data) for all Scenarios (I-VII); (a) Error and accuracy, (b) Confusion 
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Fig. 4. Continued 
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Fig. 4. Continued 

Table 6 

Running time of the P-M comparison with Resnet 50, VGG 19, Inception v3, and Xception for 4-class 

pneumonia classification in 150 iterations. 

Scenario 

Xception P-M ResNet 50 Inception VGG 19 

Train Test Train Test Train Test Train Test Train Test 

VII 5900 s 10 s 4650 s 8 s 5300 s 9 s 9000 s 19 s 5550 s 16 s 

71 
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Fig. 5. The performance of the proposed model in 

comparison to DTL networks, as well as the bar chart 

diagram of the sensitivity, specificity, accuracy, and 

precision of each DTL network; (a) Accuracy of the 

proposed network comparing with DTL networks, (b) 

Bar chart diagrams. 
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ion accuracy of each model (P-M, ResNet 50, VGG 19, Inception, and

ception) for every SNR has been reported in this Figure. As shown in

ig. 6 (b), the testing accuracy of the proposed model, ResNet 50, VGG

9, Inception, and Xception is robust to observation noise up to 0 dB, 10

B, 20 dB, 10 and 20 dB, respectively, such that their accuracy is still

pproximately 90%, 80%, 78%, 80%, and 80%. As a result, the proposed

odel, in addition to being more accurate than comparable models, is

ore resistant to observation noise. It is due to using the wide kernel

t the first convolution layer which enables to removal high frequency

oises in contrast to small kernels. 

In previous literature, the training set and testing set have been se-

ected from one or more common datasets. However, in order to use

he proposed model in the practical field, the proposed model should

e evaluated with the benchmark databases which are not used as the

raining data. To this end, by considering the 6 training databases, the

erformance of the proposed model has been assessed [38–43] with 2

esting databases [44–45] – i.e. Database 1 [44] and Database 2 [45] .

t should be noted that no information from Databases 1 and 2 have

een used to train the proposed model. In fact, the chest X-ray imagery

rom 6 different databases is used simultaneously to train the proposed

odel, and Datasets 1 and 2 are used separately to evaluate this model.

he t-SNE chart, confusion matrix of the last FC layer and the bar chart

iagram of sensitivity, specificity, accuracy, and precision of the pro-

osed model, for Datasets 1 and 2 (which only have been used as the

esting set) are shown in Fig. 7 . According to this Figure, the testing ac-

uracy of the proposed model based on Dataset 1 and Dataset 2 is nearly

5% and 92%. From this standpoint, it can be stated that the proposed

odel can provide good performance for Datasets 1 and 2 even when
72 
t is trained with other 6 different databases. In fact, using 6 different

atabases as a training set causes the proposed model almost to be gen-

ralized. According to this, it can be said that the proposed model can

erform very well when tested with different databases which are not

sed in the training phase. 

Lastly, the performance of the proposed model compared with the

ecent researches is given in Table 7 . This table demonstrates that the

roposed approach outperforms recent approaches in terms of the num-

er of classes classified and the Scenarios studied. However, due to the

ifference between datasets, methods, categories, and various simula-

ion environments, a one-to-one comparison usually is not achievable. 

It should be highlighted that although the databases used for this

tudy are reliable, the data related to COVID-19 is limited. However, the

bove-mentioned findings and results of the paper should be considered

n line with the limitation of the study. This study has some limitations

ith respect to databases. A notable difficulty and challenge is related to

he COVID-19 data that researchers should use a number of data sets in

ombination with together to remove this defect. However, a shortage

f COVID-19 samples is still evident. Here, to overcome the shortage

f COVID-19 samples and in order to balance data, DA technique has

een utilized. In this study, classical DA was used to increase data of

OVID-19, and it is necessary to perform DA using GANs and compare

he results with classic DA results. Another limitation and challenge is

he number of database categories. In this study, there were a total of

our detection categories: Healthy, Viral, Bacterial, and COVID-19. In

rder to use the proposed model in the practical fields, it must be eval-

ated using larger datasets and more categories of other lung infectious

iseases, such as SARS, MERS, FLU, and so on. 
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Fig. 6. The chest X-ray imagery along with white Gaussian 

noise in the various ranges of SNR and also the classification 

accuracy of each network (P-M, ResNet 50, VGG 19, Incep- 

tion, and Xception) for every SNR; (a) Chest X-ray imagery 

along with white Gaussian noise, (b) The classification ac- 

curacy of each network. 

Table 7 

Comparing the performance of the P-M with recent studies. 

Techniques Datasets Accuracy (%) No. of classes Specificity (%) Sensitivity (%) 

Chouhan et al. [24] Public 96.39 3 – –

Khalifa et al. [23] Private 99 2 – –

Stephen et al. [25] Public 95 2 – –

Liang et al. [26] Public 90 2 – –

Nour et al. [27] Public 98.97 3 99.75 89.39 

Brunese et al. [28] Public 96 2 98 96 

Loannis et al. [20] Public 93.48 3 98.75 92.85 

Ucar et al. [59] Public 98.26 3 – 99.13 

Narin et al. [19] Public 98 2 – –

Ardakani et al. [29] Private 99.02 2 100 98.04 

Jaiswal et al. [30] Public 96.25 2 96.21 9629 

P-M Public 99.4 4 class/7 Scenarios 99.4 99.4 
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Fig. 7. The t-SNE chart, confusion matrix and and the bar chart diagram of sensitivity, specificity, accuracy, and precision of the proposed network for Datasets 1 

and 2; (a) The t-SNE chart and confusion matrix for Datasets 1, (b) The t-SNE chart and confusion matrix for Datasets 1, (c) The bar chart diagram. 
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onclusion 

Due to the COVID-19, all humans’ daily lives have recently been

onfronted with new challenges. The number of infectious people with

his virus continues to increase, significantly. So, rapid detection of this
74 
irus, as well as timely treatment, is very crucial. In this paper, using a

usion of LSTM and CNN networks, a novel method for the automatic de-

ection of pneumonia is presented. In this method, chest X-ray imagery

s utilized to separate 2-4 classes based on 7 various Scenarios. In the

roposed method, in all Scenarios except Scenario V, i.e. Healthy versus
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ovid-19 versus Viral, above 90% accuracy is achieved, which is very

romising in contrast with the newest pneumonia detection approaches.

urthermore, the proposed CNN-LSTM model is compared with four

TL models – ResNet 50, VGG 19, Xception, and Inception – that have

een widely used for pneumonia detection. The results revealed that

he proposed model outperformed the comparative models in terms of

peed and accuracy. To evaluate the proposed model versus observation

oises, white Gaussian noise is added to the raw chest X-ray imagery.

he proposed model is resistant to observation noise up to 0 dB. It is also

xpected that using this technique will decrease medical cost, the inci-

ence of nurses/doctors to COVID-19 during swab sampling, and future

atality. 
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