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Abstract

Background: Cyclosporin A (CsA) has important anti-microbial activity against parasites of the genus Leishmania,
suggesting CsA-binding cyclophilins (CyPs) as potential drug targets. However, no information is available on the genetic
diversity of this important protein family, and the mechanisms underlying the cytotoxic effects of CsA on intracellular
amastigotes are only poorly understood. Here, we performed a first genome-wide analysis of Leishmania CyPs and
investigated the effects of CsA on host-free L. donovani amastigotes in order to elucidate the relevance of these parasite
proteins for drug development.

Methodology/Principal Findings: Multiple sequence alignment and cluster analysis identified 17 Leishmania CyPs with
significant sequence differences to human CyPs, but with highly conserved functional residues implicated in PPIase function
and CsA binding. CsA treatment of promastigotes resulted in a dose-dependent inhibition of cell growth with an IC50
between 15 and 20 mM as demonstrated by proliferation assay and cell cycle analysis. Scanning electron microscopy
revealed striking morphological changes in CsA treated promastigotes reminiscent to developing amastigotes, suggesting a
role for parasite CyPs in Leishmania differentiation. In contrast to promastigotes, CsA was highly toxic to amastigotes with
an IC50 between 5 and 10 mM, revealing for the first time a direct lethal effect of CsA on the pathogenic mammalian stage
linked to parasite thermotolerance, independent from host CyPs. Structural modeling, enrichment of CsA-binding proteins
from parasite extracts by FPLC, and PPIase activity assays revealed direct interaction of the inhibitor with LmaCyP40, a
bifunctional cyclophilin with potential co-chaperone function.

Conclusions/Significance: The evolutionary expansion of the Leishmania CyP protein family and the toxicity of CsA on host-
free amastigotes suggest important roles of PPIases in parasite biology and implicate Leishmania CyPs in key processes
relevant for parasite proliferation and viability. The requirement of Leishmania CyP functions for intracellular parasite
survival and their substantial divergence form host CyPs defines these proteins as prime drug targets.
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Introduction

The cyclophilin (CyP) protein family consists of highly

conserved proteins that share a common signature region of

approximately 109 amino acids, the cyclophilin-like domain

(CLD, Prosite access number: PS50072). The CLD carries the

peptidylprolyl isomerase (PPIase) activity characteristic of CyPs

[1], which has been implicated in protein folding, assembly of

multi-protein complexes, and signal transduction [2–4]. CyPs are

characterized by the binding of the cyclic peptide inhibitor

cyclosporin A (CsA), which inhibits the protein phosphatase

calcineurin and finds application for example as immune-

suppressive drug in organ transplantation [5]. In addition to its

inhibitory effect on T cell-mediated immunity [6–8], CsA displays

anti-microbial activity against a variety of protozoan pathogens

[9–11], including Leishmania [12–15].

Parasites of the genus Leishmania cause important human

diseases collectively termed leishmaniasis, which range from mild,
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self-healing cutaneous lesions generated by L. major to fatal visceral

infection of liver and spleen caused by L. donovani [16,17].

Leishmania is transmitted by infected sand flies, which harbor the

proliferating flagellate promastigote form of the parasite. Highly

infectious metacyclic promastigotes are inoculated into the

mammalian host during sand fly blood feeding, where they are

engulfed by phagocytes of the endo-reticular system and develop

inside the phagolysosome into amastigotes, which subvert the host

immune response and cause the immunopathologies characteristic

of the various forms of leishmaniasis [18,19].

CsA has been shown to exert a leishmanicidal effect on

intracellular L. tropica [12] and L. major in mouse and macrophage

infection [13–15]. Although these findings define members of the

Leishmania CyP protein family as potential important drug targets,

only little is known on this protein family in trypanosomatids and

the mechanisms of the anti-parasitic effects of CsA on intracellular

Leishmania remain elusive. A potential role of Leishmania CyPs in

amastigote differentiation and virulence can be postulated based

on the role of Leishmania donovani LdCyP in disaggregation of

adenosine kinase aggregates [20], an important enzyme in the

Leishmania purine salvage pathway, whose activity substantially

increases during the pro- to amastigote differentiation [21].

Furthermore, the amastigote-specific phosphorylation of cyclophi-

lin 40 [22,23] suggests that activity, localization, and interaction of

this protein may be regulated in a stage-specific manner by post-

translational modification.

The use of CsA for anti-leishmanial chemotherapy is limited

by its suppressive action on host immunity, which leads to

aggravation of experimental visceral leishmaniasis [24]. A

better understanding on the biology of Leishmania CyPs, and

their structural and functional differences to human CyPs is

required to pave the way for the identification of new inhibitors

with increased specificity for parasite CyPs. Here we initiated a

first genome-wide analysis of the Leishmania CyP protein family

and used the L. donovani axenic culture system [25,26] to

investigate the effects of CsA on promastigotes and amastigotes

in culture. Our data indicate substantial evolutionary diver-

gence between parasite and host CyPs, which may be

exploitable for drug development. We provide evidence for

stage-specific functions of Leishmania CyPs in regulation of

promastigote cell shape and proliferation, and amastigote

thermotolerance. We demonstrate for the first time a stage-

specific and direct toxic effect of CsA on host-free amastigotes,

validating Leishmania CyPs as drug targets.

Materials and Methods

Parasite culture
Leishmania donovani strain 1S2D (MHOM/SD/62/1S-CL2D)

clone LdB [27] was maintained at 26uC, pH 7.4 in M199 medium

supplemented with 10% FCS, 20 mM HEPES pH 6.9, 12 mM

NaHCO3, 2 mM glutamine, 16RPMI 1640 vitamin mix, 10 mg/

ml folic acid, 100 mM adenine, 30 mM hemin, 8 mM biopterin,

100 U/ml penicillin and 100 mg/ml streptomycin. Axenic amas-

tigotes were differentiated at 37uC with 5% CO2, in RPMI 1640

medium pH 5.5 supplemented with 20% FCS, 2 mM glutamine,

28 mM MES, 16RPMI 1640 vitamin mix, 10 mg/ml folic acid,

100 mM adenine, 16 RPMI 1640 amino acid mix, 100 U/ml of

penicillin and 100 mg/ml of streptomycin.

Cyclosporin A and FK506 treatment
Both cyclosporin A (CsA) isolated from Tolypocladium inflatum

(Calbiochem) and FK506 isolated from Streptomyces tsukubaensis

(A.G. Scientific) were dissolved in absolute ethanol at a final

concentration of 10 mM and the stock was stored at 220uC. Log-

phase promastiogtes (26106/ml) were cultured in medium

containing either solvent, CsA or FK506 at concentrations

ranging from 5 to 25 mM and incubated at 26uC, pH 7.4 for

48 hours unless otherwise specified. Axenic amastigotes were

differentiated at 37uC for 72 hours and were incubated at a

density of 26106 parasites/ml at 37uC with 5% CO2, pH 5.5 for

48 hours in medium containing either solvent, CsA or FK506

unless otherwise specified.

Determination of Leishmania growth and viability
The growth of solvent treated cells controls and CsA treated

parasites was determined using a CASY cell counter (Schärfe

System) or determined microscopically by cell counting using 2%

glutaraldeyhde fixed cells. Cell proliferation was determined by

CellTiter-Blue assay (Promega) according to the manufacturer’s

instructions. Briefly, 20 ml of CellTiter-Blue was added to the cells

in 96-well plate and incubated at 37uC for 4 hours. Fluorescence

was measured (exl= 560 nm; eml= 590 nm) using a spectrom-

eter SP-2000 (Safas). Results were expressed in % of fluorescence

intensity compared to solvent treated cells control. The tests were

performed in quadruplicate.

Bioinformatics analysis
The sequences of human and Leishmania cyclophilins were

retrieved using the UniProt (www.uniprot.org) and GeneDB

(www.genedb.org) databases, respectively, and conserved protein

domains were identified by ScanProsite (www.expasy.ch/tools/

scanprosite). In order to determine the level of conservation of

CLD domains across human and trypanosomatid parasites, all

putative CLD containing proteins of the sequenced genomes of L.

major, L. infantum, L. barsiliensis, T. brucei, and T. cruzi [28–30] were

retrieved from the TriTrypDB database (http://tritrypdb.org/

tritrypdb/) using HUMAN_PPIA as an initial query for PSI-

BLAST. After three cycles, all hits with a significant E-value

(,10E-5) and more than 70% coverage of the CLD domain were

selected, and their putative CLD domain was then extracted using

the alignment to HUMAN_PPIA as a guide. Given the high level

Author Summary

Visceral leishmanisasis, also known as Kala Azar, is caused
by the protozoan parasite Leishmania donovani. The L.
donovani infectious cycle comprises two developmental
stages, a motile promastigote stage that proliferates inside
the digestive tract of the phlebotomine insect host, and a
non-motile amastigote stage that differentiates inside the
macrophages of mammalian hosts. Intracellular parasite
survival in mouse and macrophage infection assays has
been shown to be strongly compromised in the presence
of the inhibitor cyclosporin A (CsA), which binds to
members of the cyclophilin (CyP) protein family. It has
been suggested that the toxic effects of CsA on
amastigotes occurs indirectly via host cyclophilins, which
may be required for intracellular parasite development and
growth. Using a host-free L. donovani culture system we
revealed for the first time a direct and stage-specific effect
of CsA on promastigote growth and amastigote viability.
We provided evidence that parasite killing occurs through
a heat sensitivity mechanism likely due to direct inhibition
of the co-chaperone cyclophilin 40. Our data allow
important new insights into the function of the Leishmania
CyP protein family in differentiation, growth, and intracel-
lular survival, and define this class of molecules as
important drug targets.
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of conservation of the CLD domains, it is realistic to consider this

dataset as a complete set of the CLD proteins present in the species

covered by the current release of TriTrypDB (Release 1.1). These

sequences were aligned with T-Coffee (default mode) [31], and a

Neighbor-Joining tree was computed with 500 bootstrap repli-

cates. Positions in contact between CsA and cyclophilin A were

identified on the multiple sequence alignment and the corre-

sponding columns were extracted. The resulting functional

residues were compared and clustered for similarity using

UPGMA.

Structural modeling
We first identified Leishmania CyPs that are predicted to bind

CsA using multiple sequence alignment of human and Leishmania

major cyclophilins, and assessing the conservation of the residues

known to be involved in cyclosporin A binding in known

complexes. Based on these criteria, six Leishmania major cyclophilins

shared the CsA binding residues with human PPIA or PPID

(LmaCyP1, LmaCyP2, LmaCyP4, LmaCyP5, LmaCyP11 and

LmaCyP40) and were selected for further analysis. The leishman-

ial cyclophilins were modelled with the automated mode of the

Swiss-Model tool [32] using the following PDB structures as

templates: 2 bit [33] for LmaCyp1; 3eov [34] for LmaCyP2, 2hqj

(Arakaki and Merritt, unpublished), corresponding to LmaCyP11,

for LmaCyP4 and LmaCyP5; 1ihg [35] for LmaCyP40. For each

model or structure, the corresponding putative model complex

with cyclosporin A was built based on the complex of L. donovani

cyclophilin with CsA (3eov) as a template using the program

insightII. Each model complex was subjected to a very limited

energy refinement (100 cycles with the insightII Discover Module,

steepest descent algorithm).The 3eov CsA binding residues (R78,

I80, F83, M84, Q86, G95, T96, A123, N124, A125, G126, Q133,

F135, W143, L144, H148) at less than 4 Å from CsA, were used

for the superposition. The subsequent analyses of the 3D model

complexes and evaluations of the putative interaction with the CsA

were performed with the program insightII.

FACS-based approaches
Cell death was assessed by propidium iodide exclusion assay

[36]. Briefly, 107 promastigotes or axenic amastigotes from

control or CsA treated cultures were washed and resuspended in

PBS containing 2 mg/ml of propidium iodide and incubated at

room temperature for 15 min in the dark. The stained cells were

subjected to FACS analysis (exl= 488 nm; eml= 617 nm).

10,000 events were analyzed. For cell cycle analysis, 107 late-

log phase promastigotes were washed once with cold PBS and

resuspended in pre-chilled 90% methanol in PBS and kept at

220uC overnight. The fixed cells were washed once with cold

PBS and then resuspended in propidium iodide staining solution

(10 mg/ml PI, 100 mg/ml RNase A in PBS) and incubated at

37uC for 30 min in the dark. The stained cells were subjected to

FACS analysis as described above. Cell cycle distribution was

calculated by FlowJo (Tree Star, Inc.) using the Dean-Jett-Fox

model.

Morphological analysis
For Giemsa staining, 107 promastigotes or axenic amastigotes

were immobilized on poly-L-lysine coated cover slips, fixed with

methanol and stained with Giemsa reagent (Sigma) according to

the manufacturer’s instructions. The stained cells were mounted

with Mowiol 4-88 (Sigma) [37] and observed with a Zeiss Axioplan

2 wide field light microscope.

Cells were prepared for scanning electron microscopy as

described [38]. Briefly, parasites were washed in PBS, fixed with

2.5% glutaraldehyde in PBS, and treated with 1% OsO4. The cells

were then dehydrated and critical-point dried (Emitech K850 or

Balzers Union CPD30) and coated with gold (Joel JFC-1200 or

Gatan Ion Beam Coater 681). Samples were visualized with

scanning microscope Joel JM6700 F.

Indirect immunofluorescence staining was performed with 107

promastigotes or axenic amastigotes that were settled on poly-L-

lysine coated coverslips and fixed in methanol at -20uC for 5 min.

The fixed cells were rehydrated with PBS, and sequentially

incubated with a mouse anti-a-tubulin antibody (Sigma, 1:2500

dilution) and an anti-mouse IgG-rhodamine antibody (Molecular

Probes, 1:250 dilution). Nuclei and kinetoplasts were stained with

DAPI and the slides were mounted with Prolong (Molecular

Probes).

Cyclosporin A affinity chromatography
Modified CsA with a primary amine side chain was provided by

the Texas A&M Natural Products LINCHPIN Laboratory,

Assistant Director Dr. Jing Li [39]. The CsA-amine was coupled

to the Affi-GelH10 resin (Bio-Rad) by reaction with the N-

hydroxysuccinimide ester groups of the resin. Briefly, 7.5 mmol of

CsA-amine was mixed with 500 ml of Affi-GelH 10 and incubated

at room temperature for 6 hours. The coupling reaction was

quenched by removing the CsA-amine and blocking the unreacted

Affi-GelH 10 with 0.2 M ethanolamine. Logarithmic promasti-

gotes were lysed with lysis buffer (50 mM HEPES, 100 mM NaCl,

10% glycerol, 0.5% NP-40 and 1 mM PMSF) followed by

sonication on ice (30 s sonication with 15 s pause for 5 min).

Insoluble debris was removed by centrifugation. The cleared cell

lysate (1 mg protein/ml) was mixed with the CsA-Affi-Gel and

incubated at 4uC for 3 hours. Bound proteins were eluted using

hot Laemmli buffer. The elution was subjected to 10% SDS-

PAGE, stained with SyproRubyHprotein gel stain (Invitrogen), and

CsA-binding proteins were identified by MS analysis as described

[22] and Western blotting.

Recombinant LmaCyP40 production
Leishmania major CyP40 was amplified from L. major Friedlin

V1 (MHOM/JL/80/Friedlin) genomic DNA using the primers

59-CTCGAGGGAGGAATGCCGAACACATACTGC-39 (XhoI

site and 2 glycine residues are underlined) and 59-GCGG-

CCGCAACCCTCACGAGAACATC-39 (NotI site is underlined)

and ligated to pGEM-T (Promega). The insert was then released

by XhoI and NotI and ligated into pGEM-HAstrep. The

intermediate construct was digested with BamHI and NotI to

release the strep::CyP40 and ligated into pGEX-5X-1 (Amer-

sham Biosciences). The resulting plasmid pGEX-5X-Strep::

CYP40 was replicated in E.coli BL21. Recombinant GST::strep::

CyP40 was induced with 0.2 mM IPTG overnight at room

temperature and then purified with GSH-sepharose and strep-

tactin sepharose (Fig. S1) using an Äkta Purifier FPLC system

(Amersham Biosciences).

Peptidyl Prolyl cis/trans isomerization assay
Measurements were performed according to [40]. Briefly, the

peptidyl prolyl cis/trans isomerization reaction was initiated by

diluting the peptide Abz-Ala-Ala-Pro-Phe-pNA in an anhydrous

0.5 M LiCl/TFE mixture with 35 mM HEPES pH 7.8. Inhibition

of PPIase activity was measured by pre-incubating CsA with the

enzyme (29.5 nM) for 5 min at 10uC before starting the reaction

by the addition of the substrate. Data analysis was performed by

single exponential non-linear regression using Sigma Plot

Scientific Graphing System.

CsA Treatment of L. donovani

www.plosntds.org 3 June 2010 | Volume 4 | Issue 6 | e729



Immunoblotting
Parasites (108 cells) were lysed in 16Laemmli buffer (16109 cells/

ml) and vortexed vigorously for 30 seconds. The lysates were

sonicated for 1 min on ice and boiled for 5 min. Soluble fractions

were collected as protein extracts after brief centrifugation. Twenty

microliters of samples (equivalent to 26107 cells) were separated by

10% SDS-PAGE and then transferred to PVDF membrane. Mouse

anti-LPG antibody (clone CA74E, 1:5000 dilution) [41], mouse anti-

A2 antibody (clone C9, 1:200 dilution) [42], rabbit polyclonal anti-

CyP40 (established using recombinant strep::CyP40 as antigen,

1:5000 dilution, Eurogentec), and appropriate HRP-conjugated

secondary antibodies were used to probe the membrane using

dilutions of 1:10000 and 1:50000, respectively, and signals were

revealed by SuperSignal ECL from ThermoFisher.

Results

The Leishmania genome encodes for a large cyclophilin
protein family

PPIases are classified according to the binding of the inhibitors

cyclosporin A (CsA) and FK506 in two major protein families,

cyclophilins (CyPs) and FK506 binding proteins (FKBPs),

respectively [43-45]. A third PPIase family is represented by

PpiC/parvulin-like proteins implicated in proline-directed phos-

phorylation [46,47]. Based on the presence of a conserved CyP-

type PPIase signature sequence, termed cyclophilin-like domain,

CLD, (Prosite accession number: PS50072, FY-xx-STCNLVA-x-

FV-H-RH-LIVMNS-LIVM-xx-F-LIVM-x-Q-AGFT), the Leish-

mania major genome encodes for 17 cyclophilin-like proteins

(LmaCyPs), five FKBP-like LmaFKBPs, and two PpiC/parvulin-

like LmaPPICs (Fig. 1 and Table 1), all of which are conserved in

the L. infantum and L. braziliensis genomes (Fig. 2). According to the

current nomenclature [2], the LmaCyPs were distinguished by

numbering from the smallest to the highest predicted molecular

weight (Table 1).

Based on length and domain structure, three types of L. major

cyclophilins (LmaCyPs) can be distinguished. A first group of four

proteins (LmaCyP1–3, 6) is characterized by a single CsA-binding

domain without any significant N- or C-terminal sequence

extensions (Fig. 1 and Table 1). A second group of 11 proteins

shows significant (50 or more amino acids) N-terminal (LmaCyP4,

5, 8, 10, 12, 16), C-terminal (LmaCyP7, 11), or both N- and C-

terminal extensions (LmaCyP9, 13–15). These extensions are

unique and not conserved in human CyPs, but are mostly

conserved across other trypanosomatids, including L. infantum, T.

brucei and T. cruzi. Exceptions are the C-terminus of LmaCyP13

and the N-termini of LmaCyP8, 10, and 14, which are unique to

Leishmania suggesting highly parasite specific functions absent in

Trypanosoma. Finally, two LmaCYPs are characterized by the

presence of additional functional domains, including LmaCyP5

containing a conserved prokaryotic lipid attachment domain

(PLD, prosite access number PS5125), and LmaCyP40, the

cyclophilin-40 homolog containing two tetratricopeptide repeat

domains (TPR, prosite accession number PS50005) known to

interact with HSP90 [48–51].

Bio-informatics characterization of the LmaCyP protein
family

We investigated the relationship between human and trypano-

somatid CyPs by multiple alignment and cluster analysis using the

sequence of the conserved CLD or the functional residues

implicated in PPIase function and CsA binding. The clustering

tree obtained for the CLD demonstrates that all LmaCyPs have

conserved homologs in L. infantum, L. braziliensis, T. brucei, and T.

cruzi, which cluster together with highly significant bootstrap

values (Fig. 2A). All LmaCyPs have one homologue in the other

Leishmania or Trypanosoma species, with the exception of LmaCyP5,

which underwent expansion in the T. brucei genome with five

sequentially arranged copies of the gene. It is interesting to

speculate that the expansion of the only cyclophilin family member

that contains a conserved lipid binding domain may be a reflection

of the T. brucei biology, with a potential role for example for the

expression of abundant gpi-anchored VSG proteins [52].

Many of the nodes support the existence of CyP subclasses

across the trypanosomatids with a significant bootstrap value. In

contrast, the nodes that cluster these subclasses together with their

human homologues have only poor bootstrap support. This

observation suggests that the various classes of CLDs encountered

in trypanosomatid cyclophilins are quite distinct from one subclass

Figure 1. Diagram representing the L. major CyP-like proteins.
17 CyP-like proteins are annotated in the L. major genome database
(LmaCyPs). The cyclophilin-like domain (CLD) and other domains were
identified with ScanProsite. Most LmaCyPs are characterized by
parasite-specific N- and C-terminal extensions. Additional functional
domains are identified in two LmaCyPs, LmjF31.0050 (LmaCyP5) and
LmjF35.4770 (LmaCyP40), containing a prokaryotic lipid attachment
domain (PLD) and tetratricopeptide repeat domains (TPR), respectively.
The bar represents 100 amino acids.
doi:10.1371/journal.pntd.0000729.g001
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to another and to their human counterparts. Substantial

conservation however was observed in the cluster analysis

performed with the functional CyP residues implicated in PPIase

function and CsA binding (Fig. 2B). For instance, eight human

CyPs and five LmaCyPs are clustering together showing a

complete conservation of the canonical signature sequence

characteristic for the human CsA-binding protein PPIA (Fig. 2B

and Table 2). This represents a significant conservation when

considering that the overall CLD domain is only 64% conserved

between the Leishmania and Human CyPs. These results indicate

that a subset of Leishmania CyPs are likely functionally conserved

and implicated in PPIase function, while other, less conserved

LmaCyPs may carry different enzymatic activities.

In conclusion, our analysis reveals a large Leishmania CyP

protein family suggesting an important role of PPIases in parasite

biology, and identifies unique sequence elements in the LmaCyP

CsA-binding domains that may be exploitable for drug develop-

ment. Identification of 5 out of 17 LmaCyPs with a highly

conserved CsA binding motif strongly suggests inhibitor-binding to

multiple LmaCyPs with potentially important consequences on the

biological functions of these proteins and Leishmania infectivity. In

the following we investigate this possibility studying the effects of

CsA on L. donovani promastigotes and amastigotes in culture.

CsA treatment interferes with parasite growth in vitro
CsA has been previously shown to reduce the intracellular

growth of L. major amastigotes [13,14]. To further elucidate the

mechanisms underlying this inhibition, we investigated the effects

of CsA treatment on cultured L. donovani promastigotes and axenic

amastigotes. Log-phase parasites from both stages (26106/ml)

were cultured in medium containing either ethanol (vehicle) or

CsA at concentrations ranging from 5 to 25 mM, and incubated at

26uC, pH 7.4 (promastigote) or 37uC, pH 5.5 (amastigote) for

48 hours. At the time points indicated, the cells were fixed and

counted microscopically or processed for CellTiter-Blue assay to

test for proliferation. CsA-treated promastigotes showed a dose-

Table 1. PPIase domain containing proteins in Leishmania major.

Type of PPIase GeneDB ID
Proposed
annotation Size

Positions (aa) of the PPIASE
domains and other features Remarks

aa kDa

CyP-like LmjF25.0910 LmaCyP1 177 18.8 CSA_PPIASE (17–176) 1#

LmjF06.0120 LmaCyP2 187 20.3 CSA_PPIASE (30–186) 1#

LmjF23.0125 LmaCyP3 192 20.3 CSA_PPIASE (18–156) 1

LmjF33.1630 LmaCyP4 220 24.0 CSA_PPIASE (50–216) 2 N

LmjF31.0050 LmaCyP5 229 24.6 CSA_PPIASE (64–223),
PROKAR_LIPOPR (1–23)

2 N, 3

LmjF22.1450 LmaCyP6 229 25.2 CSA_PPIASE (30–194) 1

LmjF35.3610 LmaCyP7 247 25.5 CSA_PPIASE (1–160) 2 C

LmjF24.1315 LmaCyP8 242 26.4 CSA_PPIASE (71–242) 2 N*

LmjF30.0020 LmaCyP9 245 27.5 CSA_PPIASE (56–216) 2 N, C

LmjF36.3130 LmaCyP10 266 28.8 CSA_PPIASE (83–265) 2 N*

LmjF23.0050 LmaCyP11 295 31.4 CSA_PPIASE (27–193) 2 C

LmjF01.0220 LmaCyP12 335 36.1 CSA_PPIASE (150–330) 2 N

LmjF16.1200 LmaCyP13 366 38.6 CSA_PPIASE (80–243) 2 N, C*

LmjF35.1720 LmaCyP14 444 48.5 CSA_PPIASE (222–376) 2 N*, C

LmjF20.0940 LmaCyP15 462 49.0 CSA_PPIASE (58–238) 2 N, C

LmjF18.0880 LmaCyP16 1020 108.1 CSA_PPIASE (863–1017) 2 N

LmjF35.4770 LmaCyP40 354 38.4 CSA_PPIASE (7–174),
TPR (210–243; 257–290; 291–324)

3

FKBP-like LmjF22.1430 LmaFKBPL1 111 11.8 FKBP_PPIASE (23–111) 1

LmjF36.0230 LmaFKBPL2 109 11.9 FKBP_PPIASE (19–109) 1

LmjF10.0890 LmaFKBPL3 159 17.2 FKBP_PPIASE (49–135) 2 N*, C*

LmjF19.0970 LmaFKBPL4 202 22.8 FKBP_PPIASE (81–168) 2 N

LmjF19.1530 LmaFKBPL5 432 47.6 FKBP_PPIASE (56–144),
TPR (335–402)

2 N, 3

Parvulin-like LmjF07.1030 LmaPPICL1 115 12.5 PPIC_PPIASE (3–115) 1

LmjF22.0530 LmaPPICL2 440 46.5 PPIC_PPIASE (95–146),
FHA (313–440)

2 N, 3

Footnote. PPIase like proteins were retrieved by Blast analysis of the PPIase signature sequences in GeneDB (www.genedb.org). Prosite accession numbers of the
domains are: CSA_PPIASE: PS50072; FKBP_PPIASE: PS50059; PPIC_PPIASE: PS01096; PROKAR_LIPOPR: PS51257; TPR: PS50005; FHA: PS50006. Sequences flanking the
PPIase domain were analyzed by Blast search in NCBI (blast.ncbi.nlm.nih.gov/Blast.cgi). 1, a single PPIase domain without any significant N- or C-terminal sequence
extensions; 2, presence of parasite-specific N-terminal (N), C-terminal (C), or both extensions; 3, presence of additional functional domains;
*, represents the extension is unique to Leishmania;
#, Protein function with experimental support published [60,61].
doi:10.1371/journal.pntd.0000729.t001
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dependent, progressive reduction of growth with an IC50 at

48 hours between 15 and 20 mM and a more than 5-fold decrease

in growth at the highest inhibitor concentration compared to the

control (Fig. 3A and B, left panels). Growth reduction was

associated with a strong inhibition of resazurin reduction

indicating reduced cell proliferation or cell viability (Fig. 3B, right

panel). CsA-mediated growth reduction was reversible, as parasite

growth resumed normally after removal of the drug after 48 hours

of treatment (data not shown). Likewise, CsA had a striking effect

on the growth of L. donovani axenic amastigotes. The parasites

showed substantially higher susceptibility to CsA at this stage with

an IC50 between 5 and 10 mM (Fig. 3A, right panel, and Fig. 3B,

left panel), and strongly reduced resazurin reduction (Fig. 3B, right

panel). Together, our data demonstrate that CsA interferes with

the in vitro growth of both L. donovani promastigotes and axenic

amastigotes. In the following we used FACS-based approaches to

investigate the mechanisms underlying this growth defect.

CsA shows a stage-specific effect on L. donovani viability
To elucidate the mechanisms of CsA-mediated growth

inhibition, we first investigated the effects of CsA on the viability

of treated promastigotes and axenic amastigotes using a propidium

iodide (PI) exclusion assay [36]. The percentages of PI positive,

dead promastigotes and axenic amastigotes after 48 hours of CsA

treatment was revealed by FACS analysis. Promastigotes did not

show any significant increase in PI positive cells after incubation

with CsA ranging from 5 to 15 mM (Fig. 4A), and more than 80%

of cells were viable even at 25 mM CsA. In contrast, the proportion

of PI positive axenic amastigotes increased dramatically with

increasing CsA concentration, with a 4-fold decrease in cell

viability at only 10 mM CsA (Fig. 4A). Thus, the decrease in cell

number of CsA-treated promastigotes results from a slow-down in

proliferation rather than parasite killing.

This result was further confirmed by cell cycle analysis. Late-log

phase promastigotes were fixed with 90% methanol in PBS,

stained with PI, and cell cycle phase distribution was determined

by FACS analysis. Treatment of the parasites with 15 mM and

20 mM CsA did not affect the cell cycle distribution (Fig. 4B),

suggesting that inhibition of parasite proliferation results from a

non-synchronous slow-down in cell cycle progression.

CsA treatment induces morphological changes in L.
donovani promastigotes without induction of amastigote
gene expression

CsA-treatment of promastigote cultures induced a striking effect

on parasite morphology. We documented these alterations by

Table 2. Conservation of LmaCyP functional sites compared to human CyPA.

HsCyPA CsA functional residues

Residue R F M Q G A N A Q F W L H

Position 55 60 61 63 72 101 102 103 111 113 121 122 126

LmaCyP1

LmaCyP2

LmaCyP3 L53 E58 A59 D71 R93 P94 T95 R103 L105 Q113

LmaCyP4

LmaCyP5

LmaCyP6 V89 H132 S133 Q151 F156

LmaCyP7 I49 L50 G97 I98 D106 G108 T119

LmaCyP8 G132 P144 C167 R168 S169 H191

LmaCyP9 T108 I113 D114 R121 T153 S154 Y155 S163 S165 S173 Q178

LmaCyP10 Y158 L159 V202 S203 H222 C227

LmaCyP11

LmaCyP12 A225 W226 M228 C267 D269 A227 Y279 M228 Y292

LmaCyP13 Y133 C134 K145 N180 A200 F201

LmaCyP14 A272 H277 C278 I280 D290 I316 A317 Y318 N326 A328 S333 G334 P338

LmaCyP15 S117 V118 E120 F130 G167 L169 R178 Y180 R192 H193 F198

LmaCyP16 A902 I903

LmaCyP40 H131

Footnote. The functional amino acid residues implicated in PPIase catalytic activity and CsA binding of human CyPA (HsCyPA) (NCBI accession no. NP_066953) are
shown [73,74]. LmaCyPs were aligned against the human CyPA domain by ClustalX 2.0 with matrix Blosum62. Amino acid changes of LmaCyPs compared to human
CyPA are shown.
doi:10.1371/journal.pntd.0000729.t002

Figure 2. Bioinformatics analysis of the L. major CyP-like protein family. (A) Neighbor-Joining tree (500 bootstrap replicates) of the 118 CyP-like
proteins. CyP proteins were identified by PSI-Blasting Human PPIaseA against Human, L. major, L. infantum, L. braziliensis, T. brucei, and T. cruzi
genomes. Multiple sequence alignment was performed with T-Coffee and fed into the MEGA4 software package. Numbers on nodes indicate
bootstrap support. (B) UPGMA clustering of CyP functional residues. Positions corresponding to the CsA binding sites (as defined on the Human
PPIaseA) are displayed on the figure along with the CyP-like protein they originate from. The UPGMA clustering shows groups of putatively identical
binding sites.
doi:10.1371/journal.pntd.0000729.g002
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microscopic analysis using Giemsa staining and scanning electron

microscopy. Treatment of promastigotes with 10 to 20 mM CsA

induced morphological changes reminiscent of axenic amastigotes,

including increased aggregate formation (Fig. 5A), oval cell shape

(Fig. 5B), and shortened and retracted flagella (Fig. 5C).

The CsA effects on L. donovani promastigotes are reminiscent to

parasites treated with the HSP90 inhibitor geldanamycin, which

results in amastigote differentiation [53]. We evaluated the effect

of CsA on the differentiation state by following the expression of

two markers, the promastigote specific surface glycoconjugates

lipophosphoglycan (LPG) [54], which is lost during amastigote

differentiation, and the A2 protein, which is induced during the

pro- to amastigote conversion [42,55]. Logarithmic promastigotes

were incubated with vehicle alone (0.15% ethanol) or 15 mM CsA

at 26uC, pH 7.4 for 72 hours, and the expression profile was

compared to axenic amastigotes by Western blotting using

monoclonal anti-lipophosphoglycan antibody CA7AE [41] and

anti-A2 antibody C9 [42]. Despite the amastigote-like morphol-

ogy, CsA-treated promastigotes maintain expression of LPG,

comparable to the level of solvent treated cells promastigotes, and

do not show induction of the amastigote marker protein A2

(Fig. 5D). CsA treatment of promastigotes at pH 5.5 did not result

in further differentiation as judged by morphology and expression

of LPG, nor did it have an effect on parasite viability (data not

shown). These results demonstrate that unlike geldanamycin, CsA

Figure 3. CsA inhibits L. donovani in vitro growth. (A) Parasites
were treated for up to 48 hours with CsA at the concentrations
indicated at 26uC and pH 7.4 for promastigotes, or 37uC and pH 5.5 for
amastigotes. Cell density of the samples was estimated using CASY cell
counter and expressed in cell density per milliliter. (B) Left panel, growth
assessment. Logarithmic promastigotes (pro, %) and axenic amastigotes
(ama, #) were incubated for 48 hours with CsA at the indicated
concentrations. Cell density of the samples was estimated using
hemocytometer and expressed in % of growth compared to solvent
treated controls. Right panel, cell proliferation and viability assay.
Promastigotes and axenic amastigotes were treated as detailed in (A).
20 ml of CellTiter-Blue solution was added to the cells after 48 hours of
CsA treatment, and the assay was further incubated for 4 hours at 37uC.
Resazurin reduction was expressed in % of fluorescence compared to
solvent treated cells control. Results are representative of three
quadruplicate experiments with mean 6 S.D. indicated by the error bars.
doi:10.1371/journal.pntd.0000729.g003

Figure 4. CsA affects L. donovani viability and proliferation. (A)
FACS analysis. Logarithmic promastigotes (black bars) and axenic
amastigotes (grey bars) were incubated for 48 hours with the indicated
CsA concentrations. The cells were then washed once with PBS, stained
with 2 mg/ml of PI and analyzed by FACS. Proportion of dead parasites
is expressed in % of PI positive (+) stained cells after subtracting the
background of solvent treated cells control. The error bars represent the
mean6S.D. of four independent experiments. (B) Cell cycle analysis.
CsA-treated promastigotes were fixed in cold 90% methanol and
stained with propidium iodide for cell cycle analysis. The stained cells
were subjected to FACS analysis (exl= 488 nm/eml= 617 nm). 10,000
events were analyzed and cell cycle distribution was calculated with the
model Dean-Jett-Fox using the FlowJo Software package (Tree Star,
Inc.). At least two independent experiments were performed and
representative results are shown.
doi:10.1371/journal.pntd.0000729.g004
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induces morphological features similar to amastigotes without

inducing the appropriate expression profile.

Investigation of the stage-specific mechanisms
underlying CsA inhibition

CsA exerts its inhibitory action through binding of CyPs and

inactivation of the cellular phosphatase calcineurin by CsA/CyP

complexes [8,56]. In the following, we used the unrelated

calcineurin inhibitor FK506 to analyze if the CsA effects on the

parasite are mediated through inhibition of this phosphatase, a test

that has been previously applied on Leishmania [57]. Log-phase

promastigotes and axenic amastigotes (26106/ml) were cultured

for 48 hours in medium containing either ethanol (vehicle) or

FK506 at concentrations ranging from 5 to 25 mM, and incubated

at 26uC, pH 7.4 (promastigote) or 37uC, pH 5.5 (amastigote).

FK506 treatment of promastigotes induced morphological chang-

es similar to CsA treated parasites, and strongly reduced in vitro

growth and cell proliferation in a dose-dependent manner (Fig. 6A

and B, left panels, and data not shown). Like CsA, FK506 did not

significantly affect promastigote cell viability at the lower drug

concentrations (Fig. 6B, left panel). In contrast, FK506 treatment

of axenic amastigotes did not reproduce the CsA effects. First, as

judged by proliferation and viability assay, amastigotes were more

resistant to FK506, with an IC50 between 15 and 20 mM,

compared to ca. 7 mM for CsA (Fig. 6B, right panel). Second,

unlike CsA, FK506 did not induce massive cell death in

amastigotes even at the highest concentration (Fig. 6C, right

panel). These data show that CsA and FK506 have different effects

on L. donovani axenic amastigotes, which may be due to either

stage-specific differences in inhibitor uptake or distinct intracellu-

lar cellular targets.

CsA treatment reduces L. donovani thermotolerance
Based on previously published observations, Leishmania CyPs

may have important amastigote-specific chaperone functions and

participate in protein disaggregation [20]. We tested if CsA

treatment affects thermotolerance of promastigotes and amasti-

gotes following the number of propidium iodide stained, dead

parasites as a read out. Log-phase promastigotes or amastigotes

were treated with 15 mM CsA and parasites were simultaneously

incubated for various time periods at either 26uC or 37uC. As

expected, CsA treated amastigotes showed increased cell death in

the presence of CsA during the 20 hours time course experiment

(Fig. 7, right panel). Significantly, CsA-treatment of amastigotes at

26uC completely abrogated the toxic effect of the inhibitor. This

data shows that CsA-mediated amastigote killing is temperature

dependent. We confirmed this result using the complementary set

up, incubating CsA-treated promastigotes at high temperature.

Just like amastigotes, CsA-treated promastigotes underwent cell

death as soon as 10 hours after temperature shift (Fig. 7, left

panel). CsA alone or heat shock alone had no significant effect on

promastigote viability. Thus, CsA affects thermotolerance of both

the promastigote and amastigote stages.

Identification of CsA-binding Leishmania donovani
cyclophilins

The effect of CsA on parasite thermotolerance primed us to

investigate the potential interaction between this inhibitor and

LmaCyP40, a bifunctional cyclophilin that has both PPIase and

co-chaperone function and interacts with members of the HSP

protein family through TPR domains [58]. We first used a

structural approach applied on six leishmanial cyclophilins

selected for their similarity to the cyclosporin A binding pocket

of human orthologs. We built the corresponding model complexes

with CsA and evaluated their geometric fit and ability to establish

inter-molecular hydrogen bonds with the ligand. The experimen-

tally identified CsA binding residues of the L. donovani cyclophilin

(3eov) and the putative binding residues of the L. major 3D model

complexes, including the one for LmaCyP40, are highly conserved

(Fig. 8A). All models, even if built on different templates, display a

root mean square deviation of less than 0.6 angstrom on the CsA

binding residues of the experimentally determined complex

structure. Consequently, all models can accommodate the CsA

ligand with no molecular clash and the hydrogen-bonding pattern

is conserved with respect to the experimental structure (Fig. 8A,

lower panel). Furthermore, manual inspection of the model

complexes revealed a good geometric complementarity between

the protein and the ligand. All these evidences support the

hypothesis that these L. major cyclophilins, including LmaCyP40,

are good candidates for CsA binding.

We confirmed binding of the CsA ligand to LmaCyP40 by

studying the proposed interaction by affinity chromatography

using CsA-loaded resin. L. donovani promastigote extracts were

incubated with the resin and bound proteins were separated by

SDS-PAGE. One major band, specifically retained on the CsA-

resin, was revealed by fluorescent protein gel staining, and

identified as CyP2 by MS analysis (Fig. 8B, left panel, and Dataset

S1). Western blot analysis of the gel revealed cyclophilin 40

(Fig. 8B, right panel), thus confirming the CsA-CyP40 interaction

suggested by the structural modelling.

We next analyzed the biochemical characteristics of the

LmaCyP40-CsA interaction using GST::Strep::CyP40 purified from

recombinant bacteria (Fig. S1). We first determined the kcat/Km of

Leishmania major GST::Strep::CyP40 PPIase activity by evaluating the

linear dependency between kenz and enzyme concentration ranging

from 14.7 to 59 nM. The catalytic efficiency of Leishmania major

GST::Strep::CyP40 for Abz-Ala-Ala-Pro-Phe-pNa was found to be

kcat/KM = (3.72560.16)6105 M21 s21 (Fig. 8C, upper panel). We

then tested direct inhibition of the LmaCyP enzymatic activity by

CsA using the substrate Abz-Ala-Ala-Pro-Phe-pNA and increasing

amounts of inhibitor. The IC50 value of CsA was determined to be

162646 nM CsA (Fig. 8C, lower panel) and thus similar to human

CyP40 with an IC50 value of 195 nM [59].

Figure 5. CsA-treated L. donovani promastigotes show altered morphology. Promastigotes were incubated with 0.15% ethanol or 15 mM (B,
C) or 20 mM (A) CsA at 26uC, pH 7.4 for 72 hours. Axenic amastigotes were prepared as described in experimental procedure. 107 cells were fixed with
either methanol for Giemsa staining (A), or 2.5% glutaraldehyde for scanning electron microscopy (B). The bar corresponds to 1 mm (B) and 5 mm (A).
Two independent experiments were performed and representative fields are shown. (C) Flagellum length measurement. CsA-treated and solvent
treated cells L. donovani promastigotes were fixed in methanol and stained with anti-tubulin monoclonal antibody. Flagellum length was measured
from a total of 180 cells each for control and CsA-treated samples. Only cells with a single flagellum that was completely visible and fully in focus
were taken into account. Samples were observed with a DMR Leica microscope and images were captured with a Cool Snap HQ camera (Roper
Scientific). Images were analysed using the IPLab Spectrum 3.9 software (Scanalytics & BD Biosciences) and flagellum length was measured using
ImageJ (NIH). (D) Immunoblot analysis of CsA treated parasites. Parasites were treated with solvent or 15 mM CsA for 72 hours, lysed in 16 Laemmli
buffer, and lysates equal to 26107 cells were analyzed by immunoblotting. Promastigote specific marker LPG (upper), amastigote specific marker A2
(middle) and a-tubulin (lower) were analyzed. Two independent experiments which gave identical results were performed.
doi:10.1371/journal.pntd.0000729.g005
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Figure 6. The stage-specific effects of CsA occur through distinct mechanisms. Parasites were treated for 48 hours with either CsA or FK506
at the concentrations indicated at 26uC and pH 7.4 for promastigotes, or 37uC and pH 5.5 for amastigotes. (A) Cell density of the samples was
estimated using CASY cell counter and expressed in cell number per milliliter, after 24 to 48 hours treatment. (B) Cell proliferation was measured
using CellTiter-Blue cell viability assay by following resazurin reduction, which is expressed in % of fluorescence compared to solvent treated cells
control. (C) Cell death was measured by propidium iodide staining and FACS analysis as detailed in legend of Fig. 3. Results of (A) are representative
of three quadruplicate experiments with mean 6 S.D represented by the error bars. Three independent experiments were performed for (B) with the
error bars representing 6S.D.
doi:10.1371/journal.pntd.0000729.g006
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Discussion

The leishmanicidal activity of CsA has been first demonstrated in

L. tropica infected BALB/c mice, which showed a dose-dependent

inhibition of parasite burden and reduction in lesion formation [12].

This anti-parasitic activity has been subsequently confirmed for L.

major in mouse and macrophage infection assays, and various modes

of CsA action have been proposed [13,14,57]. The observation that

CsA has no overt anti-microbial activity against L. major

promastigotes in culture, but efficiently kills amastigotes in infected

macrophages, provided support to the idea that the toxic effect of

CsA on intracellular parasites depends on inhibition of host rather

than Leishmania CyPs. This hypothesis was further supported by

findings showing that the phosphatase calcineurin, the prime target

of the inhibitory CsA/CyP complex, is expressed at very low levels

and is not recognized by Leishmania LmaCyP19 (corresponding to

LmaCyP1 according to our nomenclature), although this protein

efficiently bound CsA [60,61]. In contrast to these previous reports,

our data provide several lines of evidence for a direct action of CsA

on Leishmania CyPs.

A first line of evidence resulted from the bio-informatics analysis

and structural modeling of Leishmania CyPs. Blast search of the L.

major and L. infantum genome databases (www.genedb.org)

identified a surprisingly large family of 17 CyP-like proteins in

these protozoan, compared to yeast, Drosophila, and human with

8, 14 and 19 CyPs, respectively (Table 1, Fig. 2) [62–64]. Multiple

sequence alignment of trypanosomatid and human CyPs, cluster

analysis of the functional residues implicated in PPIase catalytic

activity and CsA binding of the CLD, and structural modelling

revealed the presence of six Leishmania CyPs that showed

conservation of the functional residues (Table 2, Figs. 2 and 8A)

and were predicted to form a complex with CsA. This remarkable

conservation indicates that multiple Leishmania CyPs are likely

binding to CsA, a fact that we subsequently confirmed by affinity

chromatography and Western blotting, revealing direct interaction

of the inhibitor with Leishmana CyP2 and CyP40 (Fig. 8 B).

The effects of CsA on L. donovani promastigotes and axenic

amastigotes further support this possibility and provided a second

line of evidence for a direct action of CsA on Leishmania CyPs in

vitro. We showed that inhibitor treatment of L. donovani

promastigotes leads to dose-dependent, reversible inhibition of

proliferation (Figs. 3A and B), without significant effects on cell

viability (Fig. 4A) and cell cycle distribution (Fig. 4B). These results

confirmed previous observations that CsA does not exert a toxic

effect on Leishmania promastigotes, but revealed a strong effect on

promastigote in vitro growth that escaped previous analysis, likely

due to the lower CsA concentration (4 mM) used in these studies

[13,14]. In contrast to promastigotes, CsA showed a direct toxic

effect on L. donovani axenic amastigotes with more than 50% of

parasite death in the presence of 10 mM inhibitor (Fig. 4A). This

result demonstrates for the first time that the observed anti-

leishmanial effect on intracellular amastigotes in mouse and

macrophage infection [13,14,57] may rely mainly on direct

inhibition of parasite CyPs by CsA, although a participation of

host CyPs can not be excluded. We further investigated the

mechanisms underlying the stage-specific effects of CsA using the

unrelated antifungal macrolide inhibitor FK506. FK506 binds to

FKBPs, a second class of PPIases (Table 1), which similar to the

CsA/CyP complexes inhibit calcineurin [8]. FK506 treatment

reproduced the effects observed in CsA-treated promastigotes,

suggesting inhibition of calcineurin as one of the mechanisms

underlying the observed growth defect of this parasite stage (Fig. 6).

To our surprise, unlike CsA, FK506 did not exert a toxic effect on

axenic amastigotes at concentrations between 5 and 15 mM

(Fig. 6B), a fact previously observed in intracellular L. major

amastigotes [57]. These data indicate that the toxic effect of CsA

on amastigotes occurs likely through calcineurin-independent

mechanisms, which may be directly linked to inhibition of stage-

specific enzymatic functions of Leishmania CyPs.

Cyclophilins are protein chaperones with PPIase activity, which

catalyzes the cis-trans isomerization of peptidyl-prolyl bonds,

affecting stability, activity, and localization of client proteins

[2,65]. Thus, inhibition of CyP functions by CsA may provoke

pleiotropic downstream effects that may lead to the observed

growth inhibition and loss of viability. In the context of the current

literature, two pathways may be singled out with potential

Figure 7. CsA affects L. donovani thermotolerance. Axenic amastigotes and promastigotes were either treated with solvent or 15 mM CsA, and
incubated at either 26uC or 37uC. At the time points indicated, aliquots of the cells were stained with propidium iodide and analyzed by FACS. The
proportion of dead parasites is expressed in % of PI positive (+) cells. Three independent experiments were performed, and one representative
triplicate experiment is shown. The error bars represent 6S.D.
doi:10.1371/journal.pntd.0000729.g007
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Figure 8. Leishmania cyclophilin 40 is a target for CsA. (A) Structural modelling. Cyclosporin (CsA) binding pockets of L. donovani cyclophilin
CyP2 (PDB code: 3eov, left upper panel) and L. major CyP40 in the presence of the CsA ligand (model complex, right upper panel) are shown.
Cyclophilin residues are coloured in yellow and CsA is coloured by atom type. H-bonds are displayed as green dotted lines. The lower panel shows a
multiple sequence alignment of the CsA binding regions of L. donovani CyP2 (PDB code: 3eov) and the six L. major cyclophilins analyzed. The residues
in close proximity to the ligand are shown in bold. Yellow and orange filling identifies residues forming respectively one or two hydrogen bonds with
CsA atoms. (B) Affinity chromatography and Western blotting. Total protein extracts obtained from logarithmic L. donovani promastigote cultures were
incubated with resin alone (2), or resin coupled with CsA (+), bound proteins were analyzed by SDS-PAGE and SyproRuby staining, and identified by
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relevance for the CsA-dependent toxicity. First, L. donovani

adenosine kinase aggregates have been identified as clients for

CyP2, which disaggregates complexes of this protein [20,66],

thereby playing an important function in the purine salvage

pathway [67]. Inhibition of this important CyP2 chaperone

function may limit the intracellular concentration of adenosine

and affect DNA synthesis with consequences for promastigote

growth and amastigote viability. Second, cyclophilins have been

reported to participate in the response to heat stress in other

microbial pathogens. In the human pathogenic fungi Cryptococcus

neoformans, CsA treatment prevents growth at elevated tempera-

tures [68,69] and the CyP-related protein Cp1a is required for full

expression of fungal virulence [70]. Our data indeed established a

direct link between the sensitivity of Leishmania to CsA and the

parasite thermotolerance. We demonstrated that CsA-treated

amastigotes are insensitive to the drug when incubated at 26uC,

while CsA-resistant promastigotes are efficiently killed by the

inhibitor at 37uC (Fig. 7). A second observation linked Leishmania

CyPs with the response to increased temperature. We observed a

striking effect of CsA on promastigote morphology, which

acquired an oval cell shape and shortened their flagella, thus

showing some (but not all) features characteristic for amastigote

differentiation (Fig. 5). A similar morphogenic effect has been

previously observed on promastigotes treated with the HSP90

inhibitor geldanamycin [53]. It is possible that both CsA and

geldanamycin target different proteins are part of the same heat

shock complex implicated in Leishmania differentiation and

thermotolerance, such as cyclophilin 40, a multifunctional protein

that interacts with various members of the HSP family through

conserved TPR domains [58]. Indeed, our data identified

LmaCyP40 as a direct target for CsA as judged from the direct

interaction between the enzyme and the inhibitor (Fig. 8B) and

CsA-dependent inhibition of LmaCyP40 PPIase activity (Fig. 8C).

It is interesting to speculate that the temperature-dependent CsA

effect on Leishmania viability is the result of CyP40 inhibition.

Future studies employing LmaCyP40 conditional null mutants

with the aim to dissociate the PPIase and chaperone functions of

this enzyme may allow testing this hypothesis and shed important

new light on the function of LmaCyP40 in parasite thermotoler-

ance and infectivity.

In conclusion, our data revealed for the first time a direct

cytostatic and cytotoxic effect of CsA on L. donovani in culture. We

provided evidence that the stage-specific effects of CsA are

governed by independent mechanisms linked to inhibition of

calcineurin phosphatase activity in promastigotes, and inhibition

of CyP functions relevant for thermotolerance in amastigote. We

identified unique sequence elements in Leishmania CyPs and

documented a considerable evolutionary expansion of this protein

family, compared to other organisms, emphasizing the importance

of this class of molecules for trypanosomatid-specific biology. The

requirement of Leishmania CyP functions for intracellular parasite

survival and their substantial divergence from host CyPs defines

these proteins as prime drug targets. The suppressive action of

CsA on host immunity and its exacerbating effects on murine

toxoplasmosis, trypanosomiasis, and visceral leishmaniasis

[24,71,72] obviously eliminates this drug for anti-parasitic

intervention. Hence, the focus of future research should lie on

the identification of novel CyP inhibitors that specifically target

parasite CyPs without altering the host immune status.

Supporting Information

Dataset S1 MALDI-ToF-ToF mass spectrometry analysis of

promastigote lysate bound to CsA-coupled resin.

Found at: doi:10.1371/journal.pntd.0000729.s001 (0.04 MB XLS)

Figure S1 Recombinant GST::Strep::CyP40 was extracted from

transformed E. coli, digested with factor Xa, purified by FPLC (A)

as described in materials and methods, and fractions A7–A9 were

pooled and analyzed by SDS-PAGE and coomassie staining (B).

M, marker; F, pooled fractions.

Found at: doi:10.1371/journal.pntd.0000729.s002 (0.66 MB TIF)
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