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1  | INTRODUC TION

Plant pathogens are a critical threat to global food security (Bebber & 
Gurr, 2015), the conservation of natural ecosystems, and the future 

resilience and sustainability of ecosystem services (Bever, Mangan, 
& Alexander, 2015). Because of their importance, there is a huge in‐
terest to biomonitor plant pathogens cost‐effectively at large scales 
without the need of culturing and before possible disease outbreaks.
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Abstract
Plant pathogens such as rust fungi (Pucciniales) are of global economic and ecological 
importance. This means there is a critical need to reliably and cost‐effectively detect, 
identify, and monitor these fungi at large scales. We investigated and analyzed the 
causes of differences between next‐generation sequencing (NGS) metabarcoding 
approaches and traditional DNA cloning in the detection and quantification of recog‐
nized species of rust fungi from environmental samples. We found significant differ‐
ences between observed and expected numbers of shared rust fungal operational 
taxonomic units (OTUs) among different methods. However, there was no significant 
difference in relative abundance of OTUs that all methods were capable of detecting. 
Differences among the methods were mainly driven by the method's ability to detect 
specific OTUs, likely caused by mismatches with the NGS metabarcoding primers to 
some Puccinia species. Furthermore, detection ability did not seem to be influenced 
by differences in sequence lengths among methods, the most appropriate bioinfor‐
matic pipeline used for each method, or the ability to detect rare species. Our find‐
ings are important to future metabarcoding studies, because they highlight the main 
sources of difference among methods, and rule out several mechanisms that could 
drive these differences. Furthermore, strong congruity among three fundamentally 
different and independent methods demonstrates the promising potential of NGS 
metabarcoding for tracking important taxa such as rust fungi from within larger NGS 
metabarcoding communities. Our results support the use of NGS metabarcoding for 
the large‐scale detection and quantification of rust fungi, but not for confirming the 
absence of species.
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Rust fungi (Pucciniales) constitute one of the largest groups 
of plant pathogens, with about 7,800 described species (Helfer, 
2014), and some rust species can have large economic and eco‐
logical impacts. For example, myrtle rust (Austropuccinia psidii) is 
currently decimating a wide range of Myrtaceae around the world 
(Fernandez Winzer, Carnegie, Pegg, & Leishman, 2018; Glen, 
Alfenas, Zauza, Wingfield, & Mohammed, 2007), such as the en‐
demic Eugenia koolauensis in Hawai‘i and the endemic Rhodamnia 
rubescens in native forests in Australia (Carnegie et al., 2016). 
Coffee leaf rust (Hemileia vastatrix) is substantially damaging 
Coffee plantations worldwide (Talhinhas et al., 2017). Similarly, 
wheat leaf rusts like Puccinia triticina, Puccinia recondite, and 
Puccinia striiformis are causing serious production losses for one of 
the world's biggest food crops (McCallum, Hiebert, Huerta‐Espino, 
& Cloutier, 2012).

While many studies focus on rust fungi as perceived pests, they 
actually constitute a vital component of natural ecosystem function‐
ing. In contrast to agroecosystems, rusts in their natural ecosystems 
are less well studied, and some species are threatened by extinction 
due to global change (Helfer, 2014). Because of the economic and 
ecological importance of plant pathogens, such as rust fungi, new, 
reliable, and cost‐effective tools are urgently needed to monitor 
them at large scales.

Next‐generation sequencing metabarcoding has the potential 
to develop into an effective method for the molecular identification 
of multiple plant pathogens from environmental samples (Merges, 
Bálint, Schmitt, Böhning‐Gaese, & Neuschulz, 2018; Taberlet, 
Coissac, Hajibabaei, & Rieseberg, 2012). DNA metabarcoding seems 
especially promising for the monitoring of potential plant pathogens 
(hereafter pathogens), because it bypasses the need for cultivation 
and isolation of species, and is able to detect plant pathogenic spe‐
cies when they occur asymptomatically (Malcolm, Kuldau, Gugino, 
& Jiménez‐Gasco, 2013; Stergiopoulos & Gordon, 2014) or at barely 
discernible levels. While DNA metabarcoding holds great potential 
for detecting and monitoring fungi in their environment (Durand 
et al., 2017; Miller, Hopkins, Inward, & Vogler, 2016; Schmidt et al., 
2013), it has not yet been widely applied to pathogens specifically 
(Abdelfattah, Nicosia, Cacciola, Droby, & Schena, 2015; Merges et 
al., 2018). It is therefore crucial to more fully understand the poten‐
tial limitations of this new approach.

Two limitations that frequently arise in NGS metabarcoding 
studies are the ability to quantify the abundances of different taxa 
(Deiner et al., 2017; Elbrecht & Leese, 2015), and the introduction 
of false positives/negatives by PCR amplification, library prepara‐
tion, and sequencing (Coissac, Riaz, & Puillandre, 2012). Here, we 
address these two possible limitations of NGS metabarcoding using 
the group of rust fungi as a model system. We investigate possi‐
ble differences between NGS metabarcoding and more traditional 
cloning approaches in the detection and abundance of rust fungal 
species. We also investigate what causes these differences. We use 
two primer pairs because our objective in this study was to compare 
methods using the best available and most appropriate approaches 
for each method. For the NGS metabarcoding approach, we use two 

fundamentally different sequencing technologies (Illumina MiSeq 
and Ion Torrent PGM) and fungal NGS metabarcoding primers to de‐
tect rust fungi from within a larger fungal community. We compare 
these results to a cloning approach, targeting the same gene region 
but focusing cloning on rust fungi using a rust fungi‐specific primer 
pair.

We hypothesize that the three methods (Illumina, Ion Torrent, 
and cloning):

1.	 differ in their detection of rust species (i.e., observed from 
expected number of detected rust species)

2.	 differ in their ability to quantify relative abundances of rust fungal 
species.

If one or both of the hypotheses are supported, we would then test 
hypotheses for the mechanisms driving differences among methods. 
Specifically, we hypothesize that differences among methods are due 
to:

1.	 differences in sequence lengths among methods
2.	 differences in the most appropriate bioinformatic pipelines for 

each method
3.	 taxonomic biases of the methods
4.	 different abilities of methods to detect rare species.

2  | METHODS

2.1 | Study site and sampling

We sampled thirty 20 × 20 m grassland plots. All plots were 
based on an 8 × 8 km grid that is used extensively for national 
biodiversity monitoring in New Zealand (Allen, Bellingham, & 
Wiser, 2003) and positioned following the standard protocol of 
Hurst and Allen (2007). The plots were selected based on the out‐
put of the geographic information system and stratified random 
sampling (Figure S1). We limited our sampling to grassland plots 
located at altitudes <1,000 m. All sampling was carried out under 
dry weather conditions between November 2014 and March 
2015.

At each plot, samples were collected using a sterilized leaf 
puncher within 64 min (4 min for each of sixteen 5 × 5 m subplots) 
to ensure balanced sampling of the whole plot. Every identifiable 
plant part (e.g., healthy leaves, leaves with lesions, bryophytes, 
grass stems, lichens, bark, seeds), including healthy as well as dis‐
eased plant material, was sampled to get all variants and to maximize 
rust fungal diversity. Since most of these samples represent above‐
ground herbaceous material (mainly leaves), we hereafter refer to 
these samples simply as “leaf samples.” The leaf samples were imme‐
diately pooled by plot, stored in a 50‐ml Falcon tube containing ster‐
ilized DMSO‐NaCl solution (20% DMSO, 0.25 M disodium‐EDTA, 
and NaCl to saturation, pH 7.5), sealed with Parafilm M, and kept at 
4°C until laboratory processing.
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2.2 | DNA extraction

The DNA extraction from the pooled leaf samples of each plot was 
carried out using the Macherey‐Nagel NucleoSpin 96 Plant II kit (robot 
extraction) following the manufacturer's protocol. We used both 
provided lysis buffers separately (cetrimonium bromide [CTAB] lysis 
buffer PL1 and a sodium dodecyl sulfate [SDS]‐based lysis buffer PL2) 
to enhance the amount of extracted DNA. Five microliters of product 
was quantified using a Qubit 2.0 fluorometer (Life Technologies) and 
the broad‐range assay kit following the manufacturer's protocol be‐
fore equally pooling the extracts from the same plot.

2.3 | Preparation of next‐generation 
sequencing libraries

We prepared NGS libraries in a one‐step PCR (Immolase MoTASP pro‐
tocol) to avoid the risk of contamination, following Clarke, Czechowski, 
Soubrier, Stevens, and Cooper (2014). We used the fungal primers 
fITS7: GTGARTCATCGAATCTTTG (Ihrmark et al., 2012) and ITS4: 
TCCTCCGCTTATTGATATGC (White, Bruns, Lee, & Taylor, 1990), ampli‐
fying the highly variable internal transcribed spacer region 2 (ITS2) with 
universal linker sequences at the 5' end for fITS7: TCGTCGGCAGCGTC 
and for ITS4: GTCTCGTGGGCTCGG. Illumina adapter sequences with 
index sequences and complementary linker sequences were as follows:

F: AATGATACGGCGACCACCGAGATCTACAG‐8nt index‐TCGT 
CGGCAGCGTC,.

R: CAAGCAGAAGACGGCATACGAGAT‐8nt index‐GTCTCGTG 
GGCTCGG. Ion Torrent adapter sequences with index sequences 
and barcode adapter sequences were as follows:

F: CCATCTCATCCCTGCGTGTCTCCGACTCAG‐10nt index‐GAT,.
R: CCACTACGCCTCCGCTTTCCTCTCTATGGGCAGTCGGTGAT
The universal fITS7 primer has been noted to exclude certain 

Ascomycota (Penicillium, Orbiliales) and most Mucorales (Ihrmark 
et al., 2012), but was chosen because it is more fungi‐specific com‐
pared to other universal primers (e.g., fITS9 or gITS7, which match 
some plants because they are degenerated at two positions, poten‐
tially overwhelming any fungal signal in leaf substrates). Moreover, 
the primer pair fITS7 and ITS4 is believed to capture most of the 
Basidiomycetes, including rust fungi, and its amplicon lengths are well 
suited to next‐generation sequencing (average of 258.5 ± 27.3 bp 
for Ascomycota and 309.8 ± 35.6 bp for Basidiomycota) (Bokulich & 
Mills, 2013; Ihrmark et al., 2012). Purification and size selection (280–
520 bp) were performed using a PippenPrep system to exclude primer 
dimers and high molecular weight DNA, before paired‐end sequenc‐
ing the samples with the Illumina MiSeq platform (250 cycle PE) at the 
Australian Genome Research Facility Ltd, Melbourne, Australia, and 
with the Ion Torrent PGM platform (400 bp SE) at the Waikato DNA 
Sequencing Facility, University of Waikato, Hamilton, New Zealand.

2.4 | Preparation of clone libraries

The use of a rust fungi‐specific primer was necessary to focus the 
cloning procedure on Pucciniales and to get to species resolution. 

We amplified an approximately 1,400‐bp target region with the rust 
fungi‐specific forward primer Rust2inv:

GATGAAGAACACAGTGAAA (Aime, 2006) and reverse primer 
LR6: CGCCAGTTCTGCTTACC (Vilgalys & Hester, 1990), starting in 
the 5.8S subunit and spanning the highly variable ITS2 region and 
the three most divergent domains (D1, D2, D3) of the large subunit 
(LSU, 28S). We performed PCRs for the two DNA extracts of each 
plot using the TaKaRa Ex Taq DNA polymerase kit (25 µl reaction 
volumes, containing 2.5 µl 10X Ex Taq buffer, 2 µl dNTP mixture 
(2.5 mM each), 5 µl 10 µg/ml rabbit serum albumin (RSA), 0.6 µl 
10 µM of each upstream and downstream primer, 0.125 µl TaKaRa 
Ex Taq, 1 µl DNA template, and 13.175 µl of sterilized distilled water). 
PCR conditions consisted of an initial denaturation step of 2 min at 
94°C, 35 cycles of 30 s at 94°C, 1 min at 57°C, and 1.5 min at 72°C, 
and a final extension of 7 min at 72°C, as initially described by Aime 
(2006) but using fewer cycles. We pooled 1 µl of PCR product origi‐
nating from the CTAB and 1 µl from the SDS‐based lysis buffer DNA 
extractions per plot, and cloned using the Strataclone PCR cloning 
kit (Agilent, Stratagene), following the manufacturer's protocol, with 
blue‐white screening of colonies. We conducted a preliminary re‐
striction fragment length polymorphism (RFLP) to determine suf‐
ficient sampling depth. The rarest pattern observed occurred five 
times out of 100 colonies within a plot. On that basis, we picked 50 
colonies per plot (1,500 overall), resulting in a 91.47% probability 
of detecting the rarest OTU. We performed colony PCRs with the 
plasmid‐specific primer pair M13–20: GTAAAACGACGGCCAG and 
M13RSP: CAGGAAACAGCTATGACCAT (Wood et al., 2012), using 
the TaKaRa Ex Taq DNA polymerase kit (15 µl reaction volumes, 
containing 1.5 µl 10X Ex Taq buffer, 1.2 µl dNTP mixture (2.5 mM 
each), 0.6 µl 10 µg/ml rabbit serum albumin (RSA), 0.24 µl 10 µM 
of each upstream and downstream primer, 0.075 µl TaKaRa Ex Taq, 
colony DNA template, and 10.15 µl of sterilized distilled water). 
PCR conditions consisted of an initial denaturation step of 12 min 
at 94°C, 35 cycles of 20 s at 94°C, 10 s at 55°C and 1.5 min at 65°C, 
and a final extension of 10 min at 65°C, following the method of 
Wood et al. (2012) but doubling the annealing time at 65°C. After 
a gel visualization, sequencing of colony PCR products in the for‐
ward direction was conducted with the Rust2inv primer at the Bio‐
Protection sequencing facility, Lincoln University, New Zealand. 
Reverse sequencing was not conducted because the gene regions of 
interest (ITS2, D1, D2, D3) lie within the first 750 bp of the forward 
sequencing read.

2.5 | Bioinformatics

We trimmed low‐quality bases at the clone library sequence begin‐
nings and ends, and removed primer and vector sequences. We aligned 
the sequences using the MUSCLE version 3.8.31 algorithm (Edgar, 
2004) and trimmed the beginning, so they start at the same point of 
the gene region as the sequences from Ion Torrent and Illumina using 
the fITS7 primer. Identical sequences were de‐replicated and N‐pad‐
ded to the same length. N‐padding (i.e., adding Ns, which represent 
any nucleotide) to the end of each sequence until they have the same 
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lengths was needed because the clustering algorithm used consid‐
ers terminal gaps to be absolute differences. However, N‐padding 
only was necessary for two short clone sequences. Not N‐padding 
of these two sequences would have resulted in two additional OTUs 
but would not have changed the overall results. We clustered the se‐
quences to a 97% similarity threshold without using singletons using 
UPARSE algorithm (Edgar, 2010). This threshold represents the ITS 
barcode gap for the overwhelming majority of fungal species, includ‐
ing the subdivision Pucciniomycotina (Schoch et al., 2012).

The forward and reverse Illumina reads were merged using 
the fastq_mergepairs command of USEARCH version 9.0.2132, 
and sequences with more than one expected error and less than 
175 bp were removed. Ion Torrent sequences were only used if the 
forward and the reverse primer complement could be found within 
the sequence and if the sequence was at least 175 bp long. We dis‐
carded Ion Torrent sequences with more than two expected errors 
(EE). We set a higher EE threshold because the mean expected 
error rate of the Ion Torrent runs at the sequence length of 300 bp 
was two. We trimmed non‐biological (primer) sequences, allow‐
ing 10% bp mismatch using the Python tool “cutadapt” version 
1.13 (Martin, 2011) if the forward primer or the reverse primer 
complement could be found at the sequence ends. Identical se‐
quences were de‐replicated. Illumina and Ion Torrent data were 
independently clustered to 97% similarity threshold without using 
singletons, using the UPARSE greedy clustering algorithm (Edgar, 
2013).

We constructed a reference database from UNITE and INSD 
(accessed 20.11.2016) and matched the representative sequence of 
each OTU to this database using BLAST version 2.5.0+ (Altschul et 
al., 1997). We considered an OTU to represent the order Pucciniales 
if it matched Pucciniales sequences in the database >80% iden‐
tity over at least 150 bp (Nguyen et al., 2016; Schoch et al., 2012). 
Extraction blanks, and positive and negative controls, were checked 
for contamination. Tag jumping (false combinations of tags and 
samples, which cause incorrect assignment of sequences) (Schnell, 
Bohmann, & Gilbert, 2015) was accounted for by using a regres‐
sion of the abundance of contaminants versus the maximum of 
total abundances in all other samples. The coefficient estimate for 
the 90th quantile regression was then used to subtract that many 
sequences from all OTUs. Hence, this tag‐jumping correction takes 
into account the fact that more abundant OTUs are more likely to 
do tag jumping. We blasted OTUs obtained from the three different 
methods against each other and considered them to be the same 
OTU if they matched at >98.5% similarity, which corresponds to ap‐
proximately 3% clustering of the NGS data using the distance‐based 
greedy clustering UPARSE algorithm (Edgar, 2013), but allows differ‐
ent sequence lengths as opposed to matching with USEARCH ver‐
sion 9.0.2132 (Altschul et al., 1997; Edgar, 2010, 2013).

2.6 | Statistical analyses

We used R version 3.4.1 (R Core Team, 2017) for conducting analy‐
ses and creating graphs if not stated otherwise. To test whether a 

method detected more or fewer shared/unique rust fungal OTUs 
than expected by chance, we used the “permatswap” function of the 
R package “vegan” version 2.0–7 (Oksanen et al., 2017) to create a 
null expectation. The simulated community matrices are based on 
Monte Carlo iterations, whereby the total number of OTUs per plot 
and total abundance within OTU were kept constant. We tested for 
differences in OTU abundances among methods using a generalized 
additive model (GAM) of the package “mgcv” version 1.8–18 (Wood, 
2001). A GAM was selected because: (a) it allows beta distribution 
for the response variable, which in this case was the appropriate dis‐
tribution for the proportional abundance of each OTU found within 
a plot (to account for different sequencing depths); and (b) the ap‐
proach allows testing for OTU and plot as random effects, and in‐
teraction between method and OTU. Data were rescaled to exclude 
zeros and ones, as suggested by Smithson and Verkuilen (2006). 
Wald test was used to test the significance of each parametric and 
smooth term (Wood, 2012). To see whether perceived rust fungi 
communities differ among methods, we converted the obtained 
community data into Jaccard distance matrices using Wisconsin 
double standardization. Four plots with zero OTUs, as well as unique 
communities, had to be discarded because of a dissimilarity of one. 
We displayed the dissimilarities with nonlinear multidimensional 
scaling and tested for significance between the configurations 
using Procrustes rotation and the “protest” function part of the 
“vegan” package, and the “mantel.test” function of the “ape” pack‐
age (Paradis, Claude, & Strimmer, 2004). We tested whether a bias 
among methods was caused by different sequence lengths or bioin‐
formatic pipelines, applying the same sequence length (248 bp) and/
or an identical bioinformatic pipeline to all methods. To look for a 
taxonomic bias in detecting the different methods, we constructed 
a neighbor‐net phylogeny (Bryant & Moulton, 2004) using Splitstree 
4.0 (Huson, Kloepper, & Bryant, 2008) and used chi‐square test to 
test whether taxonomic clusters are independent of methods. We 
tested whether a possible difference is due to the detection of rare 
and dominant OTUs by rerunning all tests using the top and lower 
50% of the rank abundance of each method. Species identities are 
based on the best BLAST match and were displayed as networks 
using the “igraph” package version 1.0.1 (Csardi & Nepusz, 2006) 
with edge width representing relative species abundance within 
method.

3  | RESULTS

3.1 | Differences among methods in detection of 
OTUs

There were seven rust fungal OTUs shared among the three meth‐
ods, which was much less than would be expected by random sam‐
pling (17.05 ± 0.33). The difference was driven by OTUs uniquely 
detected by single methods (Figure 1), that is, Illumina (one unique 
OTU) and Ion Torrent (two unique OTUs), and cloning (10 unique 
OTUs). The three methods (i.e., cloning, Illumina, and Ion Torrent) 
hence differed in detection of rust fungal OTUs.



     |  5 of 11MAKIOLA et al.

3.2 | No differences among methods in relative 
abundances of shared OTUs and in perceived 
community composition

There was no evidence of differences in quantification of relative 
abundances among the three methods (i.e., cloning, Illumina, and 
Ion Torrent) among OTUs that all methods were capable of de‐
tecting. A likelihood ratio test between models with and without 
an interaction term (method × OTU) was not significant (χ2 = 7.62, 
df = 12, p = 0.81). In general, rust communities perceived by the 
three methods did not result in largely different community pat‐
terns, as visualized by the overlap of the communities in NMDS 
(Figure 2). Mantel test and Procrustes analysis confirmed simi‐
larity (p < 0.05) for Ion Torrent/cloning (abundance data), and 
Ion Torrent/cloning and Illumina/Ion Torrent (presence/absence 
data).

3.3 | Mechanisms driving OTU detection 
differences among methods

Differences in detection among methods seemed not to be due 
to sequence length differences among methods. After trimming 
all sequences to the same length (248 bp), which is the shortest 
common sequence of all methods, and rerunning the analysis, 
the number of observed (seven) compared to randomly expected 
(17) shared rust OTUs stayed unchanged. Differences in detec‐
tion among methods also seemed not to be due to differences in 
the most appropriate bioinformatic pipelines for each method. 
Using an identical bioinformatic pipeline for all methods made dif‐
ferences even more extreme, with only four OTUs shared among 
methods, compared to seven (with the most appropriate pipelines) 
or 17 (expected). Differences in detection among methods were 
due to a taxonomic bias of the methods. Neighbor‐net phylogeny 

F I G U R E  1   (a) Observed and (b) 
expected number of rust fungal 
operational taxonomic units (OTUs) per 
method. OTUs were considered to be 
identical among methods when >98.5% 
BLAST similarity. Expectations were 
based on Monte Carlo random sampling 
(100 iterations) and displayed with 95% 
confidence intervals

Observed OTUs Expected OTUs(a) (b)

F I G U R E  2   Multidimensional scaling of rust communities (using abundance and presence/absence data) as perceived by three different 
methods: Illumina (green, squares), Ion Torrent (blue, circles), cloning (orange, triangles). Four plots were dropped because of lack of any 
detected rust communities in these plots

NMDS (Abundances) NMDS (Presence/Absence)(a) (b)
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(Figure 3) indicates three taxonomic clusters. Cluster 1 could 
equally be detected by all methods; cluster 2 was only detected 

using Illumina; cluster 3 was only detected using cloning. The chi‐
square test for independence was significant (χ2 = 17.536, df = 4, 
p < 0.01) and confirmed that clusters were not equally formed by 
the different methods.

Species identities of cluster 3 (i.e., uniquely detected by cloning) 
and cluster 2 (i.e., uniquely detected by Illumina) were displayed in 

a co‐occurrence network (Figure 4). While Illumina's uniquely de‐
tected species is from the genus Kuehneola, uniquely detected spe‐
cies from cloning and Ion Torrent are from the genus Puccinia. The 
taxonomic bias seemed not to be driven by poor detection of rare 

F I G U R E  3  Neighbor‐net phylogeny of 
rust fungal operational taxonomic units 
(OTUs) detected by the different methods: 
Illumina (squares), Ion Torrent (circles), 
cloning (triangles)

F I G U R E  4  Network representing shared and unique rust fungal operational taxonomic units (OTUs) among methods. Edge width 
represents proportional abundance of an OTU within method. Species identities are based on their best BLAST match. OTUs found in each 
method are considered to be identical when showing >98.5% sequence similarity
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OTUs. The same clusters occur when only considering the upper 
50% of rank abundance, hereafter called dominant OTUs (Figures 
S2 and S3), and when only considering the lower 50% of rank abun‐
dance, hereafter rare OTUs (Figures S4 and S5). The number of 
observed shared dominant (six) and rare (two) OTUs still differs sig‐
nificantly from randomly expected (11.08 ± 0.36 OTUs) shared rust 
OTUs. This difference in observed from expected is still mainly due 
to the uniquely detected OTUs from cloning (cluster 2 of Figure S2 
and cluster 3 of Figure S4).

Differences in detection among methods seemed to be caused 
by base pair mismatches of the NGS metabarcoding primer pair. 
Table 1 shows selected species that were detected by cloning but 
not by NGS metabarcoding and had at least one base pair mismatch 
to the NGS metabarcoding primers.

4  | DISCUSSION

This study demonstrates that NGS metabarcoding is an effective 
technique for large‐scale detection of rust fungus plant pathogens, 
but that taxonomic biases due to primer selection are a potential 
limitation. To the best of our knowledge, this is the first study with 
a real‐world application and comparison of cloning and NGS meta‐
barcoding to survey Pucciniales. We found differences in the detec‐
tion of rust fungus species among Illumina and Ion Torrent platforms, 
and cloning followed by Sanger sequencing. However, we found no 
significant difference in the relative abundances of the rust fungus 
species that all methods were capable of detecting. The mechanism 
driving detection differences among methods seemed to be due to 
a taxonomic bias, which was very likely caused by base pair mis‐
matches of the NGS metabarcoding primer pair to some Puccinia 
species. Otherwise, the consistency among fundamentally different 
and independent molecular methods shows that NGS metabarcoding 

and cloning are on a par. Altogether, the results support the applica‐
tion of NGS metabarcoding for the large‐scale detection of plant 
pathogens (presences) and contradict its application for inferring ab‐
sence of species, depending on the primer pairs. These findings are 
important to future metabarcoding studies because they highlight 
the main source of difference among methods and rule out several 
mechanisms that could drive differences.

The main difference between the methods (NGS metabarcod‐
ing and cloning) was due to their biases in species detection, not 
quantification. This suggests that previous problems when using 
quantitative next‐generation sequencing data (Elbrecht & Leese, 
2015; Piñol, Mir, Gomez‐Polo, & Agustí, 2015) were probably 
induced by PCR, and not by the method or sequencing platform 
per se. Furthermore, this is in line with the finding that the dif‐
ference in detection between NGS metabarcoding and cloning 
shows a taxonomic bias. Both the NGS metabarcoding and the 
cloning primers have either a perfect match or only a maximum of 
two base pair mismatches to all detected rust fungi in this study. 
Moreover, the NGS metabarcoding primers were thought to cap‐
ture most of the Basidiomycetes (Ihrmark et al., 2012; White et al., 
1990), including rust fungi. Consequently, the NGS metabarcoding 
and the cloning primers would be expected to detect a similar as‐
semblage of rust fungi. However, the base pair mismatches of the 
NGS metabarcoding primer occur in species that are only detected 
by cloning, and the cloning primer had no mismatches in these spe‐
cies. The lower specificity of the “universal” NGS metabarcoding 
primers is therefore more likely to discriminate against the ampli‐
fication of those species when exposed to 100% matching other 
fungal sequence templates (Bellemain et al., 2010). Lowering the 
annealing temperatures might help remedy these mismatch biases 
for this group in the future, particularly as none are very close 
to the 3' end of primers (Table 1). Although taxonomically clus‐
tered, the Puccinia species with the base pair mismatch of the NGS 

Species
5’‐fITS7 (forward primer) 
GTGARTCATCGAATCTTTG

3’‐ITS4 (reverse primer) 
GCATATCAATAAGCGGAGGA

Puccinia calcitrapaea

GTGAATCATTGAATCTTTG GCATATCAATAAGCAGAGGA

Puccinia nishidanab

....ATCATTGAATCTTTG GCATATCAATAAGCAGAGGA

Puccinia balsamorrhizaec

......CATTGAATCTTTG GCATATCAATAAGCAGAGGA

Puccinia komaroviid

GTGAATCATTGAATCTTTG GCATATCAATAAGCAGAGGA

Puccinia hieraciie

......CATCGAATCTTTG GCATATCAATAAGCAGAGGA

Note. Mismatches are highlighted (bold and underlined).
Sequences were selected from the National Center for Biotechnology Information (NCBI) to cover 
the gene region of cloning and metabarcoding primers when possible.
Dot indicates no entry of base pair in the database.
Accession numbers are given as footnotes. Accession numbers:
aJN204183.1 bHM022141.1 cJN204182.1 dKC466553.1 eHQ317515.1 

TA B L E  1   Metabarcoding primer 
mismatches to selected species that were 
detected by cloning but not by 
metabarcoding
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metabarcoding primer seemed not to fall into a known taxonomic 
cluster, like a subgenus (Van der Merwe, Ericson, Walker, Thrall, & 
Burdon, 2007).

Numerous NGS metabarcoding studies have pointed out that 
NGS metabarcoding primers can discriminate against certain taxa 
(Bellemain et al., 2010; Clarke et al., 2014; Elbrecht & Leese, 2015; 
Schmidt et al., 2013). Some studies have tried to limit this bias to some 
extent by using quantitative PCR and correction factors (Thomas, 
Deagle, Eveson, Harsch, & Trites, 2016), primer mixes (Tedersoo et 
al., 2015), or blocking oligonucleotides to non‐target DNA (Piñol et 
al., 2015). Ficetola et al. (2010) proposed an “electronic PCR” ap‐
plication to measure barcode coverage and specificity. This in silico 
approach has proven useful to identify the appropriate barcode gene 
regions and when comparing different primers for fungi (Bellemain 
et al., 2010) and vertebrates (Valentini et al., 2016). The results from 
this study and from the literature, taken together, highlight the im‐
portance of primer choice for NGS metabarcoding studies. NGS 
metabarcoding studies should therefore carefully examine in silico 
what taxa their primers might discriminate against in order to select 
appropriate NGS metabarcoding markers and aid the interpretation 
of results.

This study also ruled out several mechanisms that could possibly 
drive detection differences between NGS metabarcoding and clon‐
ing. We found no evidence that sequence length, most appropriate 
bioinformatic pipeline, or ability to detect rare species caused any 
differences among methods. We found that shortening all sequences 
to the length of the shortest sequence (248 bp) did not change the 
interpretation of the overall results and resulting phylogeny. Min and 
Hickey (2007) and Han et al. (2013) showed that reducing sequence 
length can have effects on the accuracy of phylogenies when DNA 
barcoding fungi. They also showed that despite some loss of phylo‐
genetic signal, shorter sequences can still resolve the terminal nodes 
of the phylogeny quite efficiently in most cases. Current next‐gen‐
eration sequencing technologies still require the amplification of 
short sequences, and some barcode regions (e.g., the ITS region for 
fungi) can lack the necessary resolution for particular fungal taxa 
(Gazis, Rehner & Chaverri, 2011). Despite these challenges, short 
sequences provide enough resolution at a genus and often a within‐
genus level for the majority of fungi (Blaalid et al., 2013). While short 
sequences have been repeatedly shown to be sufficient for genus‐ 
or even species‐level identifications (Blaalid et al., 2013; Bokulich & 
Mills, 2013), future next‐generation sequencing technologies should 
be able to overcome the current length limitations and provide the 
field of NGS metabarcoding with even better species delimitations 
(Goodwin, McPherson, & McCombie, 2016).

Bioinformatic pipelines can have profound effects on the outcome 
of NGS metabarcoding studies (Flynn, Brown, Chain, MacIsaac, & 
Cristescu, 2015). In this study, the error rate strongly differed between 
Illumina, Ion Torrent, and Sanger sequencing runs. Using an identical 
bioinformatic pipeline, such as identical quality filtering and clustering, 
resulted in a much lower number of shared OTUs among the methods. 
These results justify using the most appropriate bioinformatic pipeline 
for each method. Moreover, we did not find any effect of rare species 

on detection ability among methods. The same taxonomic bias among 
the methods occurred when only looking at the dominant or only look‐
ing at the rare OTUs. Rare OTUs in NGS metabarcoding data are gen‐
erally more prone to errors due to the accumulation of errors (Dickie, 
2010), tag jumping (Schnell et al., 2015), chimera formation (Edgar, 
Haas, Clemente, Quince, & Knight, 2011), or false positive/negatives 
(Ficetola et al., 2010). However, previous studies have shown that if 
these problems associated with rare OTUs are overcome, the ability 
of NGS metabarcoding to detect rare species is equal to or exceeds 
non‐molecular methods (Valentini et al., 2016; Zhan et al., 2013).

Next‐generation sequencing metabarcoding seems appropriate 
for the large‐scale detection of rust fungi and less appropriate for 
inferring absence of species. For example, the species Puccinia sorghi 
was initially present in the raw data of all three methods. However, 
only two sequences of this species were present in the Illumina raw 
data. These two sequences exhibited a point mutation or a possi‐
ble sequencing error in their reverse sequence read and got treated 
as unique sequences (singletons) after merging. Hence, although 
initially present in the Illumina raw data, these two sequences 
could not form an OTU. This phenomenon of species getting lost 
during merging of paired‐end sequencing has been noted earlier by 
Nguyen, Smith, Peay, and Kennedy (2015) and was generally caused 
by the usually poorer quality of reverse sequencing reads of the 
Illumina MiSeq platform. The problem of missing extremely rare 
species, however, is not method specific, as the case of Kuehneola 
uredinis demonstrates. This rare species had a total of 47 sequences 
in the Illumina data and was initially present as a single sequence in 
the raw data of the clone libraries. Because singletons got discarded 
regardless of the method, Kuehneola uredinis got discarded from the 
clone data. The fact that the cloning primer pair had a perfect match 
to Kuehneola uredinis and that this species got picked up once clearly 
shows that the detection of rare species does not rely on the applied 
method but rather on sequencing depth and bioinformatic assump‐
tions. Picking a greater number of clones would probably have re‐
sulted in at least another sequence of Kuehneola uredines, and hence 
detection of this species. Despite failing to detect two rare species 
by some methods, other rare species, such as Uromyces dactylidis 
and Puccinia hordei, could be detected regardless of the method.

Another way of easily missing species when merging paired‐
end sequencing reads is to lose “too long” sequences, since these 
would not overlap. This can be simply tested by not merging the 
reads and using forward and reverse reads separately. In this 
study, we found no rust fungus species getting lost during merging 
as a result of “too long” sequences. The actual Illumina sequencing 
process, however, is known for discriminating against longer ampl‐
icons (Allen et al., 2016). Although less likely than, for instance, a 
primer mismatch, the Puccinia species that could not be detected 
by NGS metabarcoding but could by cloning could possibly have 
been missed during the next‐generation sequencing process due 
to slightly longer amplicons. We did not compare abundance data 
to a field survey or biomass, but found no significant difference in 
relative abundances of OTUs on plot level among NGS metabar‐
coding and cloning. This suggests that any biases in quantification 
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using molecular techniques are not method dependent. Despite 
issues arising from PCR (yet common for most molecular methods) 
such as the difference in rRNA copy numbers, several studies do 
show NGS metabarcoding to be successful for semiquantitative 
abundance estimation of, for example, feather mite communi‐
ties in birds (Diaz‐Real, Serrano, Piriz, & Jovani, 2015), fish and 
amphibians in freshwater ecosystems (Evans et al., 2016), plant–
pollinator interactions (Pornon et al., 2016), the biomass of mac‐
roinvertebrates (Elbrecht & Leese, 2015), and fungi (Taylor et al., 
2016). These studies suggest that if obstacles associated with PCR 
biases can be overcome, NGS metabarcoding holds promising po‐
tential not only for the detection but also for the quantification of 
species. Moreover, PCR‐free techniques may remedy primer and 
amplification biases (including chimera formation) in the near fu‐
ture. Different gene copy numbers still pose a significant challenge 
for biomass estimates but could be overcome with the growing 
number of whole genome databases.

Next‐generation sequencing metabarcoding has been increas‐
ingly recognized as a promising tool for biomonitoring species and 
complex communities at large scales (Holdaway et al., 2017). In re‐
cent cases, it has been applied to plant pathogenic fungi (Merges et 
al., 2018) and oomycetes (Burgess et al., 2017). It is important to un‐
derstand the advantages and disadvantages of using NGS metabar‐
coding for detecting and monitoring important functional groups 
at the ecosystems scale. Our study suggests that rust fungi can be 
tracked from within a larger NGS metabarcoding dataset, which 
should facilitate the future monitoring of this critically important 
group of fungi.
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