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Abstract: Mechanical stages are routinely used to scan large expanses of biological specimens in
photoacoustic imaging. This is primarily due to the limited field of view (FOV) provided by optical
scanning. However, stage scanning becomes impractical at higher scanning speeds, or potentially
unfeasible with heavier samples. Also, the slow scan-rate of the stages makes high resolution
scanning a time-consuming process. Some clinical applications such as microsurgery require
submicron resolution in a reflection-mode configuration necessitating a method that can acquire large
field of views with a small raster scanning step size. In this study, we describe a method that combines
mechanical stages with optical scanning for the rapid acquisition of high-resolution large FOVs.
Optical scanning is used to acquire small frames in a two-dimensional grid formed by the mechanical
stages. These frames are captured with specific overlap for effective image registration. Using a
step size of 200 nm, we demonstrate mosaics of carbon fiber networks with FOVs of 0.8 × 0.8 mm2

captured in under 70 s with 1.2 µm image resolution. Larger mosaics yielding an imaging area of
3 × 3 mm2 are also shown. The method is validated by imaging a 1 × 1 mm2 section of unstained
histopathological human tissue.
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1. Introduction

Photoacoustic microscopy is an emerging biomedical imaging modality that has demonstrated
success in visualizing cell nuclei, microvascular structures, and whole organs with rich contrast and
high resolution [1,2]. Unlike fluorescence microscopy, photoacoustic microscopy does not require the
use of exogenous dyes to provide contrast. Instead, it relies on the high endogenous optical absorption
of biological tissue to form images. This enables the label-free recovery of biological chromophores.
The contrast provided by optical absorption also exhibits high specificity which makes it possible to
differentiate between chromophores [3]. In conventional optical-resolution photoacoustic microscopy
(OR-PAM), a nanosecond pulsed excitation laser is tightly focused onto a target. As the target absorbs
the pulses of light, the optical energy is converted to thermal energy. The energy conversion results in
a rapid temperature change, generating ephemeral thermoelastic expansions. This creates ultrasound
waves propagating in the sample which can then be detected at the surface of the sample using an
ultrasonic transducer [4].

OR-PAM has demonstrated considerable success in achieving high-resolution imaging. The lateral
resolution of an OR-PAM system is dependent on the excitation wavelength and the numerical-aperture
(NA) of the optical objective. Transmission-mode OR-PAM has been efficacious in achieving submicron
resolution by employing high NA objectives [5]. However, achieving submicron diffraction limited
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resolution in a reflection-mode configuration presents several challenges. For example, high NA
objectives typically have small working distances, which makes it difficult to employ an acoustic-optical
splitter to redirect the reflecting ultrasonic waves. While a thin piece of glass can be used as an
acoustic-optical splitter, even low refractive index glass would exhibit some chromatic aberration,
which greatly affects high NA objectives, ultimately reducing the effective resolution of the system [6].
Customized acoustic parabolic mirrors and ring transducers have been employed to provide enhanced
resolution in reflection-mode OR-PAM [7,8]. However, such complex components increase the cost
and complexity of the system.

A recently reported imaging modality known as photoacoustic remote sensing (PARS) replaces the
ultrasonic transducer with a continuous-wave detection laser [9–12]. PARS, unlike most reflection mode
OR-PAM systems, provides high-quality optical resolution photoacoustic imaging in a noncontact
setting. In PARS imaging, the detection laser is cofocused with the excitation laser which enables
optical interrogation of initial pressures within the excited region. The all-optical design of PARS does
not require any additional components between the objective and the target, yielding a significantly
simpler design. This also permits the use of high NA objectives to achieve high resolution in a label-free,
noncontact reflection-mode configuration. As with the majority of optical-resolution photoacoustic
microscopes, PARS relies on point by point excitation of chromophores to form images. A tightly
focused beam would result in higher resolution but would also require a smaller raster scanning step
size to achieve good sampling across the field of view [13].

Acquiring a large field of view with a small step size can be a time-consuming operation, dependent
on scanning speed, laser repetition rate, and the acoustic and optical processes. However, high resolution
large field of views are crucial for many applications in medical imaging. One important application
is histopathological examination. Surgical oncologists excise diseased tissue for histopathological
analysis of the surgical margins. To ensure negative surgical margins, the pathologist must examine
several thin sections of resected tissue with sufficient resolution to distinguish cell nuclei. Previously,
we reported a preliminary investigation into the visualization of cellular morphology in unstained
human tissue and thick, formalin-fixed, embedded tissue blocks [14,15]. However, to visualize surgical
margins in fresh tissue or in situ, it would be necessary to maintain subcellular resolution and recover
cellular morphology in large field of views while operating in a reflection-mode configuration.

Previous works have utilized optical scanning to scan small regions rapidly [16]. In combination
with a high repetition rate laser, a high point density can be achieved in a short amount of time. However,
with this method, the field of view is often limited by the scanning speeds of the optomechanical
systems. For example, galvanometer mirrors are typically only able to operate at a few hundred hertz
with small swing angles. This limits the field of view that can be optically scanned on the sample
to typically a few hundred microns, which may not be sufficient for clinical use. Mechanical stages
enable the system to acquire significantly larger field of views, but move at a much slower pace due to
mechanical limitations. Microlens arrays have also been utilized to significantly increase the effective
area under imaging, but require careful management of heat deposition on the target [17].

Previously, works have reported mosaic acquisition methods for conventional photoacoustic
systems [18,19]. Shao et al. reported a mosaic acquisition method for optical-resolution photoacoustic
microscopy with a step size of 1.2 µm. The reported method is able to acquire a 6.45 × 5.8 mm2

field of view in ninety seconds [19]. However, as PARS has demonstrated submicron resolution in
a reflection-mode configuration, it necessitates a method that is capable of rapidly acquiring large
field of views while maintaining a small step size and high resolution [10]. The reflection-mode
configuration also enables the imaging of thick targets, and is more analogous to in situ imaging.
To take advantage of these capabilities, the method must allow for larger targets, such as animals or
humans, to be scanned. Here, a method is described for fast and high-resolution mosaic acquisitions
for PARS. This method enables the capture of large field of views with high point densities in a
noncontact reflection-mode operation. A unique advantage of this method is that it minimizes the
stage movement during scanning. This makes it possible to mount the optical components on top of
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the mechanical stages leading to the scanning mechanism, enabling wide field of view imaging of
larger and heavier specimens. The method utilizes scanning mirrors to acquire small local frames
and mechanical stages to move the sample in a cartesian grid pattern. This enables the capture of a
sequence of images that are assembled together to form a larger field of view with a point density
that is equal to an individual mirror scan. Images of carbon fiber networks and unstained histology
samples are presented to demonstrate the method’s efficacy.

2. Materials and Methods

2.1. Experimental Apparatus

The experimental setup is shown in Figure 1. This study uses two excitation sources; a 266 nm
0.5 ns pulsed laser with a 20 kHz repetition rate is used to image human histology samples, and
a 532 nm 3 ns pulsed laser capable of 600 kHz repetition rate is used to demonstrate the system’s
capability to capture fast mosaics. The 266 nm beam is spatially filtered using a 25 µm pinhole and
collimated by two lenses. The collimated beam is expanded using a variable beam expander and
combined with the 1310 nm and 532 nm beams using a dichroic mirror. The 532 nm beam is collimated
and expanded to be coupled into an optical fiber. Then, a fiber-coupled collimator outputs the light
which is further expanded to fill the aperture of the objective lens and combined with rest of the system
with a dichroic mirror.
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Figure 1. Schematic of the PARS microscope. Components labels are: pinhole (PH), variable neutral
density filter (VNDF), collimator (C), polarized beam splitter (PBS), quarter waveplate (QWP), dichroic
mirror (DC), photodiode (PD), fiber launch (FL), galvanometer mirrors (GM), lenses (L), mirrors (M).
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The detection beam is a 1310 nm continuous wave laser. The detection beam was vertically
polarized using a fiber polarization controller. The polarized beam was collimated and expanded
using a variable beam expander. The resultant beam was passed through a polarizing beam splitter
and further passed through a quarter-wave plate in order to produce circularly polarized light.
The coaligned detection and excitation beams were then directed to a set of 2D scanning mirrors
(GVS412, Thorlabs Inc., Newton, NJ, USA). The scanning mirrors were mounted at right angles to each
other and were able to steer the beam to any given point in the field of view. The amount and rate of
swing is determined by the input waveform’s amplitude and frequency, respectively. The coscanned
beam was targeted onto the tissue which was held on top of a set of x-y linear scanning stages (XM-100S,
Newport Inc., USA). The back-reflected, circularly polarized light from the sample was sent back
through the quarter-wave plate to be converted into vertically polarized light. The polarized beam
splitter then reflected the vertically polarized light onto the photodiode (PDB425-C, Thorlabs Inc.,
Newton, NJ, USA). A four-channel data acquisition card (CSE161G4, DynamicSignals LLC, Lockport,
IL, USA) was used to record the photoacoustic signal, along with the fast and slow mirror positions.
The excitation source was used as the trigger for the data acquisition card which records the mirror
signals for positional information and the PARS signals. The scanning mirrors were driven using a
function generator and were not triggered or synchronized.

2.2. Mosaic Acquisition

Optical scanning forms the basis of mosaic acquisitions. A mosaic is formed by acquiring a
sequence of frames constructed by optical scanning in a two-dimensional grid. A custom acquisition
software was developed in C++ to interface with the data acquisition card and the mechanical stages.
The software programs the data acquisition card with the desired frame point count, the length of
time to record after each trigger, and the sampling rate. It also sets the speed of the mechanical stages
and moves them in a two-dimensional grid to acquire mosaic frames. The software computes the
grid’s coordinates based on the grid size, the field of view of each frame, and the desired overlap
between each frame. The distance between each adjacent frame’s center depends on the required
field of view per frame and the desired overlap. The degree of tilt of the scanning mirrors and the
objective lens determine the field of view. The mirrors are controlled using two ramp waveforms fed
from a function generator. In contrast to sinusoidal waveforms, the use of ramp waveforms yields a
more consistent step size between each point acquisition. This is due to having a constant acceleration
until the half-way point where the waveform flips and decreases again with a constant acceleration.
In comparison, a sinusoidal waveform accelerates and decelerates at varying rates near the half-way
point of the waveform. As a ramp waveform has a quick turnaround at the half-way point, it also
results in less dwell time, limiting the heat dissipation on the sample. The amplitude and frequency
of these mirrors, along with the laser repetition rate, determines the step size between each point
acquisition. For example, with a repetition rate of 40 kHz, mirror frequencies of 120 mHz and 60 Hz
yield a step size of 570 nm when the field of view is 380 × 380 µm2. Similarly, when the laser repeats at
600 kHz, mirror frequencies of 1.8 Hz and 960 Hz are used to yield a step size of 200 nm with a field
of view of 121 × 121 µm2. The 960 Hz swing rate is under the bandwidth of the mirrors which are
capable of a 1 kHz swing rate if mirror deflection is less than 0.2◦.

Since PARS only relies on initial pressure measurements, the data acquisition card is programmed
to record for a short amount of time after each trigger, i.e., typically only for 320 ns, resulting in
significantly less data to be transferred [9,10]. Since the bandwidth of the photodiode is 75 MHz,
a sampling rate of 200 MS/s suffices, resulting in 64 element segments for each point acquisition; this
sampling rate was used for all acquisitions presented. The data acquisition card is utilized such that
the raw measurements are streamed to the computer resulting in zero transfer time. Once the desired
number of point acquisitions are acquired, the inhouse developed software writes the mirror signals
and the time-domain PARS signals to disk. Once the data has been written, the software moves the
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mechanical stages such that the next frame in the sequence can be acquired, and enables the data
acquisition card to begin the next scan. This movement is rapid, taking approximately 100 ms.

2.3. Mosaic Reconstruction

Figure 2 provides a visual overview of the reconstruction process. The acquisition process results
in a collection of points spread over the field of view. Each point has an x and y coordinate and a
PARS signal associated with it (Figure 2a). The Hilbert Transform is employed to compute the upper
and lower envelopes of the signal, shown as the orange and green dashed curves in Figure 2a [20].
The amplitude of these envelopes (blue lines) determines the intensity values of the scatter data
(Figure 2b). To render an image, the scattered dataset is triangulated using Delaunay Triangulation
(Figure 2c), which leads to optimized triangulation of the data and minimizes interpolation artifacts due
to elongated triangles. This method has been widely used in the literature for surface reconstruction
from scattered datasets [21,22]. Since the scatter data must be rendered on a cartesian grid to form
an image, such a grid is imposed over the triangulation as an image, i.e., as points to be interpolated
(Figure 2d).Sensors 2020, 20, x FOR PEER REVIEW 6 of 12 
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Figure 2. (a) PARS time-domain signal with upper and lower envelopes (b) raw scatter data (c) Delaunay
triangulation (d) cartesian grid imposed on Delaunay triangulation (e) close up of interpolated pixels
(f) reconstructed image.

Using linear interpolation, the intensity at each Cartesian point is then computed from the resulting
triangulation. This results in a rendered image, as shown in Figure 2f. The Grid/Stitching plugin in
Fiji software is used to assemble all the mosaics presented in this study [23]. This plug-in computes
a correlation between the overlapping regions to calculate the best registration transformation.
In addition, it applies a linear blend on the overlapping areas to smooth out any hard edges on
adjacent frames.

2.4. Sample Preparation

Human breast tissue was obtained according to a protocol approved by the University of Waterloo
Health Research Ethics Committee (Humans: #40275 Photoacoustic Remote Sensing (PARS) Microscopy
of Surgical Resection, Needle Biopsy, and Pathology Specimens) and by the Research Ethics Board
of Alberta (Protocol ID: HREBA.CC-18-0277). The specimen was obtained from fresh mastectomy
resections, and was placed in formaldehyde to allow tissue fixation to occur. All experiments were
done in accordance with the relevant guidelines and regulations. The samples were deidentified
and no patient identifiers were provided to the researchers. As PARS allows for label-free imaging,
an unstained slide was prepared by sectioning 4 µm thick tissue samples. These samples were placed
on a glass slide and baked at 60 ◦C for an hour. An adjacent slide was prepared in the same fashion but
was dyed with hematoxylin and eosin for comparison to the PARS image.

3. Results and Discussion

To demonstrate this method, a 0.8 × 0.8 mm2 mosaic of carbon fiber networks composed of
one hundred frames was acquired at a repetition rate of 600 kHz (Figure 3). Each frame covered an
area of 121 × 121 µm2 and consisted of 400,000 raw point measurements. Operating at 600 kHz, the
acquisition time for each frame was 0.66 s, with the total acquisition time amounting to seventy seconds.
At such repetition rates, it was necessary for the mirrors to scan at 1.8 and 960 Hz. Operating at these
frequencies poses two major limitations for acquisition in the current system. First, the scanning
mirrors can only operate at low voltages, and hence, cover only a small field of view rapidly. Second,
the high frequencies increase the heat generation of the control electronics significantly. A larger
field of view can be obtained if sufficient active cooling is provided to the control electronics of the
galvanometers. A wider field of view can be imaged in the same amount of time by employing a
wide-angle lens or by reducing the number of raw measurements per frame. Figure 4 demonstrates the



Sensors 2020, 20, 1027 7 of 11

system’s ability to acquire a large field of view with a high number of frames. Four hundred frames
were acquired with a 35% overlap to ensure good image registration. Each frame had a field of view
of 380 × 380 µm2 and was composed of 400,000 raw data points. At 40 kHz, each frame took 10 s to
acquire, with the total time being 66 min for the entirety of the mosaic.Sensors 2020, 20, x FOR PEER REVIEW 8 of 12 
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To validate the method on tissue samples, we imaged human breast tissue with invasive ductal
carcinoma (Figure 5). Two tissue slides were prepared using adjacent sections from the formalin fixed
paraffin block. One slide was stained with hematoxylin and eosin (H&E) dyes, and imaged using
a conventional bright-field microscope (Figure 5a). The other slide was left unstained and imaged
using the PARS microscope (Figure 5b). The PARS microscope utilizes a 266 nm laser to provide DNA
constant. The PARS image was a mosaic of one hundred frames, with each frame being 85 × 85 µm2

and consisting of 100,000 points. The total field of view was approximately 1 × 1 mm2 and took 470 s to
acquire. The acquisition time in this case was limited by the 21 kHz repetition rate of the 266 nm laser.
Figure 5c,d show zoomed-in versions of the assembled mosaic visualizing cell nuclei of cancerous and
healthy human cells. The results of the proposed system are summarized in Table 1.
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bright-field microscope. (a) a standard H&E stained image (b) a PARS mosaic of one hundred frames,
total field of view of 1 × 1 mm2 (c,d) zoomed in versions of (b) showing cell nuclei. The image was
acquired with a 266 nm excitation source operating at 20 kHz. Scale bar 100 µm.
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Table 1. Summary of results of the proposed system.

Field of View Step Size Point Count Rep. Rate Acquisition Time

Proposed
Method Figure 3 0.8 × 0.8 mm2 200 nm 400,000 600 kHz 70 s

Proposed
Method Figure 4 3.0 × 3.0 mm2 600 nm 400,000 40 kHz 66 min

Proposed
Method Figure 5 1.0 × 1.0 mm2 260 nm 100,000 21 kHz 8 min

Previously, Hu et al. have reported an acquisition time of 70 min for an area of 7.8 × 10 mm2

with mechanical stages [24]. However, the reported acquisition utilized a step size of only 2.5 µm.
With a similar step size, the proposed method in this work would acquire a single frame with a
field of view of 380 × 380 µm2 in ~0.5 s. To acquire a 10 × 10 mm2 image, the total acquisition time
would be 7 min at a 40 kHz repetition rate. With a 600 kHz repetition rate, the total acquisition time
would reduce to approximately 26 s, yielding a significantly faster system which is vital for point by
point scanning microscopes. The significant increase in speed seen in this work can be traded for a
smaller step size resulting in higher sampling resolution. Similarly, other works on the subject have
reported results with a limited repetition rate, step size and resolution as compared to this work [19].
Employing a wide-angle lens, each frame is acquired in one second and covers a field of view of
930 × 930 µm2 consisting of 160,000 measurements. The increased spot size allows for a step size of
1.2 µm between point acquisitions lowering the number of points required per frame at the cost of
resolution. In contrast, here we are able to acquire a 400,000 point frame in 700 ms, including the
acquisition and stage movement time at a resolution of 1.2 µm and a step size of 200 nm. The 600 kHz
repetition rate halves the acquisition time while the transfer time is eliminated completely by streaming
the data while the scan is in progress. Employing a similar wide-angle objective that results in a frame
size of 930 × 930 µm2, an area of 9 × 9 mm2 can be acquired in seventy seconds with the same point
count per frame. A lower point count will further increase the rate of the acquisition.

4. Conclusions

This study demonstrated a method for PARS to enable large field of view acquisitions with a high
resolution and small step size to be acquired rapidly. Carbon fiber networks were presented with large
field of views and high repetition rates. The method was further demonstrated on human breast tissue,
which showed good agreement with the cellular morphology in the H&E samples. In conclusion, the
presented method has several advantages. The speed enhancement makes it possible to acquire images
twice as quickly compared to previous methods, while the small step size combined with high spatial
resolution yield high quality images. Moreover, by minimizing the stage movement, it allows for
delicate optics to be mounted on the stages, making it possible to image heavier targets. The authors
believe that the rapid acquisition of large field of views combined with high resolution and a small
step size can aid clinicians and makes human in situ imaging practical.

Author Contributions: S.A. developed the software for the acquisition, reconstruction, controlling the mechanical
stages, carried out experiments, and wrote the manuscript. K.B. developed the optical system, developed the
reconstruction software and carried out experiments. P.H.R. was the principal investigator and designed the
optical system. All authors have read and agreed to the published version of the manuscript.

Funding: Authors acknowledge funding from the University of Waterloo, NSERC Discovery grant, MITACS
accelerator program, Canada foundation for innovation (CFI-JEFL), CBB seed funding and research partnership
grant from illumiSonics Inc.

Acknowledgments: The authors would like to acknowledge John R. Mackey, Gilbert Bigras and Deepak Dinakaran
for preparing the tissue sample and providing an interpretation of the histopathology of the sample.

Conflicts of Interest: K.B. and P.H.R. have financial interests in illumiSonics Inc. IllumiSonics partly supported
this work.



Sensors 2020, 20, 1027 10 of 11

Ethics Statement: The human protocols used in this work were evaluated and approved by the University
of Waterloo Research Ethics Committee (Protocol #: Humans: #40275 Photoacoustic Remote Sensing (PARS)
Microscopy of Surgical Resection, Needle Biopsy, and Pathology Specimens). The ethics protocol adheres to the
laws and regulations of the Province of Ontario and of Canada.

References

1. Yao, D.-K.; Chen, R.; Maslov, K.; Zhou, Q.; Wang, L.V. Optimal ultraviolet wavelength for in vivo photoacoustic
imaging of cell nuclei. J. Biomed. Opt. 2012, 17, 056004. [CrossRef] [PubMed]

2. Wong, T.T.W.; Zhang, R.; Zhang, C.; Hsu, H.-C.; Maslov, K.I.; Wang, L.; Shi, J.; Chen, R.; Shung, K.K.; Zhou, Q.;
et al. Label-free automated three-dimensional imaging of whole organs by microtomy-assisted photoacoustic
microscopy. Nat. Commun. 2017, 8, 1386. [CrossRef] [PubMed]

3. Beard, P. Biomedical photoacoustic imaging. Interface Focus 2011, 1, 602–631. [CrossRef]
4. Yao, J.; Wang, L.V. Photoacoustic Microscopy. Laser Photon Rev. 2013, 7, 758–778. [CrossRef] [PubMed]
5. Zhang, C.; Maslov, K.; Wang, L.V. Subwavelength-resolution label-free photoacoustic microscopy of optical

absorption in vivo. Opt. Lett. 2010, 35, 3195–3197. [CrossRef] [PubMed]
6. Rao, B.; Li, L.; Maslov, K.; Wang, L. Hybrid-scanning optical-resolution photoacoustic microscopy for in vivo

vasculature imaging. Opt. Lett. 2010, 35, 1521–1523. [CrossRef] [PubMed]
7. Zhang, C.; Maslov, K.; Hu, S.; Chen, R.; Zhou, Q.; Shung, K.K.; Wang, L.V. Reflection-mode

submicron-resolution in vivo photoacoustic microscopy. J. Biomed. Opt. 2012, 17, 020501. [CrossRef]
[PubMed]

8. Yao, D.-K.; Maslov, K.; Shung, K.K.; Zhou, Q.; Wang, L.V. In vivo label-free photoacoustic microscopy of cell
nuclei by excitation of DNA and RNA. Opt. Lett. 2010, 35, 4139–4141. [CrossRef] [PubMed]

9. Hajireza, P.; Shi, W.; Bell, K.; Paproski, R.J.; Zemp, R.J. Non-interferometric photoacoustic remote sensing
microscopy. Light Sci. Appl. 2017, 6, e16278. [CrossRef] [PubMed]

10. Reza, P.H.; Bell, K.; Shi, W.; Shapiro, J.; Zemp, R.J. Deep non-contact photoacoustic initial pressure imaging.
Optica 2018, 5, 814–820. [CrossRef]

11. Bell, K.L.; Hajireza, P.; Shi, W.; Zemp, R.J. Temporal evolution of low-coherence reflectrometry signals in
photoacoustic remote sensing microscopy. Appl. Opt. AO 2017, 56, 5172–5181. [CrossRef] [PubMed]

12. Bell, K.; Hajireza, P.; Zemp, R. Scattering cross-sectional modulation in photoacoustic remote sensing
microscopy. Opt. Lett. OL 2018, 43, 146–149. [CrossRef] [PubMed]

13. Wang, L.V. Photoacoustic Imaging and Spectroscopy; CRC Press: Boca Raton, FL, USA, 2017;
ISBN 978-1-4200-5992-2.

14. Abbasi, S.; Le, M.; Sonier, B.; Dinakaran, D.; Bigras, G.; Bell, K.; Mackey, J.R.; Reza, P.H. All-optical
Reflection-mode Microscopic Histology of Unstained Human Tissues. Sci. Rep. 2019, 9, 1–11. [CrossRef]
[PubMed]

15. Abbasi, S.; Abbasi, S.; Le, M.; Le, M.; Sonier, B.; Bell, K.; Bell, K.; Dinakaran, D.; Dinakaran, D.; Bigras, G.;
et al. Chromophore selective multi-wavelength photoacoustic remote sensing of unstained human tissues.
Biomed. Opt. Express BOE 2019, 10, 5461–5469. [CrossRef] [PubMed]

16. Xie, Z.; Jiao, S.; Zhang, H.F.; Puliafito, C.A. Laser-scanning optical-resolution photoacoustic microscopy.
Opt. Lett. OL 2009, 34, 1771–1773. [CrossRef] [PubMed]

17. Jeon, S.; Kim, J.; Lee, D.; Baik, J.W.; Kim, C. Review on practical photoacoustic microscopy. Photoacoustics
2019, 15, 100141. [CrossRef]

18. Baik, J.W.; Kim, J.Y.; Cho, S.; Choi, S.; Kim, J.; Kim, C. Super Wide-field Photoacoustic Microscopy of Animals
and Humans In Vivo. IEEE Trans. Med. Imaging 2019. [CrossRef]

19. Shao, P.; Shi, W.; Chee, R.K.; Zemp, R.J. Mosaic acquisition and processing for optical-resolution photoacoustic
microscopy. J. Biomed. Opt. 2012, 17, 080503. [CrossRef]

20. Jiang, H. Photoacoustic Tomography; CRC Press: Boca Raton, FL, USA, 2018; ISBN 978-1-4822-6104-2.
21. Amidror, I. Scattered Data Interpolation Methods for Electronic Imaging Systems: A Survey. Available

online: https://infoscience.epfl.ch/record/99883 (accessed on 19 January 2020).
22. Van Kreveld, M.; Schwarzkopf, O.; de Berg, M.; Overmars, M. Computational Geometry: Algorithms and

Applications, 3rd ed.; de Berg, M., Ed.; Springer: Berlin, Germany, 2000; ISBN 978-3-540-77973-5.

http://dx.doi.org/10.1117/1.JBO.17.5.056004
http://www.ncbi.nlm.nih.gov/pubmed/22612127
http://dx.doi.org/10.1038/s41467-017-01649-3
http://www.ncbi.nlm.nih.gov/pubmed/29123109
http://dx.doi.org/10.1098/rsfs.2011.0028
http://dx.doi.org/10.1002/lpor.201200060
http://www.ncbi.nlm.nih.gov/pubmed/24416085
http://dx.doi.org/10.1364/OL.35.003195
http://www.ncbi.nlm.nih.gov/pubmed/20890331
http://dx.doi.org/10.1364/OL.35.001521
http://www.ncbi.nlm.nih.gov/pubmed/20479795
http://dx.doi.org/10.1117/1.JBO.17.2.020501
http://www.ncbi.nlm.nih.gov/pubmed/22463018
http://dx.doi.org/10.1364/OL.35.004139
http://www.ncbi.nlm.nih.gov/pubmed/21165116
http://dx.doi.org/10.1038/lsa.2016.278
http://www.ncbi.nlm.nih.gov/pubmed/30167263
http://dx.doi.org/10.1364/OPTICA.5.000814
http://dx.doi.org/10.1364/AO.56.005172
http://www.ncbi.nlm.nih.gov/pubmed/29047569
http://dx.doi.org/10.1364/OL.43.000146
http://www.ncbi.nlm.nih.gov/pubmed/29328218
http://dx.doi.org/10.1038/s41598-019-49849-9
http://www.ncbi.nlm.nih.gov/pubmed/31527734
http://dx.doi.org/10.1364/BOE.10.005461
http://www.ncbi.nlm.nih.gov/pubmed/31799024
http://dx.doi.org/10.1364/OL.34.001771
http://www.ncbi.nlm.nih.gov/pubmed/19529698
http://dx.doi.org/10.1016/j.pacs.2019.100141
http://dx.doi.org/10.1109/TMI.2019.2938518
http://dx.doi.org/10.1117/1.JBO.17.8.080503
https://infoscience.epfl.ch/record/99883


Sensors 2020, 20, 1027 11 of 11

23. Preibisch, S.; Saalfeld, S.; Tomancak, P. Globally optimal stitching of tiled 3D microscopic image acquisitions.
Bioinformatics 2009, 25, 1463–1465. [CrossRef] [PubMed]

24. Hu, S.; Maslov, K.; Wang, L.V. Second-generation optical-resolution photoacoustic microscopy with improved
sensitivity and speed. Opt. Lett. 2011, 36, 1134–1136. [CrossRef] [PubMed]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1093/bioinformatics/btp184
http://www.ncbi.nlm.nih.gov/pubmed/19346324
http://dx.doi.org/10.1364/OL.36.001134
http://www.ncbi.nlm.nih.gov/pubmed/21479007
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Experimental Apparatus 
	Mosaic Acquisition 
	Mosaic Reconstruction 
	Sample Preparation 

	Results and Discussion 
	Conclusions 
	References

