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Abstract
Accurately estimating abundance is a critical component of monitoring and recovery 
of rare and elusive species. Spatial capture–recapture (SCR) models are an increas-
ingly popular method for robust estimation of ecological parameters. We provide 
an analytical framework to assess results from empirical studies to inform SCR sam-
pling design, using both simulated and empirical data from noninvasive genetic sam-
pling of seven boreal caribou populations (Rangifer tarandus caribou), which varied in 
range size and estimated population density. We use simulated population data with 
varying levels of clustered distributions to quantify the impact of nonindependence 
of detections on density estimates, and empirical datasets to explore the influence 
of varied sampling intensity on the relative bias and precision of density estimates. 
Simulations revealed that clustered distributions of detections did not significantly 
impact relative bias or precision of density estimates. The genotyping success rate 
of our empirical dataset (n = 7,210 samples) was 95.1%, and 1,755 unique individu-
als were identified. Analysis of the empirical data indicated that reduced sampling 
intensity had a greater impact on density estimates in smaller ranges. The number 
of captures and spatial recaptures was strongly correlated with precision, but not 
absolute relative bias. The best sampling designs did not differ with estimated popu-
lation density but differed between large and small ranges. We provide an efficient 
framework implemented in R to estimate the detection parameters required when 
designing SCR studies. The framework can be used when designing a monitoring 
program to minimize effort and cost while maximizing effectiveness, which is critical 
for informing wildlife management and conservation.
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1  | INTRODUC TION

Robust abundance estimates are fundamental parameters for man-
aging wildlife populations, and central to understanding extinction 
risk (Campbell et al., 2002; Lande, 1993; Shaffer, 1981). Monitoring 
and understanding variation in abundance is critical for recovery 
efforts of threatened and endangered populations; however, pro-
ducing accurate population estimates remains a challenge for many 
species. This is particularly true for species that occur at low density 
or in low abundance, that are cryptic, or that exhibit elusive behav-
iors which make capture difficult (Kéry, Gardner, Stoeckle, Weber, & 
Royle, 2011; Pollock, Marsh, Lawler, & Alldredge, 2006). Nonspatial 
capture–recapture (CR) analyses have been the standard method 
used to estimate abundance of many vertebrate species; however, 
spatially explicit capture–recapture (SCR) models are becoming the 
new standard because they are robust to small sample sizes, and can 
accommodate low capture probabilities (Borchers & Efford,  2008; 
Efford, Borchers, & Byrom, 2009; Ivan, White, & Shenk, 2013; Royle, 
Chandler, Sollmann, & Gardner, 2013). By including spatial informa-
tion of captured individuals directly into the analyses, SCR models 
resolve issues surrounding the effective trapping area and are robust 
to assumptions about geographic closure that are common issues in 
nonspatial CR studies (Efford & Fewster, 2013; Royle et al., 2013). 
Recapturing individuals at different locations also provides informa-
tion on individual activity centers, which are used to estimate ani-
mal density within the study area (Borchers & Efford, 2008; Royle 
et al., 2013).

SCR models directly depend on adequate number of unique 
individuals captured and recaptured at multiple spatial locations 
(Efford & Boulanger, 2019; Sun, Fuller, & Royle, 2014). Simulations 
are recommended to enable the assessment of sampling design on 
SCR parameter estimates, to inform optimal sampling design (Royle 
et  al.,  2013). Such studies have primarily focused on large carni-
vores, such as black bears (Ursus americanus; Clark, 2019; Sollmann, 
Gardner, & Belant,  2012; Sun et  al.,  2014; Wilton et  al.,  2014), 
and a few additional taxa (Kristensen & Kovach,  2018; Tobler & 
Powell, 2013), while limited work has been done on species occur-
ring at low densities over large areas and with more limited home 
range sizes. Noninvasive genetic sampling approaches can be used 
to alleviate the challenges associated with surveying rare and elusive 
species, by constructing capture histories from DNA collected from 
feces, hair, or other noninvasively collected samples (Kristensen & 
Kovach, 2018; Lampa, Henle, Klenke, Hoehn, & Gruber, 2013; Waits 
& Paetkau, 2005). Noninvasive methods often result in higher cap-
ture rates and lower expense than traditional capture–recapture 
methods (Lampa et al., 2013; Prugh, Ritland, Arthur, & Krebs, 2005; 
Waits & Paetkau, 2005), and SCR is increasingly being used in com-
bination with noninvasive methods (Kristensen & Kovach,  2018; 
Lamb et  al.,  2018; Royle et  al.,  2013). Knowledge of the target 
species’ home range size helps inform the spatial sampling design, 
providing reference values for the baseline detection probability 
(Sollmann et al., 2012; Sun et al., 2014). Efford and Boulanger (2019) 
presented formulae to determine the precision of new study designs 

by computing the expected number of detected individuals and ex-
pected number of recaptures that strongly correlate with precision. 
However, these formulae require reference values for density and 
detection parameters (Efford,  2019b), which may not be available 
for less studied species.

Here, we developed a framework to assess results from empirical 
studies to inform sampling designs (Figure 1). The framework con-
sists of (1) determining the number of unique individuals captured 
and spatially recaptured from empirical data; (2) fitting SCR models 
under the assumption of homogeneous distribution to estimate the 
detection parameters g0 (detection probability) and σ (spatial extent 
of an individual's use of the landscape) to assess the precision of the 
density estimates; (3) running simulations to assess the influence of 
the species’ behavior on density estimates and relative bias; (4) using 
empirical data to assess different sampling designs and assess pre-
cision and relative bias of the estimates; and (5) making recommen-
dations on study design based on the resulting precision and relative 
bias of the estimates. The framework is implemented in R (R Core 
Team, 2019), using maximum likelihood methods.

To collect empirical data, we completed aerial surveys across 
the ranges of seven boreal caribou populations in Alberta, Canada. 
These ranges varied in size, exhibited differences in estimated cari-
bou population density, and contained different levels of natural and 
anthropogenic disturbances (Figure 2; see Appendix S1 for details). 
For each caribou population, we used an aerial transect survey de-
sign to conduct noninvasive genetic sampling, through the collec-
tion of caribou fecal pellets. While we studied boreal caribou, our 
approach for assessing study design is applicable to other species 
and systems.

2  | MATERIAL S AND METHODS

2.1 | Fecal pellet collection and genetic analysis

For each population, we flew 3 surveys to collect fecal pellets dur-
ing winter (December to March), with sampling occasions spaced ap-
proximately one month apart. Following the aerial survey protocol 
outlined in Hettinga et al.  (2012), aerial transects were systemati-
cally flown at 3-km intervals across each entire caribou population 
range using rotary- or fixed-wing aircraft, or a combination of both 
aircraft, to locate caribou feeding locations, for a total of 69,070 km 
flown across the seven ranges (Table  1). Once located, personnel 
landed at each feeding site and collected fecal samples; this included 
collecting samples from backtracking on caribou trails. At each feed-
ing site, approximately 1.4 times more samples than the number of 
boreal caribou thought to have been present were collected to allow 
for a balance between capturing most individuals at a site and not 
recapturing the same individuals too many times. All pellet samples 
were kept frozen at −20°C until DNA extraction was performed.

In the laboratory, fecal samples were thawed and the mucosal 
coat surrounding the pellets was removed for DNA analysis. The 
extraction protocol used to amplify the DNA is outlined in Ball 
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et al. (2007). Following quantification of target caribou DNA, sam-
ples were diluted down to a working stock concentration of 2.5ng/
ul. We amplified the DNA at 9 variable fluorescently labeled micro-
satellite loci (FCB193, RT7, RT1, NVHRT16, BM888, RT5, RT24, RT6, 
OHEQ; Bishop et al., 1994; Cronin, MacNeil, & Patton, 2005; Wilson, 
Strobeck, Wu, & Coffin, 1997) to generate individual-specific genetic 

profiles, along with caribou-specific Zfx/Zfy primers for sex identi-
fication. The amplification protocol is outlined in Ball et al.  (2007). 
Following amplification, each sample was genotyped on the ABI 
3,730 DNA Analyzer (Applied Biosystems). Microsatellite alleles 
were scored with the program GeneMarker v1.91® (SoftGenetics, 
State College, PA) and followed a protocol documented in Flasko 

F I G U R E  1   Framework for assessing results from empirical SCR studies and informing sampling designs
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et  al.  (2017) and McFarlane et  al.  (2018). Unique individuals were 
identified using the program ALLELEMATCH (Galpern, Manseau, 
Hettinga, Smith, & Wilson,  2012). We retained samples that am-
plified at ≥ 5 loci and re-amplified apparent unique genetic profiles 
represented by a single sample using two independent scorers to 

confirm unique individual identities (Hettinga et al., 2012). An error 
rate per locus was calculated using these re-amplification results.

2.2 | Framework

2.2.1 | Empirical SCR modeling

We used a maximum likelihood approach implemented in the R 
package secr (Efford, 2018; R Core Team, 2019) to estimate boreal 
caribou densities. SCR models are comprised of a submodel for 
the distribution of animals in the area of study (population density, 
D), and a submodel for the detection process, given the detection 
probability (the intercept of the detection function, g0) and given 
a parameter for scaling the detection function (the spatial extent 
of an individual's use of the landscape—σBorchers & Efford, 2008; 
Efford et  al.,  2009). For our empirical data, we treated each sur-
vey as an occasion within a single session. We discretized the study 
area into a 1,500 m grid of proximity detectors (which record the 
presence of individuals at each detector without restricting move-
ment; Efford et al., 2009), and each grid was sampled in each oc-
casion with the same search intensity. The area of integration for 
SCR models needs to be large enough such that animals residing 
beyond the study area have a negligible chance of being detected 
(Borchers & Efford, 2008; Efford, 2004; Royle & Young, 2008). We 
therefore defined our state-space with a 15-km2 buffer around all 
study areas. We ran models for females, males, and both females 
and males together.

We estimated the parameters of the SCR detection function (g0 
and σ) by maximizing the conditional likelihood, and derived den-
sity (D) from the top AICC-ranked models (Anderson, Burnham, & 
White, 1994; Borchers & Efford, 2008). We used the hazard expo-
nential form of the detection function, because area search data 
models the cumulative hazard of detection (Efford, 2011). Models 
assumed that individuals were identified correctly, populations were 
demographically closed during sampling, and detections were inde-
pendent and conditional on activity center (Borchers & Efford, 2008; 
Efford, 2004). We assessed sources of variation on the detection pa-
rameters with time and behavior effects on both g0 and σ.

F I G U R E  2   Seven boreal caribou population ranges in Alberta 
sampled for fecal DNA. Gray shade lines delineate other woodland 
caribou population ranges

TA B L E  1   Sampling data

Survey 
Year

Area 
Surveyed 
(km2)

Distance 
Flown (km)

Number of 
Samples Collected

Number of Samples 
Successfully Scored

Number 
of Unique 
Genotypes

Genotyping 
Success (%)

Number 
of Spatial 
Recaptures

Cold Lake 2014 7,277 7,497 844 781 261 92.5 148

ESAR 2013 13,160 13,121 1,382 1,254 401 90.7 188

Little Smoky 2014–2015 3,084 3,048 855 835 108 97.7 36

Nipisi 2018 2,104 2,119 417 415 67 99.5 72

Red Earth 2017 24,737 25,377 1,819 1,777 386 97.7 530

Slave Lake 2018 1,516 1,501 206 190 42 92.2 38

WSAR 2015 15,726 16,407 1,687 1,613 490 95.6 314

Total - 67,604 69,070 7,210 6,865 1,755 - 1,326
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2.2.2 | Testing assumptions of homogeneous 
distribution

Boreal caribou is a nonmigratory ecotype of caribou and have rela-
tively small home ranges compared to wide-ranging carnivores such 
as brown bears (Graham & Stenhouse, 2014; Lamb et al., 2018) and 
black bears (Whittington & Sawaya, 2015). Boreal caribou exhibit a 
fission-fusion social structure and dynamics, with group size fluctu-
ating throughout the year and frequent exchanges between groups; 
group size is lowest during spring and summer when cows become 
solitary for calving, increases before the rut, and may increase or 
decrease during the winter (Thomas & Gray, 2002). To assess how 
the distribution of the animals (i.e., clustering) affected the precision 
and relative bias of our estimates, we simulated different population 
distributions at the individual level using three of our empirical data-
sets (Little Smoky, Cold Lake, and Slave Lake). Different distributions 
can be used for the simulations including a homogeneous Poisson 
distribution, inhomogeneous, or clustered Poisson distributions 
(Efford,  2019a). The chosen population distribution should reflect 
the distribution of the study species. Our empirical data approxi-
mated a Neyman-Scott clustered Poisson distribution which was 
then used for the simulations (Efford, 2019a). To simulate multiple 
detections in very close proximity, we set the spatial scale (σ) of the 
2D kernel for locations within each cluster to be 1. To simulate vary-
ing levels of clustering, we varied the fixed number of individuals 
per cluster (see Appendix S2: Figs S2.1–S2.3). We selected starting 
values for D, g0, and σ from the empirical model runs (Table 2). We 
carried out all simulations in the secr R package (Efford, 2018; R Core 
Team, 2019).

2.2.3 | Assessing precision and relative bias of 
different sampling designs using empirical data

We repeated the empirical population analyses with subsamples of 
data to explore how reduced sampling intensity affected the relative 
bias and precision of the density estimates from our empirical study. 
We rarified the data by reducing the number of sampling occasions 
and reducing the number of aerial transects flown. For the reduced 

number of sampling occasions, all possible 2-occasion combinations 
were run (occasions 1 and 2; occasions 2 and 3; and occasions 1 and 
3). Aerial transects were removed from the original spatial field data, 
keeping either every second or third transect line to emulate sam-
pling strategies of 6 km or 9 km transects. Only the samples collected 
along the remaining transect lines were retained, and only those de-
tectors along the remaining transect lines were used in the analysis. 
We used the coefficient of variation (CV) as the metric for precision, 
and calculated the absolute relative bias (|RB| = |(D

⋀

-D)/D|) as the met-
ric for bias (as in Efford & Boulanger, 2019; Efford & Fewster, 2013; 
Kristensen & Kovach, 2018; Tobler & Powell, 2013). We compared 
estimates from the reduced datasets (D

⋀

) to those based on the em-
pirical dataset (D). We considered models with CV < 20% (following 
Pollock, Nichols, Brownie, & Hines, 1990) and relative bias < 15% 
(Otis, Burnham, White, & Anderson, 1978) as favorable outcomes. 
Models with CV < 30% and |RB| <20% can also be considered fa-
vorable (Kristensen & Kovach, 2018), because high precision may be 
difficult to achieve for rare and low-density species.

We calculated the precision and relative bias of each subsam-
pling scenario. To determine how the number of captures, number of 
recaptures, and number of spatial recaptures (recaptures at different 
locations) influence the precision and relative bias of the estimates, 
we correlated the precision and relative bias of the estimates with 
these parameters for each scenario, and then globally.

3  | RESULTS

3.1 | Capture and spatial recapture rates

A total of 7,210 fecal samples were collected and 6,865 were suc-
cessfully genotyped (average 95.1% genotyping success), resulting in 
the identification of 1,755 unique individuals from the seven popula-
tions detected a total of 1,326 times (unique site-occasion-animal 
detections (spatial recaptures); Table  1). Only four allelic dropout 
amplification errors occurred (error rate  <  0.001%). The number 
of captures (n = 85–931) varied with range size, and proportion of 
captures that were recaptured (34%–58%), and spatially recaptured 
(31%–57%) was highest in Red Earth and lowest in ESAR (Appendix 

TA B L E  2   Spatially-explicit capture–recapture density estimates for boreal caribou in Alberta, Canada. Density estimates (D) are per 
1,000 km2, SE(D) is the standard error of the density estimate, CV(D) is the coefficient of variation (SE of density estimate/density estimate), 
g0 indicates the capture probability at the home range center, sigma is the spatial scale parameter in meters, and N is the abundance over 
the study area

D (95% CI) SE(D) CV(D) g0 (95% CI) σ (95% CI) N (95% CI)

Cold Lake 61.9 (46.3–82.9) 6.69 0.15 0.015 (0.007–0.031) 3,363.2 (2,215.1–5240.1) 353 (276–452)

ESAR 50.6 (42.9–59.6) 4.24 0.08 0.024 (0.015–0.039) 1778.8 (1,451.8–2180.5) 647 (549–763)

Little Smoky 31.1 (22.8–42.5) 4.99 0.16 0.028 (0.006–0.124) 1603 (799.6–3213.9) 94 (69–129)

Nipisi 30.7 (22.8–41.4) 4.70 0.15 0.053 (0.027–0.104) 1941.6 (1,419.6–2658.9) 63 (47–85)

Red Earth 16.1 (14.4–17.9) 0.87 0.05 0.022 (0.019–0.026) 3,124.8 (2,935.3–3326.5) 387 (347–430)

Slave Lake 25.9 (17.2–39.1) 5.51 0.21 0.247 (0.061–1.023) 1,226 (772.4–1952.3) 38 (25–58)

WSAR 43 (38.5–48.1) 2.43 0.06 0.013 (0.011–0.016) 2,868.9 (2,701.5–3046.6) 659 (590–737)
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S3: Table S3.1, Table 1). We had similar recapture and spatial recap-
ture rates for females and males (Appendix S3: Tables S3.2, S3.4).

3.2 | Empirical model performance

Density estimates for the seven populations ranged from 16.1 to 
61.9 caribou/1,000 km2 (Table 2). The coefficient of variation varied 
from 5% to 21% for both sexes combined, from 7% to 22% for fe-
males, and from 8% to 54% for males (Table 2, Appendix S3: Tables 
S3.3, S3.5). The average detection probability was low (g0 < 0.06; 
Table  2) for all populations except the first sampling occasion for 
Slave Lake (g0t1 = 0.66, g0t2 = 0.036, g0t3 = 0.44). σ differed among 
populations, ranging from 1,226 m in Slave Lake to 3,363 m in Cold 
Lake (Table 2).

3.3 | Assumptions of homogeneous distribution

Results of simulations showed that clustering of caribou detec-
tions did not impact the precision or relative bias of the density 
estimates (Appendix S2). Median density estimates remained simi-
lar and slightly above the starting density for all levels of cluster-
ing density (µ) for the three simulated populations. The simulated 
Cold Lake population estimates retained the highest precision and 
were relatively unbiased, despite clustering, which corresponds with 
the precision found for the empirical model (Table 2). The simulated 
Little Smoky and Slave Lake population density estimates had lower 
precision than Cold Lake when caribou were clustered, but me-
dian density estimates were not affected by clustering, and density 

estimates from both populations remained unbiased (Appendix S2). 
Using a threshold value for precision of CV < 20%, Little Smoky and 
Slave Lake had inadequate median levels of precision at all levels of 
µ. These populations had similar (Little Smoky = �1,600 m) or smaller 
(Slave Lake  = �1,200  m) � values compared to the chosen detec-
tor spacing of 1,500 m (see Appendix S4). The detector spacing of 
1,500 m for the empirical studies for these populations was too wide 
relative to �, with very few spatial recaptures of individuals (36 in 
Little Smoky, 38 in Slave Lake over three occasions), as the detector 
spacing was larger than �.

3.4 | Precision and relative bias of reduced 
sampling designs

In total, 36 different subsampling scenarios were run for each pop-
ulation, for a total of 252 models. Precision and relative bias were 
positively correlated for all sexes (both sexes r = 0.557, p <  .0001, 
female r = 0.597, p < .0001, male r = 0.634, p < .0001). Precision de-
creased (increased CV) and relative bias increased (divergence from 
the estimate from the full dataset) with increased transect spacing 
and reduced number of occasions (Figures  3-4). Several scenarios 
failed to converge for Little Smoky and Slave Lake at the reduced 
6 km and 9 km transects due to low numbers of individuals and no 
recaptures, resulting in 227 completed models. The Little Smoky 
and Slave Lake ranges are two of the geographically smallest ranges 
(Table 1; Figure 2), and samples in these areas were clustered geo-
graphically (Figure 2). The detection function scaling parameter (�
) for the empirical data for Little Smoky and Cold Lake were smaller 
than the detector spacing of 1,500 m and reducing the number of 

F I G U R E  3   Measures of precision (CV) and bias (absolute relative bias, |RB|) for boreal caribou density estimates from subsampled 
empirical data (two or three sampling occasions, transect spacings of 3, 6, and 9 km) for both sexes, females and males. Dashed lines for CV 
represent 20% and 30% CV, and the dashed lines on RB represent 15% RB. Note: some outliers were dropped for data display
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transects increased the detector spacing even further, leading to the 
detector spacing being significantly larger than the � estimates for 
these populations.

Precision of the subsampling scenarios was influenced by the 
number of unique individuals, number of recaptures, and number 
of spatial recaptures (Figure 5). Precision was negatively correlated 
with the number of individuals, with precision decreasing with fewer 
captured individuals (Appendix S3: Table S3.6, Figure  5); all mod-
els that failed to run had no recaptures of individuals. The larger 
ranges of Cold Lake, ESAR, WSAR, and Red Earth had more unique 
individuals than the smaller ranges of Little Smoky, Nipisi, and Slave 
Lake (Figure 5). When determining the influence of the number of 
individuals on model precision, all models with three occasions had 
adequate precision (<20% CV) for both sexes in the larger popula-
tions. The number of unique individuals had a greater influence in 
the smaller ranges, leading to inadequate precision in Little Smoky, 
Nipisi, and Slave Lake (Figure 5), with no significant correlation be-
tween precision and the number of unique individuals in Slave Lake 
(both sexes) and Little Smoky males (Appendix S3: Table S3.6). CV 
was negatively correlated with the number of recaptures (Appendix 
S3: Table S3.7) and spatial recaptures (Appendix S3: Table S3.8), with 
lower precision in the smaller populations compared to the larger 
populations. All models with three occasions for the larger popula-
tions fell below the 20% CV threshold for all sex models (Figure 5). 
Even when decreasing the number of occasions to two, the larger 
ranges still performed well with adequate precision, as these sub-
sets still provided an adequate number of recaptures of individuals 
for the models to run and precision was significantly correlated to 
the number of recaptures (Appendix S3: Table S3.7, Figure 5). The 
smaller ranges did not perform as well when the data were reduced 
to two occasions; several models only retained one recapture of an 
individual, which resulted in a CV of nearly 100% (Figure 5), and the 
number of recaptures or spatial recaptures was not significantly 

correlated with precision (Slave Lake both sexes, Little Smoky males, 
Slave Lake males; Appendix S3: Table S3.7-Table S3.8).

While there was a strong relationship between precision and the 
number of individuals and recaptures, this was not the case for rela-
tive bias (Appendix S3: Tables S3.6–S3.8; Figure 5). Except for Nipisi 
(all sexes) and Red Earth females, the number of captures, number of 
unique individuals, recaptures, or spatial recaptures was not signifi-
cantly correlated with relative bias (Appendix S3: Tables S3.6–S3.8). 
Removing the third session resulted in more bias compared to re-
moving the first and second sessions (Figure 6).

4  | DISCUSSION

We provide an efficient framework for estimating detection param-
eters required for SCR studies and assessing empirical study designs 
for species where baseline detection data is not available. Our results 
using seven empirical datasets indicate that our genotyping protocol 
was highly successful, our capture and recapture rates were suffi-
cient, and our study design was appropriate in producing precise and 
reliable density estimates. We followed the aerial survey protocol 
outlined in Hettinga et al. (2012) to inform our sampling design and 
obtained similar recapture rates between sampling occasions. We 
found that the detection parameters g0 (detection probability) and 
� (the spatial extent of an individual's use of the landscape) varied 
among our study populations and between sexes (Table 2, Appendix 
S3: Tables S3.3, S3.5). Our results were robust to reduced sampling 
intensity (both in frequency and spatially), with the best study de-
sign dependent upon range size, and not dependent upon estimated 
population density or the spatial distribution of individuals.

For multiple species, the SCR model assumption that animals are 
independently and uniformly distributed over a study area is often 
violated, as is the case for boreal caribou (Després-Einspenner, 

F I G U R E  4   Relationship between absolute relative bias (|RB|) and precision (Coefficient of Variation) for boreal caribou density estimates 
from subsampled empirical data (two or three sampling occasions, transect spacings of 3, 6, and 9 km) for both sexes, females and males. 
Dashed lines for CV represent 20% and 30% CV, and the dashes lined on RB represent 15% RB
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F I G U R E  5   The relationship between the number of captures and recaptures and the precision (CV) and bias (absolute relative bias, |RB|) 
of density estimates for 7 populations of boreal caribou from subsampled empirical data (two or three sampling occasions, transect spacings 
of 3, 6, and 9 km) for both sexes, females and males. For each population, fewer unique individuals are sampled as the data are rarified to 
simulate decreasing sampling intensities, with filled circles indicating the full empirical datasets. Dashed lines for CV represent 20% and 30% 
CV, and the dashed lines on bias represent 15% bias
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Howe, Drapeau, & Kuhl,  2017; López-Bao et  al.,  2018; Stevenson 
et al., 2015). The fission–fusion social structure and dynamics exhib-
ited by boreal caribou during the winter months leads to frequent 
exchanges between small, dynamic groups (Thomas & Gray, 2002). 
Our simulation results show that SCR models performed reliably; the 
grouping and movement patterns of boreal caribou during our sam-
pling period had minimal impact on the precision or relative bias of 
the density estimates. Density estimates from the simulations were 
estimated slightly high (Appendix S2) across all clustering levels, but 
the source of bias was not related to the clustering simulations, as 
the precision and relative bias remained consistent when varying 
the level of clustering. Few studies have looked at the effect that 
nonindependence of individuals has on SCR methodologies. López-
Bao et al. (2018) simulated scenarios of nonindependence and spa-
tial aggregation of individual wolves (Canis lupus) with only a slight 
underestimation in population abundance estimates of aggregated 
individuals, while Després-Einspenner et al.  (2017) were unsure to 

what extent the measures of uncertainty in their study of a com-
munity western chimpanzees (Pan troglodytes verus) were underes-
timated. Bischof, Dupont, Milleret, Chipperfield, and Royle (2020) 
found that SCR models are robust to moderate levels of aggrega-
tion and cohesion, with low to moderate aggregation and cohesion 
not impacting the bias and precision of density and � estimates. 
Inferences from SCR density estimates for species with small group 
sizes can be trusted even if grouping is ignored (Bischof et al., 2020). 
Although the fission–fusion social structure of caribou leads to fre-
quent exchanges of individuals between groups, boreal caribou were 
rarely resampled together as a group or as a pair in our study (unpub-
lished data).

Study designs can be inappropriate when poorly matched with 
the spatial behavior of the target species (Williams, Nichols, & 
Conroy,  2002). Detector arrays that are significantly smaller than 
one home range, or extreme detector spacing that leads to few or no 
spatial recaptures can result in biased SCR estimates (Efford, 2011; 

F I G U R E  6   Measures of precision (CV) and bias (absolute relative bias, |RB|) boreal caribou density estimates from subsampled empirical 
data (two or three sampling occasions, transect spacings of 3, 6, and 9 km) for both sexes, females and males in each range. Note that some 
bias values were not displayed on the graph as they were extremely inflated
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Efford & Boulanger,  2019; Sollmann et  al.,  2012; Tobler & 
Powell, 2013). Reducing the sampling intensity had a greater impact 
on populations with smaller range sizes regardless of density; reduc-
ing the number of transects flown led to extreme detector spacing 
with few or no spatial recaptures. Increasing the temporal period 
of sampling or decreasing the width between transects flown can 
be an effective way of increasing the number of detected captures 
and recaptures available for analysis, which increases precision; 
however, increasing the temporal sampling period can also violate 
the assumption of population closure and lead to biased estimates 
(Dupont, Milleret, Gimenez, & Bischof,  2019). We found that the 
effects of reducing the number of sampling occasions on density 
estimates was influenced by the timing of the survey. If resources 
were only available to perform 2, rather than 3, sampling sessions, 
we recommend focusing on collecting samples early in the winter, 
rather than later in the winter, as we achieved relatively unbiased es-
timates (|RB| <20%) when retaining December, January, or February 
sampling occasions. Weather conditions during March surveys were 
not always favorable, with poor snow conditions and warm tempera-
tures creating difficulties for finding animals and identifying fresh 
tracks and feeding areas.

Results from our empirical study provides a range of estimates 
that can be used for simulating surveys of boreal caribou in other 
locations. For poorly studied species, completing an initial empir-
ical study is critical for obtaining accurate detection probability 
estimates. Due to the clustered, nonhomogeneous distribution 
of boreal caribou, extensive sampling of the entire population is 
recommended to ensure that clusters of caribou are not missed 
during sampling. Our subsampling scenarios showed how less 
extensive sampling in smaller ranges can miss a large portion of 
the population, increasing the relative bias and imprecision of the 
density estimates. Applying the same sampling design to all seven 
of our study populations proved to be suboptimal; detector spac-
ing for the smaller populations relative to sigma led to imprecise 
estimates. Our subsampling scenarios were systematically done 
by reducing the sampling effort through reduced detectors, oc-
casions, or a combination of both. Our study system was exten-
sive, with large and spatially representative sample sizes, leading 
to 252 models used in assessing the precision and bias of our 
reduced sampling scenarios. We advocate that researchers with 
smaller study systems use multiple subsets and averages where 
meaningful.

Our analytical framework allowed us to examine the results of 
empirical surveys in depth, providing confidence in the density esti-
mates. Through different simulations we were able to explore how 
relative bias and precision of estimates vary when assumptions are 
violated. We showed that the number of individuals and recaptures 
of individuals can be used to predict precision, but that they can-
not be used to predict relative bias. Efford and Boulanger (2019) 
state that subsampling of data to emulate different configurations 
of detectors, or different temporal sampling can be prohibitively 
slow, due to model fitting being computer-intensive; however, we 
found that even for our largest population model (24,737 km2, 386 

unique individuals, and 545 recaptures), modeling with time and be-
havior effects on both g0 and � ran relatively quickly (~7–10  days 
on a high-performance computer cluster) in a maximum likelihood 
framework, where the density model was fitted by maximizing the 
conditional likelihood.

We recommend the combination of noninvasive DNA sam-
pling, together with SCR modeling and distribution simulations, 
to be an effective, accurate and precise approach to monitoring 
wildlife.
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