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Background. Endometrial cancer greatly threatens the health of female. Emerging evidences have demonstrated that DNA
methylation and immune infiltration are involved in the occurrence and development of endometrial cancer. However, the
mechanism and prognostic biomarkers of endometrial cancer are still unclear. In this study, we assess DNA methylation and
immune infiltration via bioinformatic analysis. Methods. The latest RNA-Seq, DNA methylation data, and clinical data related
to endometrial cancer were downloaded from the UCSC Xena dataset. The methylation-driven genes were selected, and then
the risk score was obtained using “MethylMix” and “corrplot” R packages. The connection between methylated genes and the
expression of screened driven genes were explored using “survminer” and “beeswarm” packages, respectively. Finally, the role
of VTCN1in immune infiltration was analyzed using “CIBERSORT” package. Results. In this study, 179 upregulated genes, and
311 downregulated genes were identified and found to be related to extracellular matrix organization, cell–cell junctions, and
cell adhesion molecular binding. The methylation-driven gene VTCN1 was selected, and patients classified to the
hypomethylation and high expression group displayed poor prognosis. The VTCN1 gene exhibited highest correlation
coefficient between methylation and expression. More importantly, the hypomethylation of promoter of VTCN1 led to its high
expression, thereby induce tumor development by inhibiting CD8+ T cell infiltration. Conclusions. Overall, our study was the
first to reveal the mechanism of endometrial cancer by assessing DNA methylation and immune infiltration via integrated
bioinformatic analysis. In addition, we found a pivotal prognostic biomarker for the disease. Our study provides potential
targets for the diagnosis and prognosis of endometrial cancer in the future.

1. Introduction

Endometrial cancer, the second most common female
malignancy, greatly threatens the health of women. Accord-
ing to the statistics in 2018, the numbers of new cases and
deaths in the world were over 380,000 and 89,000, respec-
tively [1]. With the increase in the prevalence of obesity
and ageing population, the incidence of endometrial cancer
is increasing [2]. Approximately 70% of endometrial cancer
are confined to uterus when diagnosed; these cases are
mainly treated by removing the uterus, which is associated
with better prognosis and approximately 75% survival

rate[3, 4]. However, 10~15% of endometrial cancer extend
beyond the uterine tissues when diagnosed. The survival rate
in these cases is less than 5~15% [5]. It is highly desirable to
develop novel targets for the intervention and treatment of
endometrial cancer patients.

Cancer is generally considered to be an epigenetic dis-
ease caused by abnormal gene expression. The epigenetic
alternation plays a critical role in the progression of endo-
metrial cancer [6, 7]. DNA methylation, a common kind of
epigenetic change, can activate or silence some genes to pro-
mote or inhibit related signaling pathways [8]. Abnormal
DNA methylation, including hyper- and hypomethylation,
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can both result in the occurrence of disease [9]. DNA meth-
ylation in cancers, such as lung cancer [10], prostate cancer
[11], and breast cancer [12], have been widely studied.

With the development of single-cell technology, the role
of tumor microenvironment (TME), which is consisted of
immune cells, fibroblasts, endothelial cells, inflammatory
mediators, and extracellular matrix, has attracted increasing
attention in the study of endometrial cancer [13, 14]. Immu-
noresponse is an important factor for the prognostic value in
endometrial cancer [15]. Usually, the increased number of
cytotoxic T lymphocytes (CTLs, CD8+ T cells) is an inde-
pendent prognostic indicator for better prognosis in endo-
metrial cancer [15]. CIBERSORT is broadly performed to
explore the abundance of immune cells in normal and tumor
tissues [16, 17]. Many recent studies have examined the role
of immune cells in TME in the mechanism of cancers, such
as prostate cancer [18], clear cell renal cell carcinoma [19],
and endometrial cancer [20]. However, few have studied
the disease mechanism and prognosis biomarkers related
to DNA methylation and immune cell infiltration.

In this study, we explored the prognostic biomarkers of
DNA methylation and immune cell infiltration. VTCN1,
exhibits est correlation coefficient between methylation and
expression, was identified. VTCN1 (a T cell activation sup-
pressor 1), also known as B7-H4, can regulate T cell activa-
tion in non-small-cell lung cancer [21], hepatocellular
carcinoma [22], and prostate cancer [23]. To further explore
whether VTCN1 is involved in regulating the occurrence and
development of endometrial cancer through immune factors,
we analyzed the level of immune cell infiltration in normal
and tumor tissues. The results showed that VTCN1 is indeed
negatively correlated with CD8+ T cells in endometrial can-
cer, and there was lower T cell infiltration in tumor tissues
in the high VTCN1 expression group. Finally, we demon-
strated thatVTCN1was upregulated in tumors, and hypome-
thylation and high expression of VTCN1 were associated
with poor prognosis. Our study demonstrated that VTCN1
may be involved in the occurrence and development of endo-
metrial cancer by inhibiting CD8+ T cell infiltration. This
finding may contribute to understand the mechanism of
disease and provide a prognostic biomarker for endometrial
cancer.

2. Methods

2.1. Data Download and Preprocessing. The latest RNA-Seq
(35 normal samples and 422 tumor samples) and DNA
methylation data (46 normal samples and 422 tumor sam-
ples) were downloaded from the UCSC Xena dataset
(https://xenabrowser.net/datapages/). The data were proc-
essed and normalized via R software. The differentially
expressed genes (DEGs) were analyzed using the “limma”
package. The DEGs were screened out with the criteria of
jlogFCj > 2 and adj-P value < 0.05. Gene Ontology (GO)
function and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathways were analyzed using the “org.Hs.e.g.db”
package. A value of P < 0:05 was defined as statistically
significant.

2.2. Screening for Driven Genes. Generally, the “MethylMix”
package was used to explore the driven methylated genes.
For transcriptomic profiling, differential expression analysis
was performed on TCGA RNA-seq data that matched
mDNA profiles. Because methylated genes usually negatively
regulate their mRNA, it showed 13 driven differentially
methylated genes (DEMs), including 2 downregulated
(RP11-469H8.6 and VTCN1) and 11 upregulated methylated
genes (KLF9, PGR, DDR2, TSPYL5, FAXDC2, HSPB6,
GYPC, CDO1, C8orf88, TMEM132C, and WT1-AS).

2.3. The Risk Score of the Above Genes. The clinical data were
downloaded from the UCSC Xena dataset. Risk scores were
calculated via the “survival” package. The survival curve
and heat map were generated based on the high- and low-
risk scores. Subsequently, 5 genes were selected, including
TSPYL5, KLF9, GYPC, VTCN1, and PGR. The risk score for
each patient was performed as our previous article [24]:
risk score = b gene ð1Þ × E gene ð1Þ + β gene ð2Þ × E gene ð2Þ
+⋯ + β gene ðnÞ × E gene ðnÞ.

E denotes the normalized expression level of the gene,
and b denotes the corresponding regression coefficient.

2.4. Survival Analysis. A survival analysis including the
highly methylated genes and genes with low expression
was implemented in R software.

2.5. The Evaluation of the Protein Expression. The expression
of GYPC, VTCN1, and PGR genes in the paired tumor and
normal groups was analyzed by the “limma” and “ggpubr”
packages. The protein expression was analyzed by The
Human Protein Atlas (https://www.proteinatlas.org/).

2.6. Immune Cell Infiltration. CIBERSORT is a deconvolution
algorithm that uses a set of reference gene-expression values (a
signature with 547 genes) considered a minimal representa-
tion for each cell type. Based on those values, cell type propor-
tions in data from bulk tumor samples with mixed cell types
are inferred using support vector regression. CIBERSORT
can be applied to distinguish 22 human immune cells, includ-
ing B cells, T cells, NK cells, macrophages, DCs, and myeloid
subsets, based on the high specificity and sensitivity of the
gene expression profile. To determine whether there is a corre-
lation between tumor immune cells infiltrationand immune-
related gene expression, tumor infiltration with six types of
immune cells (CD4+ T cells, CD8+ T cells, B cells, neutrophils,
macrophages, mast cells, and dendritic cells) was analyzed by
CIBERSORT.

2.7. The VTCN1 Gene Expression. The genes related to
VTCN1 were selected via the STRING database (https://
string-db.org/). The GO pathways of these genes were ana-
lyzed using the Metascape dataset (http://metascape.org/
gp/index.html#/main/step1). The expression of VTCN1 was
divided into two groups according to the wilcox test func-
tion. A visualization of the correction ofVTCN1expression
with immune cells was generated using the “vioplot” pack-
age. Six patients with advanced endometrial cancer and nor-
mal tissues were collected. Fresh tissues are stored at -80°C
for quantitative analysis. As we recently published, [25]
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TRIzol (Invitrogen) 1mL was added into 100mg tissues, and
RNA was further extracted by chloroform, isopropyl alcohol,
and ethanol. Subsequently, reverse transcription and quanti-
tative analysis were performed according to the protocol of
kit (Shanghai Yisheng Co., Ltd.). Primers for PCR are as
follows:

VTCN1_FGAATCGGAGATCAAAAGGC
VTCN1_RGCTGATGGCAAAGAAAGAA
PGR_1FCAAGCCCTAAGCCAGAGA
PGR_1RCAGCAAAGAACTGGAGGTG
GYPC_1FCGTGTGGAGCTTCCTGTCT
GYPC_1RAGGCTCTGCAATGGTGGT
GAPDH_FGGAGTCCACTGGCGTCTTCA
GAPDH_RGTCATGAGTCCTTCCACGATACC

2.8. Statistical Analysis and Visualization. The raw data were
collated by Practical Extraction and Report Language (Perl,

version 5.30.0) and R software (version 4.0.3). The statistical
analysis and visualization of the statistical results were
implemented with R software and Cytoscape (version 3.8.0).

3. Results

3.1. Functional Analysis of DEGs. According to the criteria of
jlogFCj > 2 and adj-P value < 0.05, there were 490 DEGs,
among which there were 179 upregulated genes and 311
downregulated genes. The volcano plot is shown in Figure S1.
Second, Gene Ontology (GO) function and Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) pathway analyses were
performed via R software. The results indicated that endome-
trial cancer was involved in the cell cycle, P53 signaling path-
way, and focal adhesion in KEGG pathway (Figure 1(a)). GO
function included biological process (BP), cellular compo-
nent (CC), and molecular function (MF). The GO analysis
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Figure 1: The map of (a) KEGG pathways and (b) GO function.
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showed that endometrial cancer was related to extracellular
matrix organization, cell–cell junctions, and cell adhesion
molecular binding (Figure 1(b)).

3.2. The Methylation-Driven Genes. It is well documented
that there is inverse correlation between DNA methylation
and mRNA levels. In the next step, the methylation-driven
genes were selected using the “MethylMix” and “Corrplot”
packages in R software. There were 13 methylation-driven
genes: WT1-AS, CDO1, RP11-469H8.6, TMEM132C, GYPC,
TSPYL5, VTCN1, DDR2, HSPB6, KLF9, C8orf88, FAXDC2,
and PGR. Among them, the expression of RP11-469H8.6

and VTCN1 was upregulated in tumors, and the others were
downregulated. The mRNA expressed and DNA methylated
heat map of above 13 DNA are displayed in Figures 2(a) and
2(b) (jRj > 0:3, P < 0:05).

3.3. Survival Analysis. Survival analysis was performed with
the product-limit method (Kaplan–Meier analysis). Addi-
tionally, the log-rank test (Mantel-Cox test) was used to
compare the difference in the survival status between the
high- (268 patients) and low-risk groups (269 patients) using
the “Survminer” package. The Cox model was applied to
build a risk model to obtain the risk value of patients, and
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the following genes were identified: TSPYL5, KLF9, GYPC,
VTCN1, and PGR. The classification of patients was based
on the median value of the risk score (Figure 3(a)). Obvi-
ously, a lower risk indicates a better prognosis, and a higher
risk indicates a poorer prognosis (Figure 3(b)). The heat
map of the TSPYL5, KLF9, GYPC, VTCN1, and PGR expres-
sion is shown in Figure 3(c). Patients were classified to a
high expression group and a low expression group based
on the expression levels of PGR, GYPC, and VTCN1. The
survival curves of the above 13 methylation-driven genes
were generated using survival software. Three genes (PGR,
VTCN1, and GYPC) were considered statistically significant
(P < 0:05) (Figures 4(a)–4(c)). The hypomethylation and
high expression group of VTCN1 displays poor prognosis,
while the lower expression group showed better prognosis
(P < 0:05). The negative correlations of PGR, VTCN1, and
GYPC expression and methylation are displayed in
Figures 4(d)–4(f) . The expression of PGR and GYPC is
shown in Figure S2. Since the VTCN1 gene possesses the
highest correlation coefficient between methylation and
expression, we selected the VTCN1 gene for the follow-up
study.

3.4. The Immune Score. In the low immunity group, the stro-
mal score, immune core, and estimate score are −1257:90
± 283:05, −378:62 ± 401:33, and −1545:68 ± 608:60, respec-
tively. In the high immunity group, stromal score, immune
score, and estimate score are −539:79 ± 1241:98, 930:89 ±
583:08, and 462:35 ± 834:37, respectively. The survival curve
based on the above immunity score showed that a higher
immune score indicated a better prognosis (P < 0:05). The
stromal score and estimate score showed no statistical signif-
icance (P > 0:05).

3.5. The Mechanism of the VTCN1 Gene in Immune
Regulation. VTCN1 is closely related to immunity. We fur-

ther explored the mechanism by which VTCN1 is involved
in endometrial cancer. The relative proteins of VTCN1 were
identified using the STRING database: B7RP1, BTLA, CD28,
CD80, CD86, CTLA4, ICOSL, IL4, IL6, and PDCD1LG2
(Figure 5(a)). These genes are mainly involved in lympho-
cyte costimulation, regulation of T cell activation, prolifera-
tion, B cell activation, and immune response-regulating cell
surface receptor signaling pathways (Table 1). The percent-
age of immune cells in normal and tumor tissues was ana-
lyzed. Box plots according to the stromal score, immune
score, estimate score, and tumor purity are displayed in
Figure 5(b). The box plot of the immune cell percentage in
the two groups was analyzed using the “ggpubr” package.
The percentages of B native cell and CD4 memory resting
T cells and M2 macrophages were clearly lower in the tumor
group than in the normal group. Tregs and M1 macrophages
were more abundant in the tumor group than in the normal
group (P < 0:05). Likewise, the higher expression of VTCN1
exhibited a positive correlation with the abundance of rest-
ing memory CD4 T cells, while the higher expression of
VTCN1 was negatively correlated with the abundance of T
cells and activated memory CD4 T cells (Figure 5(c)). The
connection of CD8+ T cells and VTCN1 is shown in
Figure 5(d). The expression of VTCN1 was visualized using
the “Beeswarm” package. The VTCN1 expression was higher
in the tumor group than in the normal group (Figures 5(e)
and 5(f)). The protein expression in the Human Protein
Atlas (https://www.proteinatlas.org/) further confirmed the
results (Figure 5(g)).

4. Discussion

Endometrial cancer is a lethal female reproductive malig-
nant tumor. The incidence of endometrial cancer is usually
second only to cervical cancer among gynecological diseases
in China [26]. The average age of onset of endometrial
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cancer is 63 years old, and it usually occurs in postmeno-
pausal women, and in women with obesity and diabetes.
Traditional treatments usually include surgical resection,
radiotherapy, and chemotherapy. However, it is challenging
to treat patients with advanced endometrial cancer, which
often has a poor prognosis [27]. Currently, the mechanism
of disease and prognostic biomarkers of endometrial cancer
is unclear.

DNA methylation and immune cell infiltration often
participate in the development of various cancers, including
gastric cancer [28], clear cell renal cell carcinoma [29], and
colorectal cancer [30]. In our study, we found that high
methylation and low expression of PGR and GYPC were

associated with poor prognosis, while low methylation and
high expression of VTCN1 were associated with poor prog-
nosis. In addition, immune regulation driven by the high
expression of VTCN1 in tumors may promote the develop-
ment of endometrial cancer by inhibiting CD8+ T cell
infiltration.

VTCN1 (B7-H4) belongs to the B7 family and functions
as a cell surface transmembrane protein, negatively regulat-
ing the T cell-mediated immune response via interaction
with a receptor protein on the surface of T cell to inhibit T
cell activation and proliferation and cytotoxic factor produc-
tion [31, 32]. Several recent studies have shown that VTCN1
is often overexpressed in tumor tissues of ovarian [33], lung
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in normal and tumor tissues.
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[34], and breast cancers [35]. Miyatake et al. demonstrated
that VTCN1 is overexpressed in high-risk uterine endome-
trial cancer and negatively correlated with tumor T cell infil-
tration [36]. In our study, we found that VTCN1 is
downregulated in tumor tissue via DNA methylation analy-
sis. In addition, we performed the CIBERSORT algorithm to
analyze the immune cell distribution in normal and tumor
tissues. Subsequently, the relationship between VTCN1
expression and immune cell infiltration was analyzed using
bioinformatic methods. The results indicated that the
expression of VTCN1 is inversely correlated with CD8+ T
cell infiltration.

5. Conclusion

In summary, our study first revealed the mechanism of
endometrial cancer combining DNA methylation and
immune cell infiltration. Hypomethylation of the VTCN1
promoter leads to its high expression, which can cause tumor
development by inhibiting CD8+ T cell infiltration. Further-
more, the VTCN1 expression was higher in the tumor group
than in the normal group, and hypomethylation and high
expression of VTCN1 indicated poor prognosis. Our study
explains the mechanism of immune infiltration and provides
potential targets for the diagnosis and prognosis of endome-
trial cancer.
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