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Abstract
Influenza A virus genomes are composed of eight negative sense RNAs. In total, 16 pro-

teins encoded by eight positive sense RNAs were identified. One putative protein coding

sequence (PCS) encoded by genomic strand RNA of segment 8 has been previously pro-

posed. In this study, 95,608, 123,965 and 35,699 genomic strand RNA sequences from

influenza A viruses from avian, human and mammalian hosts, respectively, were used to

identify PCSs encoded by the genomic strand RNAs. In total, 326,069 PCSs with lengths

equal to or longer than 80 amino acids were identified and clustered into 270 PCS groups.

Twenty of the 270 PCS groups which have greater than 10% proportion in influenza A

viruses from avian, human or mammalian hosts were selected for detailed study. Maps of

the 20 PCSGs in the influenza A virus genomes were constructed. The proportions of the

20 PCSGs in influenza A viruses from different hosts and serotypes were analyzed. One

secretory and five membrane proteins predicted from the PCS groups encoded by genomic

strand RNAs of segments 1, 2, 4, 6, 7 and 8 were identified. These results suggest the pos-

sibility of the ambisense nature of the influenza A virus genomic RNAs and a potential cod-

ing sequence reservoir encoding potential pan proteomes of influenza A viruses.

Introduction
Influenza A virus (IAV) genomes are composed of eight negative (genomic) sense RNAs [1,2].
Currently, 16 proteins encoded by eight positive sense RNAs have been identified. Three pro-
teins (PB1, PB1-F2 and N40) encoded by the positive sense RNA of segment 2 start at the 1st,
4th and 5th AUG, respectively [3,4,5]. Four proteins (PA, PA-X, PA-N155 and PA-N182) are
encoded by the positive sense RNA of segment 3. The PA-X protein is a ribosomal frame-shift-
ing product composed of the N-terminal domain of the PA protein (191 amino acids) and a
short C-terminal domain (61 amino acids) that results from a +1 frameshift of the PA open
reading frame (ORF) [6,7]. The PA-N155 and PA-N182 proteins are translated from the 11th
and 13th in-frame AUGs in the PA ORF and are, therefore, N-terminally truncated forms of
PA protein [8]. Three proteins (M1, M2 and M42) are encoded by the positive sense RNA of
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segment 7. An alternatively spliced mRNA encodes an M2 variant, called M42, which function-
ally complements M2 in vitro and in vivo [9]. The genomic map of these ORFs is summarized
in S1 Fig. In addition to the proteins encoded by eight positive sense RNAs, a hypothetical pro-
tein sequence encoded by the genomic strand RNA of segment 8 was proposed [10,11,12].
These studies raise the possibility regarding the coding potential of the eight genomic strand
RNAs of IAVs.

In this study, a large-scale in silico investigation was performed using the IAV genome
sequences from the NCBI Influenza Database to identify putative protein coding sequences
(PCSs) in the genomic strand RNAs of IAVs. In total, 270 PCS groups (PCSGs) composed of
326,069 PCSs with lengths equal to or longer than 80 amino acids were identified. Twenty of
the 270 PCS groups with greater than 10% proportions in IAVs from avian, human or mam-
malian hosts (AIAV, HIAV and MIAV) were selected for further study.

Materials and Methods

Data Collection
In total, 322,235 IAV genome sequences were retrieved from the NCBI Influenza Database.
After checking completeness by length and integrity of open reading frame in the positive
strand, 255,273 IAV genomic strand RNA sequences were used. This data set includes 95,608,
123,965 and 35,699 genomic strand RNA sequences of IAVs from avian, human and mamma-
lian hosts (AIAVs, HIAVs and MIAVs), respectively (S1 Table). A set of genomic strand RNA
sequences from pandemic, outbreak or highly virulent HIAVs, including H1N1 1918 HIAV
from the "Spanish Flu", H2N2 HIAV from the 1957 pandemic, H3N2 HIAV from the 1968
pandemic, H1N1 HIAV from the 1977 Russia outbreak, 2009 H1N1 HIAV from the “swine
flu”, H5N1 HIAV from the 1997 Hong Kong outbreak, the 2004–2008 highly pathogenic
H5N1 HIAVs from Vietnam, Indonesia and Thailand and the highly pathogenic H7N9 HIAV
from China 2013 were used as models of special strains.

PCS Prediction, Sequence Clustering and Phylogenetic Analysis
The computer programs for data manipulation and putative protein coding sequence (PCS)
prediction were written by the authors using the Perl programming language. In total, 326,069
PCSs with a length equal to or longer than 80 amino acids were identified from 255,273 IAV
genomic strand RNAs. The PCSs predicted from each genome segment were clustered using
the CD-HIT software [13]. After sequence clustering, the CD-HIT software chose a longest
sequence as a representative sequence for each sequence cluster and computed the identities
between the representative sequence and the other sequences within the sequence group. Pro-
tein sequence identity of 60% was used as the cutoff of the first run of sequence clustering
because the protein sequences from these PCSs exhibit both sequence and length variations.
After first run clustering, 270 PCS groups (PCSGs) were obtained. Twenty of the 270 PCSGs
with greater than 10% proportion in at least one of AIAVs, HIAVs or MIAVs were chosen for
further study. Each of the 20 PCSGs was divided by IAV types (AIAV, HIAV and MIAV) and
serotypes (H1N1, H2N2, H3N2, H5N1, H7N9 and other). Each of the 20 PCSGs was used to
perform the second run of sequence clustering based on 95% identity. Representative protein
sequences of sub-clusters from each of the 20 PCSGs were used to perform phylogenetic analy-
sis using the MEGA6 software [14]. Phylogenetic trees of the 20 PCSGs were built by the NJ
method with bootstrap 1000 times. One-way ANOVA analyses of the sequence identity and
length variations of 20 PCSGs among the AIAVs, HIAVs and MIAVs were performed using
EXCEL.
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Protein Function Domain Prediction
The Simple Modular Architecture Research Tool (SMART) [15] and NCBI CD-Search [16]
were used for protein function domain identification. The TMHMM Server v. 2.0 [17] was
used to confirm the prediction of the trans-membrane domains and signal sequences.

Results

PCS groups identified in the genomic strands of IAV RNAs in silico
The genomic map of the 20 PCSGs (positions relative to the 10 proteins encoded by positive
sense RNAs) is shown in Fig 1. PCSG y in the genomic strand RNA of IAV segment x is repre-
sented as Sx PCS Gy in the figures, tables and text in the remainder of the article. The eight
ORFs (PB1, PB2, PA, HA, NP, NA, M1 and NS1) in the eight positive sense RNAs were used as
reference reading frames (+1 reading frame) for PCSGs encoded by eight genomic strand
RNAs. The length and location (start and end) of all PCSGs in the genomic strand RNAs are
inconsistent between IAV genomes. Therefore, the genomic map in Fig 1 shows the regions
covered by the shortest and longest PCSs of each PCSG in genomic strand RNAs. The length
distributions of the 20 PCSGs in AIAVs, HIAVs and MIAVs are shown in Fig 2. S4 PCS G3

Fig 1. A genomicmap of 20 putative protein coding sequence groups encoded by eight genomic strand RNAs of influenza A viruses identified in
this study. Blue arrows indicate open reading frames encoded by eight positive sense RNAs of influenza A viruses. Red arrows indicate putative protein
coding sequences encoded by eight genomic strand RNAs of influenza A viruses.

doi:10.1371/journal.pone.0146936.g001
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Fig 2. An illustration of the length variations of 20 putative protein coding sequence groups encoded by eight influenza a virus genomic strand
RNAs. The y-axis indicates the length of the putative protein coding sequences. AIAV, HIAV and MIAV indicate influenza A viruses from avian, human and
mammalian hosts, respectively. One-way ANOVA was performed and p values were used to indicate the differences between the putative protein coding
sequence lengths among influenza A viruses from different hosts.

doi:10.1371/journal.pone.0146936.g002
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was not identified in AIAVs; therefore, the sequence length of S4 PCS G3 of AIAVs is 0 and
ANOVA was not performed. Overall, two PCSGs (S5 PCS G2 and S7 PCS G3) have lower
length variation (ANOVA p = 5.7E-8 and 3.28E-14) than the other 17 PCSGs (ANOVA p = 0).
After sequence clustering, the CD-HIT software chose a longest sequence as a representative
sequence for each sequence cluster and computed the identities between the representative
sequence and the other sequences within the sequence group. The distributions of sequence
identities for each PCSG in AIAVs, HIAVs and MIAVs are shown in Fig 3. S4 PCS G3 was not
identified in AIAVs; therefore, the sequence identity of S4 PCS G3 of AIAVs is 0 and ANOVA
was not performed. Overall, only three PCSGs (S4 PCS G1, S4 PCS G2 and S6 PCS G2) have
lower identity variation (ANOVA p = 1.3E-289, 3.6E-287 and 7.6E-273) than the other 16
PCSGs (ANOVA p = 0).

Phylogenetic analysis of the 20 PCSGs
The number of sequences in the 20 PCSGs is listed in S2 Table. Because a large amount of
sequences cannot be used to perform phylogenetic analysis, protein sequences in each of the 20
PCSGs were further clustered into subgroups based on 95% sequence identity. The number of
sequence clusters in the 20 PCSGs is listed in S2 Table. Representative sequences of the sub-
groups were used to perform multiple sequence alignment followed by phylogenetic analysis.
Twenty phylogenetic trees of the corresponding 20 PCSGs are shown in S2 Fig. S7 PCS G2
exhibits the highest sequence to cluster ratio (14945:32), which indicates that this PCSG has
the lowest sequence diversity. In contrast, S5 PCS G3 exhibits the lowest sequence to cluster
ratio (7169:604), suggesting that this PCSG has the highest sequence diversity.

Evolving histories of the 20 PCSGs
The earliest and latest years of the sequences recorded in the NCBI Influenza Virus database
for the PCSs of the 20 PCSGs are shown in Figs 4–11. Eight PCSGs (S1 PCS G1, S1 PCS G2, S2
PCS G2, S3 PCS G1, S3 PCS G2, S5 PCS G1, S5 PCS G3 and S8 PCS G1) were present in the
records of AIAVs as early as 1902. Four of the eight PCSGs (S1 PCS G1, S3 PCS G1, S5 PCS G1
and S8 PCS G1) were present in the records of HIAVs as early as 1918. Three PCSGs (S2 PCS
G1, S7 PCS G1 and S7 PCS G2) were present in the records of HIAVs as early as 1918 but
appeared in the records of AIAVs as late as 1949 and 1965. In contrast, S4 PCS G2 was present
in the records of AIAVs and HIAVs as late as 2003 and 2007, respectively. S4 PCS G3 was pres-
ent in the records of MIAVs as late as 2003. Most of PCSGs appeared in the records from 1930
to 1980. Once they appeared, all of the 20 PCSGs were continuously identified in at least one of
the AIAVs, HIAVs or MIAVs till 2013 or 2014.

Proportions of the 20 PCSGs among IAVs from different hosts and
serotypes
The proportions of the 20 PCSGs in the AIAVs, HIAVs and MIAVs are shown in Figs 4–11.
Eight types of proportion distributions are found. The first PCSG type (order of proportions:
AIAVsffiMIAVsffiHIAVs) has high proportion for all AIAVs, MIAVs and HIAVs. For
example, S1 PCS G1 has proportions of 99.8%, 99.99% and 99.5% in the segment 1 RNAs of
AIAVs, HIAVs and MIAVs, respectively. Another example is S2 PCS G2, which has propor-
tions of 99.99%, 99.99% and 99.1% in the segment 2 RNAs of AIAVs, HIAVs and MIAVs,
respectively. The second PCSG type (order of proportions: AIAVsffiMIAVsffiHIAVs), com-
posed of S3 PCS G1, has low proportions of 25.4%, 28.77% and 13.8% in the segment 3 RNAs
of AIAVs, MIAVs and HIAVs, respectively. The third PCSG type (order of proportions:
AIAVs<MIAVs>HIAVs) is composed of two PCSGs (S1 PCS G2 and S7 PCS G4). The
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Fig 3. An illustration of the sequence identity variations of 20 putative protein coding sequence groups encoded by eight influenza a virus
genomic strand RNAs. The y-axis indicates the sequence identity of putative protein coding sequences. AIAV, HIAV and MIAV indicate influenza A viruses
from avian, human and mammalian hosts, respectively. One-way ANOVA was performed and p values were used to indicate the differences between the
putative protein coding sequence identities among influenza A viruses from different hosts.

doi:10.1371/journal.pone.0146936.g003
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fourth PCSG type (order of proportions: AIAVs>MIAVs<HIAVs) is composed of S7 PCS
G2. The fifth PCSG type (order of proportions: AIAVs<MIAVsffiHIAVs) is composed of
three PCSGs (S2 PCS G1, S4 PCS G1 and S7 PCS G3). The sixth PCSG type (order of propor-
tions: AIAVsffiMIAVs<HIAVs) is composed of two PCSGs (S4 PCS G2 and S6 PCS G2).
The seventh PCSG type (order of proportions: AIAVs>MIAVsffiHIAVs) is composed of

Fig 4. Proportions of putative protein coding sequence groups encoded by the segment 1 genomic strand RNAs of influenza A viruses among
different serotypes. Blue arrows indicate open reading frames encoded by segment 1 positive sense RNAs of influenza A viruses. Red arrows indicate
putative protein coding sequences encoded by segment 1 genomic strand RNAs of influenza A viruses. AIAV, HIAV and MIAV indicate influenza A viruses
from avian, human and mammalian hosts, respectively. The “HxNy” in the pie chart indicates the proportion of segment 1 genomic strand RNAs with putative
protein coding sequences that belong to H1N1, H2N2, H3N2, H5N1 or H7N9 serotypes. The “Other” in the pie chart indicates the proportion of segment 1
genomic strand RNAs with putative protein coding sequences that do not belong to the H1N1, H2N2, H3N2, H5N1 or H7N9 serotypes. The “Without” in the
pie chart indicates the proportion of segment 1 genomic strand RNAs without a putative protein coding sequence.

doi:10.1371/journal.pone.0146936.g004
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two PCSGs (S5 PCS G3 and S7 PCS G1). The eighth PCSG type (order of proportions: AIAVs
ffiMIAVs>HIAVs) is composed of two PCSGs (S3 PCS G2 and S5 PCS G1).

The proportions of the 20 PCSGs in the IAVs of different serotypes from different hosts are
shown in Figs 4–11. Five PCSGs (S1 PCS G2, S3 PCS G2, S3 PCS G3, S5 PCS G1 and S7 PCS
G3) have higher proportions from H1N1 than other serotypes in the HIAVs. In contrast, five
PCSGs (S4 PCS G1, S4 PCS G2, S6 PCS G2, S7 PCS G2 and S8 PCS G1) have higher propor-
tions from H3N2 than other serotypes in the HIAVs.

Fig 5. Proportions of putative protein coding sequence groups encoded by the segment 2 genomic strand RNAs of influenza A viruses among
different serotypes. Blue arrows indicate open reading frames encoded by segment 2 positive sense RNAs of influenza A viruses. Red arrows indicate
putative protein coding sequences encoded by segment 2 genomic strand RNAs of influenza A viruses. AIAV, HIAV and MIAV indicate influenza A viruses
from avian, human and mammalian hosts, respectively. The “HxNy” in the pie chart indicates the proportion of segment 2 genomic strand RNAs with putative
protein coding sequences that belong to H1N1, H2N2, H3N2, H5N1 or H7N9 serotypes. The “Other” in the pie chart indicates the proportion of segment 2
genomic strand RNAs with putative protein coding sequences that do not belong to the H1N1, H2N2, H3N2, H5N1 or H7N9 serotypes. The “Without” in the
pie chart indicates the proportion of segment 2 genomic strand RNAs without a putative protein coding sequence.

doi:10.1371/journal.pone.0146936.g005
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Fig 6. Proportions of putative protein coding sequence groups encoded by the segment 3 genomic strand RNAs of influenza A viruses among
different serotypes. Blue arrows indicate open reading frames encoded by segment 3 positive sense RNAs of influenza A viruses. Red arrows indicate
putative protein coding sequences encoded by segment 3 genomic strand RNAs of influenza A viruses. AIAV, HIAV and MIAV indicate influenza A viruses
from avian, human and mammalian hosts, respectively. The “HxNy” in the pie chart indicates the proportion of segment 3 genomic strand RNAs with putative
protein coding sequences that belong to H1N1, H2N2, H3N2, H5N1 or H7N9 serotypes. The “Other” the in pie chart indicates the proportion of segment 3
genomic strand RNAs with putative protein coding sequences that do not belong to the H1N1, H2N2, H3N2, H5N1 or H7N9 serotypes. The “Without” in the
pie chart indicates the proportion of segment 3 genomic strand RNAs without a putative protein coding sequence.

doi:10.1371/journal.pone.0146936.g006
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Fig 7. Proportions of putative protein coding sequence groups encoded by the segment 4 genomic strand RNAs of influenza A viruses among
different serotypes. Blue arrows indicate open reading frames encoded by segment 4 positive sense RNAs of influenza A viruses. Red arrows indicate
putative protein coding sequences encoded by segment 4 genomic strand RNAs of influenza A viruses. AIAV, HIAV and MIAV indicate influenza A viruses
from avian, human and mammalian hosts, respectively. The “HxNy” in the pie chart indicates the proportion of segment 4 genomic strand RNAs with putative
protein coding sequences that belong to H1N1, H2N2, H3N2, H5N1 or H7N9 serotypes. The “Other” in the pie chart indicates the proportion of segment 4
genomic strand RNAs with putative protein coding sequences that do not belong to the H1N1, H2N2, H3N2, H5N1 or H7N9 serotypes. The “Without” in the
pie chart indicates the proportion of segment 4 genomic strand RNAs without a putative protein coding sequence.

doi:10.1371/journal.pone.0146936.g007
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Fig 8. Proportions of putative protein coding sequence groups encoded by the segment 5 genomic strand RNAs of influenza A viruses among
different serotypes. Blue arrows indicate open reading frames encoded by segment 5 positive sense RNAs of influenza A viruses. Red arrows indicate
putative protein coding sequences encoded by segment 5 genomic strand RNAs of influenza A viruses. AIAV, HIAV and MIAV indicate influenza A viruses
from avian, human and mammalian hosts, respectively. The “HxNy” in the pie chart indicates the proportion of segment 5 genomic strand RNAs with putative
protein coding sequences that belong to H1N1, H2N2, H3N2, H5N1 or H7N9 serotypes. The “Other” in the pie chart indicates the proportion of segment 5
genomic strand RNAs with putative protein coding sequences that do not belong to the H1N1, H2N2, H3N2, H5N1 or H7N9 serotypes. The “Without” in the
pie chart indicates the proportion of segment 5 genomic strand RNAs without a putative protein coding sequence.

doi:10.1371/journal.pone.0146936.g008
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PCSs encoded by the genomic RNAs of pandemic, outbreak and highly
pathogenic IAVs
The PCSs encoded by the genomic strand RNAs of pandemic, outbreak and highly pathogenic
IAVs from human hosts are listed in Table 1. The PCSs encoded by the genomic strand RNAs
of H1N1WSN33 and H1N1 PR8 HIAVs are also listed as reference IAV strains (frequently
used in laboratory experiments). The genomic maps of these PCSs are shown in S3 Fig. Three
PCSGs are worth noting. First, a 239-amino acid PCS belonging to S1 PCS G2 is present in

Fig 9. Proportions of putative protein coding sequence groups encoded by the segment 6 genomic strand RNAs of influenza A viruses among
different serotypes. Blue arrows indicate open reading frames encoded by segment 6 positive sense RNAs of influenza A viruses. Red arrows indicate
putative protein coding sequences encoded by segment 6 genomic strand RNAs of influenza A viruses. AIAV, HIAV and MIAV indicate influenza A viruses
from avian, human and mammalian hosts, respectively. The “HxNy” in the pie chart indicates the proportion of segment 6 genomic strand RNAs with putative
protein coding sequences that belong to H1N1, H2N2, H3N2, H5N1 or H7N9 serotypes. The “Other” in the pie chart indicates the proportion of segment 6
genomic strand RNAs with putative protein coding sequences that do not belong to the H1N1, H2N2, H3N2, H5N1 or H7N9 serotypes. The “Without” in the
pie chart indicates the proportion of segment 6 genomic strand RNAs without a putative protein coding sequence.

doi:10.1371/journal.pone.0146936.g009
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Fig 10. Proportions of putative protein coding sequence groups encoded by the segment 7 genomic
strand RNAs of influenza A viruses among different serotypes. Blue arrows indicate open reading
frames encoded by segment 7 positive sense RNAs of influenza A viruses. Red arrows indicate putative
protein coding sequences encoded by segment 7 genomic strand RNAs of influenza A viruses. AIAV, HIAV
and MIAV indicate influenza A viruses from avian, human and mammalian hosts, respectively. The “HxNy” in
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segment 1 of H1N1 from the 2009 swine flu. Another 174-amino acid PCS belonging to S1
PCS G2 is present in segment 1 of the H5N1 HK 1997 and H7N9 2013 HIAVs. Second, a
109-amino acid PCS belonging to S3 PCS G2 is present in segment 3 of H1N1 1918 HIAV.
Shorter forms of 95~98-amino acids PCSs belonging to S3 PCS G2 are also present in segment
3 of the H5N1 and H7N9 2013 HIAVs. Third, a 154-amino acid PCS belonging to S6 PCS G1
is present in segment 6 of the H5N1 HIAVs from Indonesia, Thailand and Vietnam. As shown
in Figs 4, 6 and 9, the three PCSGs have higher proportions of H1N1 HIAVs than other sero-
types. An additional PCSG which does not belong to the 20 PCSGs was found encoded in the
segment 5 genomic strand RNAs of H5N1 Hong Kong 1997 (A/Hong Kong/156/97(H5N1))
(page 5 in S3 Fig). The proportions of this PCSG are 180/11165 (0.0161), 33/12806 (0.0026)
and 48/3535 (0.0136) in AIAVs, HIAVs and MIAVs, respectively.

the pie chart indicates the proportion of segment 7 genomic strand RNAs with putative protein coding
sequences that belong to H1N1, H2N2, H3N2, H5N1 or H7N9 serotypes. The “Other” in the pie chart
indicates the proportion of segment 7 genomic strand RNAs with putative protein coding sequences that do
not belong to the H1N1, H2N2, H3N2, H5N1 or H7N9 serotypes. The “Without” in the pie chart indicates the
proportion of segment 7 genomic strand RNAs without a putative protein coding sequence.

doi:10.1371/journal.pone.0146936.g010

Fig 11. Proportions of putative protein coding sequence groups encoded by the segment 8 genomic strand RNAs of influenza A viruses among
different serotypes. Blue arrows indicate open reading frames encoded by segment 8 positive sense RNAs of influenza A viruses. Red arrows indicate
putative protein coding sequences encoded by segment 8 genomic strand RNAs of influenza A viruses. AIAV, HIAV and MIAV indicate influenza A viruses
from avian, human and mammalian hosts, respectively. The “HxNy” in the pie chart indicates the proportion of segment 8 genomic strand RNAs with putative
protein coding sequences that belong to H1N1, H2N2, H3N2, H5N1 or H7N9 serotypes. The “Other” in the pie chart indicates the proportion of segment 8
genomic strand RNAs with putative protein coding sequences that do not belong to the H1N1, H2N2, H3N2, H5N1 or H7N9 serotypes. The “Without” in the
pie chart indicates the proportion of segment 8 genomic strand RNAs without a putative protein coding sequence.

doi:10.1371/journal.pone.0146936.g011
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Protein function domains predicted in silico
Signal sequences (for the protein secretory pathway) and trans-membrane domains were pre-
dicted in six PCSGs (S1 PCS G1, S2 PCS G1, S4 PCS G2, S6 PCS G2, S7 PCS G4 and S8 PCS
G1) in silico (Fig 12). A signal sequence (and no trans-membrane domain) was identified in S1
PCS G1, suggesting that S1 PCS G1 may be a secretory protein (Fig 12A). Trans-membrane
domains (and no signal sequence) were identified in S2 PCS G1, S4 PCS G2, S6 PCS G2, S7 PCS
G4 and S8 PCS G1 suggesting that these PCSGs may be encoded membrane proteins on

Table 1. Length (amino acids) of the putative protein coding sequences identified in the genomic strand RNAs of pandemic, outbreak and highly
pathogenic HIAVs.

H1N1 1918 H1N1 2009 H2N2 1957 H3N2 1968 H5N1 HK H5N1 IN H5N1 TL H5N1 VN H7N9 2013 H1N1WSN33 H1N1 PR8

S1 PCS G1 100 100 100 100 100 100 100 100 85* 100 100

S1 PCS G2 239 174 174

S2 PCS G1 130 116 116 101 130

S2 PCS G2 121 121 121 137 101 137 137 137

S3 PCS G1 81

S3 PCS G2 109 98 98 95 102 109

S3 PCS G3 90

S4 PCS G1

S4 PCS G2

S4 PCS G3

S5 PCS G1 83 83 117 83 83

S5 PCS G2

S5 PCS G3

S6 PCS G1 81 154 154 154 91

S6 PCS G2 87 87

S7 PCS G1 108,99 90 108,109 109 85 85 85 84 102 99

S7 PCS G2

S7 PCS G3

S7 PCS G4 84

S8 PCS G1 167 85 216 216 93 93 93 93 93 167 167

S1, S2, . . . S8 in the first column represent Segment 1 . . . Segment 8 of the influenza A virus genomes.

PCSG: putative protein coding sequence group.

H1N1 1918: Influenza A virus (A/Brevig Mission/1/1918(H1N1))

H1N1 2009: Influenza A virus (A/Mexico/LaGloria-8/2009(H1N1))

H2N2 1957: Influenza A virus (A/Guiyang/1/1957(H2N2)). Segment 4 of (A/Guiyang/1/1957(H2N2)) is not complete and was replaced with segment 4 of

Influenza A virus (A/Singapore/1/1957(H2N2)).

H3N2 1968: Influenza A virus (A/Hong Kong/1/1968(H3N2))

H5N1 HK: Influenza A virus (A/Hong Kong/481/97(H5N1))

H5N1 IN: Influenza A virus (A/Indonesia/283H/2006(H5N1))

H5N1 TL: Influenza A virus (A/Thailand/1(KAN-1)/2004(H5N1))

H5N1 VN: Influenza A virus (A/Viet Nam/1203/2004(H5N1))

H7N9 2013: Influenza A virus (A/Shanghai/02/2013(H7N9))

H1N1 WSN 33: Influenza A virus (A/WSN/1933(H1N1))

H1N1 PR8: Influenza A virus (A/Puerto Rico/8/1934(H1N1))

* indicates N-terminal truncated form without the predicted signal sequence.

doi:10.1371/journal.pone.0146936.t001
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organelle or plasma membranes (Fig 12B–12F). Except for the signal sequences and trans-
membrane domains in the three PCSGs, no protein function domain was identified in the 20
PCSGs using the SMART Database and NCBI Conserved Domain Database.

Positional overlapping between critical amino acids in the proteins
encoded by the positive strand RNAs and 20 PCSGs encoded by the
genomic strand RNAs
Several amino acids in the proteins encoded by positive sense RNAs have been reported to be
associated with virulence and host adaptation and can be used as genetic markers. Many of
these amino acid sites overlap the 20 PCSGs identified in this study. Maps of the positional
overlapping of the critical amino acids, which in the proteins encoded by positive sense RNAs
are associated with virulence [18–26], with the 20 PCSGs (53 amino acid sites) are shown in
Fig 13. Maps of the positional overlapping of critical amino acids, which in the proteins
encoded by positive sense RNAs are associated with genetic markers and host adaptation [27–
40], with the 20 PCSGs (198 amino acid sites) are shown in Fig 14.

Fig 12. Prediction of signal sequences and trans-membrane domains. The y-axis indicates the probability of prediction. An N-terminal sequence with
probability between 0.6 and 0.7 may be interpreted as a signal sequence. An internal sequence with a probability greater than 0.7 may be interpreted as a
trans-membrane domain.

doi:10.1371/journal.pone.0146936.g012
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Discussion
In this study, 20 PCSGs were proposed to be encoded by the genomic strand of IAV RNAs. If
the prediction is true, it has several implications. The first and simplest consequence is that
IAV genome segments are “ambisense”. Originally, the term “ambisense” was used to describe
the coding strategies of arenaviruses (family Arenaviridae) and members of the Phlebovirus
genus of the Bunyaviridae in that some proteins are encoded by viral-complementary RNA
sequences and others are encoded by the viral RNA sequence [41]. In those cases, ORFs are not
overlapped. In contrast, the 20 IAV PCSGs proposed in this study overlapped with ORFs
encoded by positive sense RNAs. Overlapping coding sequences may undergo co-evolution in
a sophisticated manner. Amino acids encoded by overlapping coding sequences are structur-
ally, functionally, and co-evolutionarily constrained.

Fig 13. Map of the positional overlapping of previously reported amino acids associated with virulence in the proteins encoded by positive sense
RNAs and the 20 PCSGs encoded by genomic strand RNAs. Amino acid sites in this figure are summarize from reference 19–26.

doi:10.1371/journal.pone.0146936.g013
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The distribution of the length of the 5'-UTR in human mRNA is between 100 to 500 bp
[42]. As shown in Fig 1, eight PCSGs (S1 PCS G1, S2 PCS G1, S3 PCS G1, S5 PCS G1, S6 PCS
G1, S7 PCS G1, S7 PCS G2 and S8 PCS G1) have a start codon near from the 5'-end (eg. shorter
than 500 bp) of the IAV genomic strand RNAs. The PCSGs near the middle and 3'-end of the
genomic strand RNAs may either need a mechanism for internal translation initiation for pro-
tein synthesis or have a very low efficiency of translation initiation and protein synthesis activi-
ties. Alternatively, they may form a reservoir of coding sequences. These potential coding
sequences may provide additional protein motifs for coding sequences near the 5’-end, whereas
frame shift mutations occur or new splicing sites are generated by random mutations.

Fig 14. Map of the positional overlapping of previously reported amino acids used as genetic markers and associated with host adaptation in the
proteins encoded by positive sense RNAs and the 20 PCSGs encoded by genomic strand RNAs. Amino acid sites in this figure are summarize from
reference 27–40.

doi:10.1371/journal.pone.0146936.g014
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The difference in the host adaption and virulence between IAVs may be derived from the
different composition of the viral core and pan proteomes. The 10 well-studied viral proteins
(PB2, PB1, PA, HA, NP, NA, M1, M2, NS1 and NS2) comprise the core proteome of IAVs.
Sequence and length variations of IAV proteins in the core proteome among different virus
strains may lead to function or activity diversity of proteins and differences in virulence among
IAVs. For example, the C-terminal PDZ domain of the NS1 protein is associated with the viru-
lence of IAVs. IAVs with C-terminal deletion of the NS1 protein exhibit relatively lower patho-
genicity than IAVs harboring NS1 proteins with the C-terminal PDZ domain [23]. In contrast,
based on the counts of CDSs from the NCBI Influenza A Virus Database, the frequencies of
PB1-F2 protein are 1, 0.76 and 0.61 for AIAV, MIAV and HIAV, respectively. The PB1-F2 pro-
tein may be considered a protein belongs to the pan proteome of IAVs. The PB1-F2 protein
was reported to exhibit contributions to IAV pathogenesis in mice [43,44,45]. The lower fre-
quency of the PB1-F2 protein in MIAVs and HIAVs than in AIAVs may suggest a disadvan-
tage of the protein for IAVs in mammalian and human hosts. Similarly, the frequencies of
PCSGs among AIAVs, MIAVs and HIAVs suggest that the functions of proteins encoded by
these PCSGs may be associated with host adaptation (Figs 4–11). For example, S1 PCS G1 has
frequencies of 99.8%, 99.99% and 99.5% in the segment 1 genomic strand RNAs of AIAVs,
HIAVs and MIAVs, respectively. The function of the protein encoded by this PCSG may have
large advantages for viral replication or survival. S2 PCS G1 has frequencies of 24.9%, 82.4%
and 76.2% in the segment 2 genomic strand RNAs of AIAVs, HIAVs and MIAVs, respectively.
The function of the protein encoded by this PCSG may have more advantages for viral adapta-
tion in mammalian and human hosts than in avian hosts. Similarly, the function of the protein
encoded by S7 PCS G3 may also have greater advantages for viral adaptation in mammalian
and human hosts than in avian hosts (Fig 10). Alternatively, the function of the protein
encoded by S7 PCS G1 may have greater advantages for viral adaptation in avian hosts than in
mammalian and human hosts (Fig 10). The contributions of the 20 PCSGs to viral evolution,
host adaptation and pathogenicity are worth further investigation.

The sequence and length variations of the 20 PCSGs among different virus strains may also
lead to function or activity diversity of proteins synthesized from these PCSGs. For instance,
the protein encoded by S1 PCS G1 has a predicted signal sequence (approximately 21 amino
acids in length) and may be a secretory protein. However, the H7N9 2013 HIAV has an N-ter-
minal deletion (15 amino acids in length) in the S1 PCS 1 protein. Whether this deletion leads
to the accumulation of S1 PCS 1 protein inside cells and results in cell damages is worth further
investigation.

Conclusions
The results of this study suggest the possibility of the ambisense nature of IAV genomes. A
potential reservoir encoding the pan proteome may exist in the genomic strand RNAs of IAVs.
The composition variations of the pan proteome (such as with or without the PB1-F2 protein)
among IAV strains may contribute to viral evolution, host adaptation and pathogenicity.
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