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Colorectal cancer is the leading cause of death from cancer globally. The current
treatment protocol still heavily relies on early detection and surgery. The molecular
mechanisms underlying development of colorectal cancer are clinically important and
determine the prognosis and treatment response. The arginine metabolism pathway
is hyperactive in colorectal cancer and several molecules involved in the pathway
are potential targets for chemoprevention and targeted colorectal cancer therapy.
Endothelial nitric oxide synthase (eNOS), argininosuccinate synthetase and ornithine
decarboxylase (ODC) are the main enzymes for arginine metabolism. Limiting arginine-
rich meat consumption and inhibiting ODC activity largely reduces polyamine synthesis
and the incidence of colorectal cancer. Arginine transporter CAT-1 and Human
member 14 of the solute carrier family 6 (SLC6A14) are overexpressed in colorectal
cancer cells and contributes to intracellular arginine levels. Human member 9 of
the solute carrier family 38 (SLC38A9) serves as a component of the lysosomal
arginine-sensing machinery. Pharmaceutical inhibition of single enzyme or arginine
transporter is hard to meet requirement of restoring of abnormal arginine metabolic
network. Apart from application in early screening for colorectal cancer, microRNA-
based therapeutic strategy that simultaneously manipulating multiple targets involved
in arginine metabolism brings promising future in the treatment of colorectal cancer.

Keywords: arginine metabolism, transporters protein, signal pathway, colorectal cancer, stem cells

INTRODUCTION

Colorectal cancer is a highly prevalent and highly fatal disease worldwide, with a third incidence
rate and fourth mortality rate (Brenner et al., 2014). While with decreasing trends for the incidence
and mortality of colorectal cancer in many developed countries like the United States, the incidence
and mortality in several developing countries, such as China, have continued to increase (Center
et al., 2009a,b). These trends have been ascribed to their transition toward a so-called western
lifestyle such as the consumption of high-fat diets and physical inactivity (Center et al., 2009b).

The molecular pathogenesis of colorectal cancer is heterogeneous including hereditary
components and developing slowly through adenoma–carcinoma sequence in most cases. The
molecular mechanisms underlying development of colorectal cancer are clinically important
because they are associated with the prognosis and treatment response of the patient (De Sousa
et al., 2013; Sadanandam et al., 2013). At present, the treatment of colorectal cancer is mainly
surgery based comprehensive treatment, but the treatment effect of recurrent or metastatic
colorectal cancer is still very limited (Cunningham et al., 2010; Pritchard and Grady, 2011).
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Recently, genomics and proteomics have made a lot of progress
in the diagnosis and treatment of colorectal cancer (Manna et al.,
2014), especially in the study of polyamines and their metabolism
related molecules (Gerner and Meyskens, 2004; Manna et al.,
2014).

It is well known that arginine is an original source of
polyamines generation, and abnormal arginine metabolism has
been characteristic of tumor cell metabolism. As a semi-essential
amino acid in humans, arginine is critical for the growth of
human cancers, particularly in those with chemoresistance and
poor clinical outcomes. In addition to protein synthesis, arginine
is involved in diverse aspects of tumor metabolism, including
the synthesis of nitric oxide, polyamines, nucleotides, proline and
glutamate. In addition, several enzymes and transport molecules
in the arginine metabolic pathway such as ODC, CAT, and
SLC6A14 were involved in the development of tumors, including
colorectal cancer. There have also been some recent reviews
on arginine metabolism in tumors, such as epigenetic arginine
regulation in antitumor therapy and arginine deprivation. These
reviews analyzed the role of arginine metabolism in tumors
from various perspectives. However, studies have shown the
two-faced effect of arginine. Some studies confirm that arginine
enhances tumor growth (Selvi et al., 2019), others introduce it
as an appropriate candidate for cancer treatment (Jahani et al.,
2017). Currently, there is a lack of systematic review of the role
of arginine metabolism in colorectal cancer. Besides, the effect
of arginine metabolism in CRC is uncertain. In recent years,
several studies on arginine metabolism in colorectal cancer have
been emerged successively. For example, it has been found that
limiting arginine-rich meat intake and inhibiting ODC activity
can reduce polyamine synthesis and colorectal cancer incidence,
and endothelial nitric oxide synthase (eNOS) inhibitors can
inhibit CRC cell proliferation. In addition, miRNAs were an
important class of molecules involved in multiple steps of tumor
development (Niu et al., 2018). Thus, miRNAs targeting arginine
and metabolic-related enzymes would be used as potential
diagnostic markers or therapeutic targets. In order to better
understand arginine metabolism and its role in diagnosis and
therapy for colorectal cancer, this review discusses arginine
metabolism pathway involved enzymes and its transporters in
colorectal cancer. Although the literature on arginine metabolism
in colorectal cancer was limited, we hope that this review will
provide guidance for the diagnosis and treatment of clinical
colorectal cancer, such as finding specific markers for the
diagnosis and managing arginine intake in patients with high-risk
factors for colorectal cancer.

THE ROLE OF ARGININE AND ITS
METABOLITES IN CRC

Arginine is a semi essential amino acid for human body.
The arginine is generated by two ways under physiological
conditions, one is the ornithine cycle and the other is the
membrane protein transport receptor to transfer extracellular
arginine to the cell (Gerner and Meyskens, 2004). Many enzymes
and arginine transporters were involved in the metabolism of

arginine. Arginine could generate ornithine through Arg-1 and
ornithine was involved in polyamine synthesis. Arginine could
also generate guanidine through arginine decarboxylase (ADC)
and then participate in cell signal pathway. Guanine can be
produced under the action of arginine deaminase (ADI) or nitric
oxide synthetase. Besides, arginine could be synthesized again
through the arginine succinate synthetase (ASS1) and arginine
succinate lyase (ASL) (Szlosarek, 2014). Once the metabolism of
arginine is broken, it is easy to cause tumor (Battaglia et al., 2014;
Paz et al., 2014).

Arginine and its metabolites play an important role in the
development of CRC. Studies have found that limiting arginine-
rich foods could reduce the incidence of colon cancer. Recently,
it has been reported that that CRC cell lines could not grow in
arginine free medium in vitro, and DNA replication stopping
and cyclin expression down-regulation were also identified,
which could be reversed by exogenous arginine supplementation
(Alexandrou et al., 2018). In addition, expression of ASS was
significantly increased in CRC, while overexpression of ASL was
negatively correlated with prognosis (Huang et al., 2015, 2017).

Arginine is the substrate of eNOS. It was found that eNOS
in CRC was related to tumor vascular invasion (Chhatwal et al.,
1994), and eNOS inhibitors could inhibit the proliferation and
apoptosis of CRC cells through downstream molecules (Altun
et al., 2013). ODC could decompose the metabolites of arginine
into polyamines, which was necessary for the development
and proliferation of CRC (Gerner and Meyskens, 2009). The
expression of ODC in CRC was significantly increased, which
could regulate the cell cycle process and promote tumor
progression (Nakanishi et al., 1993). Meanwhile, ODC inhibitors
could reduce the occurrence of colon polyps and adenomas
(Battaglia et al., 2014). In addition, arginine transporters were
also involved in the development of CRC. SLC6A14 expression
was up-regulated in CRC which involved in the regulation of
mTOR signaling pathway, thereby regulating cell proliferation
and energy metabolism (Gupta et al., 2005). Inhibition of CAT-
1 could reduce the survival rate of tumor cells and inhibit the
expression of EREG, which was a key factor in the transformation
from inflammation to colon cancer (Camps et al., 2013).
Furthermore, some drugs that induce the expression of SAT1
spermidine/spermidine N1 acetyltransferase (SAT1 or SSAT) had
therapeutic effects on inflammatory CRC, indicating that they
might also be involved in the regulation of the progress of CRC
(Evageliou and Hogarty, 2009; Goodwin et al., 2011).

INTRACELLULAR ARGININE
METABOLIC PATHWAY IN CRC AND ITS
IMPLICATION FOR THERAPIES

L-arginine has been a long known substrate of eNOS or nitric
oxide synthase 3 (NOS3), with resulting metabolic products of
L-arginine–NO being nitric oxide (NO) and Citrulline (Figure 1).
Recent studies demonstrated that cancer cells have a higher eNOS
expression, as eNOS is required for maintaining permanent
tumor growth via Ras-activated PI3K–Akt signaling pathway
(Fukumura et al., 2006; Lim et al., 2008). Clinical studies on

Frontiers in Cell and Developmental Biology | www.frontiersin.org 2 May 2021 | Volume 9 | Article 658861

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-658861 May 13, 2021 Time: 15:50 # 3

Du and Han Arginine Metabolism in Colorectal Cancer

FIGURE 1 | Arginine metabolic pathways and association with colorectal cancer. Before L-arginine enters into cells, arginine decarboxylase (ADC) catalyzes the
arginine to generate agmatine. Arginine transporters SLC7A1 (CAT-1) and SLC6A14 are the main transporters responsible for arginine transmembrane
transportation. Both CAT-1 and SLC6A14 are highly expressed in colorectal cancer. SLC6A14 is also responsible for transportation of leucine. Nitric oxide synthase
(NOS) catalyzes the cytosol L-arginine to generate L-citrulline and Nitric oxide (NO), and the latter is reported to upregulate CAT-1 expression. L-citrulline is converted
into argininosuccinate via Argininosuccinate synthetase (ASS), which is a rate-limiting enzyme in arginine recycle biosynthesis. Argininosuccinate lyase (ASL)
catalyzes argininosuccinate to produce endogenic L-arginine. Arginase catalyzes the L-arginine to generate L-ornithine, which has three metabolic pathays:
(1) converting to L- citrulline via Ornithine transcarbamylase (OTC); (2) to generate L-proline via Ornithine aminotransferase (OAT); and (3) to produce polyamines
(including putrescine, spermidine and spermine) via ornithine decarboxylase (ODC). NOS, polyamines and ODC are all reported upregulated in colorectal cancer and
contributing to colon tumorigenesis. SLC38A9 is a component of the lysosomal arginine sensing machinery and sestrin1/2 is the sensor of cytosol leucine, both of
which control mTORC1 and regulate autophagy and involve colon tumorigenesis.

human colon cancer samples suggest that high eNOS expression
can be positively correlated with tumor cell vascular invasion
(Chhatwal et al., 1994), as well as in trophoblast cancer (Ariel
et al., 1998). Besides, an eNOS inhibitor L-NIO could increase
the antiproliferative, antiangiogenic and apoptotic effects of
E7080, a tyrosine kinase inhibitor, on CRC cell in vitro. In was
found that blocking the eNOS phosphorylation could inhibits
tumorigenesis, while overexpression of eNOS enhanced the
nitrosylation and activation of Ras proteins in vitro and vivo
(Lim et al., 2008).

Arginine as is a substrate of eNOS is thus crucial for
the tumor-drivinng PI3K–Akt–eNOS (wild-type)-Ras pathway,
which further explains the increased arginine catabolism in
cancer cells. Cellular recycling mechanisms are in place to
provide sufficient substrate (citrulline) for arginine synthesis
with help of intracellular argininosuccinate synthetase (ASS)
and argininosuccinate lyase (ASL) (Figure 1). Loss of ASS
in several tumor entities renders them arginine auxotrophic,
e.g., hepatocellular carcinoma, malignant melanoma, malignant
pleural mesothelioma, prostate and renal cancer (Ensor et al.,
2002). In contrast, several platinum sensitive tumors, including
primary ovarian, stomach and colorectal cancer, are characterized
by ASS overexpression (Delage et al., 2010). This explains the
inutility of arginine deprivation in colorectal cancer therapy.

L-arginine catabolized by arginase (ARG) produces ornithine,
which is further broken down by ornithine decarboxylase
(ODC) to polyamines (Figure 1), such as putrescine, which
is essential for CRC development and proliferation (Gerner
and Meyskens, 2009). In earlier studies, it was found that
increased polyamine expression in colorectal cancer tissues was
associated with increased ODC activity, and the ODC protein
and mRNA expression were significantly higher in CRC tissue
compared to paired normal tissues (LaMuraglia et al., 1986). It
has been proved that ODC was engaged in G1/S progression,
and the cell cycle modification by agmatine through ODC
inhibition was considered indirect while by interfering with
cyclins expressions, agmatine exerted a direct effect (Nakanishi
et al., 1993). Furthermore, its dose-dependent inhibitory effect
has been demonstrated on some cancers including colon cancer
and hepatocellular carcinoma (Patil et al., 2016). Thus, it is
comprehensible why an overexpression of ODC has been proven
in CRC (Goodwin et al., 2011) and neuroblastoma (Evageliou and
Hogarty, 2009; Battaglia et al., 2014), confirmed that ODC might
promote the colorectal cancer progress (Patil et al., 2016).

Studies have found that adenomatous polyps (APC) tumor
suppressor gene and KRAS gene play important roles in the
process of polyamine production and colorectal tumorigenesis.
Increased ODC transcription and polyamine synthesis were
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detected in APC mutant mice. At the same time, the use of
ODC inhibitors can significantly reduce the incidence of colon
polyps and adenoma (Battaglia et al., 2014), and can also be used
for the chemoprevention of prostate adenocarcinoma and skin
cancer (Manni et al., 2004; Xu et al., 2008). There is evidence
that limiting the meat consumption and inhibiting ODC activity
can significantly reduce polyamine synthesis and incidence rate
of colorectal cancer with ODC1 GA/AA genotype, compared to
GG (Zell et al., 2012).

POLYAMINE METABOLIC PATHWAYS
AND THEIR POTENTIAL THERAPEUTIC
TARGETING IN CRC

Polyamine is a small molecular weight organic polycation,
which can combine with negatively charged substances such as
RNA, miRNA and protein, and participate in the transcriptional
regulation of gene expression (Gerner and Meyskens, 2004;
Battaglia et al., 2014; Paz et al., 2014). In addition, polyamines can
modify the eukaryotic translation initiation factor-5A (eIF5A)
and affect the transcription and translation of downstream
oncogenes and tumor suppressor oncogenes (Scuoppo et al.,
2012; Paz et al., 2014).

The metabolism of intracellular polyamines is strict regulated
in cells. When these balances are broken, it is easy to lead to
tumorigenesis such as in colorectal cancer (Battaglia et al., 2014;
Paz et al., 2014; Figure 1). Spermidine/spermidine catabolism is
regulated by three major enzymes, including spermidine oxidase
(SMO), spermidine/spermidine N1 acetyltransferase (SAT1 or
SSAT) and N1 acetylpolyamine oxidase (APAO). The drug
sulindac and other NSAIDs can induce SAT1 expression in
human cell and mouse models, which may be one of the
reasons for the treatment effect of inflammatory colorectal cancer
(Evageliou and Hogarty, 2009; Goodwin et al., 2011). Recently, it
has been found that overexpression of SAT1 can rapidly reduce
the levels of spermidine and spermine in cells, thereby inhibiting
cell protein synthesis and preventing cell growth (Mandal et al.,
2013). These results indicate that SAT1 has a certain prospect in
the treatment of colorectal cancer. Similarly, a variety of catabolic
enzymes involved in polyamine catabolism, including SSAT,
APAO, and SMO, are also potential targets for the treatment of
colorectal cancer.

ARGININE TRANSPORTERS IN
COLORECTAL CANCER

Arginine can shuttle across the cell membrane through a variety
of transporters (Lu et al., 2013, Figure 2). The most common
arginine transporter family is that of Na+ -independent cationic
amino acid transporters (CAT), which consists of CAT-1, -2A,
-2B, -3, and -4 (Malandro and Kilberg, 1996; Palacin et al.,
1998). The studies are focus on cat-1 and cat-2, while the
function and specificity of CAT-3 and cat-4 are not clear (Closs
et al., 2006). Another arginine transporter is the sodium- and
chloride-dependent transporter, which is encoded by member 9

FIGURE 2 | Arginine transporters expression in colorectal cancer. The mRNA
levels for each arginine transporter in colorectal cancer and adjacent normal
tissues of 90 colorectal cancer patients were measured by qPCR. The
expression of SLC7A1 and SLC6A14 genes were significantly upregulated in
colorectal cancer patients.

of solute carrier family 6 (SLC6A14 gene). In colorectal cancer,
CAT-1 expression was negatively correlated with pathological
grade (Figure 3).

Camps et al. (2013) found that siRNA down-regulation of CAT
-1 expression can reduce the survival rate of cancer cells, and
significantly inhibit the expression of growth factor Epiregulin
(EREG), which is a key factor in the transformation of colon from
inflammation to tumor. There are some differences in arginine
transporters in different cells. For example, CAT -2 is mainly
expressed in some immune cells such as macrophages (Morris,
2010), while CAT-1 is specifically expressed in colorectal cancer
(Su et al., 2004). Since CAT -1 is a membrane protein, specific
monoclonal antibodies can be used to neutralize cat-1 and inhibit
the uptake of arginine by CRC cells, so as to achieve the purpose
of tumor treatment.

SLC6A14 was found to be highly expressed in colorectal
tissues (Gupta et al., 2005), due to the increased demand of
tumor cells for leucine and arginine (Karunakaran et al., 2011).
The leucine is an activator of mTOR pathway (Laplante and
Sabatini, 2012; Figure 1), which can form two protein complexes
mTORC1 and mTORC2, playing an important role in tumors
associated with metabolic disorders. The expression and leucine
transport of SLC6A14 are regulated by PKC (Closs et al., 2006),
which is a downstream molecule of mTORC2 and an important
signal molecule regulating tumor cell proliferation (Zell et al.,
2012). Based on the above results, the inhibition of arginine
uptake by SLC6A14 may have potential clinical significance.
Human member 9 of the solute carrier family 38 (SLC38A9) has
recently been identified as a component of the lysosomal amino
acid (particular arginine)-sensing machinery that regulates the
targets of rapamycin complex 1 (mTORC1) (Jung et al., 2015;
Rebsamen et al., 2015; Wang et al., 2015). The mechanistic
mTORC1 integrates the presence of growth factors, energy

Frontiers in Cell and Developmental Biology | www.frontiersin.org 4 May 2021 | Volume 9 | Article 658861

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-658861 May 13, 2021 Time: 15:50 # 5

Du and Han Arginine Metabolism in Colorectal Cancer

FIGURE 3 | Histochemistry of SLC7A1 in colorectal cancer and control. The pathological characteristics of colon adenocarcinoma (B) and adjacent normal colon
tissue (C) in the tumor specimen were shown when sectioning and staining with anti-SLC7A1 antibody and compared with normal colon tissue from control (A).

levels, glucose and amino acids to modulate metabolic status
and cellular responses. Overexpression of SLC38A9 or just its
Regulator-binding domain activates mTORC1 signaling even in
the absence of amino acids, while loss of SLC38A9 impairs
mTORC1 activation by amino acids, particularly arginine (Wang
et al., 2015). It has been demonstrated that amino acids regulated
mTORC1 pathway through the Rag guanine triphosphatases
(GTPases), which was regulated by a positive regulator GATOR2
and its interaction protein Sestrin2. Interestingly, leucine but
not arginine, disrupts the Sestrin2-GATOR2 interaction and
inhibits mTORC1 signaling (Saxton et al., 2016; Wolfson et al.,
2016; Figure 1). In ASS1-deficient prostate cancer cells, arginine
withdrawal leads to increased protein turnover via reduced
synthesis and increased breakdown (suppression of mTOR and
proteosomal degradation, respectively) and triggers caspase-
dependent and caspase-independent apoptotic cell death in a cell
type- dependent manner (Changou et al., 2014; Szlosarek, 2014).
Many cancer cell types use this autophagy-based mechanism to
overcome the arginine supply problem.

ARGININE METABOLISM AND STEM
CELLS

Arginine and its metabolism related molecules are closely related
to stem cells and tumor stem cells. Recent studies have shown
that arginine may be closely related to the physiological function
of stem cells, including cancer stem cells. L-arginine can increase
the expansion of small intestinal stem cells (ISCS) by targeting
rapamycin complex1 and inhibiting Wnt2B secretion in small
intestinal (SI) organoid models. In addition, L-arginine therapy
can protect the intestinal tract from injury (Pearce et al., 2012).
Zhang et al. found that exogenous L-arginine could promote the
proliferation and intestinal epithelial renewal of ISCS, and protect
the gut from the injury induced by TNF-α and 5-FU in mice
(Hou et al., 2020). Arginine is also involved in the differentiation
of human bone marrow mesenchymal stem cells into osteoblasts
and adipocytes. Arginine significantly increased the expression of
osteogenic transcription factors runt related transcription factor
2 (Runx2), dix5, and osterix in MSCs, and decreased adipocyte
formation and triglyceride content. This effect is associated with
the increased expression of Wnt5a and nuclear factor of activated

T-cells (NFATc), which could be reversed by Wnt and NFATc
antagonists (Huh et al., 2014).

It is also found that eNOS is involved in the differentiation
of cancer stem cells. The expression of eNOS is increased in
hyperproliferative intestinal crypts, which was associated with
relapse free survival and overall survival. Overexpression of
eNOS decrease the proliferation and expression of tumor stem
cell markers such as Lgr5 and Vav3. These data suggest that
eNOS may be a potential new target in mesenchymal colorectal
tumors with poor prognosis (Penarando et al., 2018). Expression
and activity of eNOS change dynamically in the process of
differentiation of mouse adult pluripotent progenitor cells into
endothelial cells induced by vascular endothelial growth factor.
The expression and activity of eNOS increase on the 14th and 21st
day of differentiation (Liu et al., 2007). The NO/NOS/sGC/PKG-
I pathway is also involved in the cardiac differentiation of
embryonic stem cells (Spinelli et al., 2016). Further, neuronal
NOS (nNOS) is involved in the differentiation of human induced
pluripotent stem cells (hiPSCs). It is found that the expression
of nNOS in migrating hiPSCs is down regulated by comparing
the gene expression profiles of migrating and non-migrating
hiPSCs, which is a related regulator of hiPSCs migration to
cancer cells. Inhibiting activity of nNOS or down regulating
its expression can reduce the migration of neural stem cells
(NSCs) and improve their tumor tropism. This indicates that
nNOS is a potential target for cancer therapy mediated by NSCs
(Chen et al., 2013).

Besides arginine and NOS, arginine decarboxylase (ADC) is
involved in the repair of MSCs against injury. It is found that
overexpression of ADC can reduce the activation of Caspase-3,
promote the phosphorylation of Akt and CREB, and increase
the expression of BDNF in H2O2 treated MSCs. These results
indicate that ADC can protect MSCs against H2O2 toxicity
and improve the survival rate of MSCs (Seo et al., 2013).
ADC is also involved in the neuronal differentiation of neural
progenitor cells (NPCs). NPCs overexpressing ADC gene can
differentiate by neural lineage in vitro model of cerebral ischemia.
Transplantation of NPCs over-expressing ADC can inhibit the
volume of cerebral infarction, promote neural differentiation
and protrusion in vivo. These results suggest that ADC has
potential value in cell replacement therapy of ischemic stroke
(Kim et al., 2019).
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IMMUNE REGULATION OF ARGININE
AND ITS METABOLITES IN CRC

Arginine and its metabolites play an important role in
the development of T cells and the maintenance of tumor
microenvironment. Studies have found that arginine was very
important for the formation of T cell receptor. Abnormal
activation of Arg-1 could lead to the loss of arginine in
the tumor environment, resulting in T cell dysplasia and
the loss of tumor cell response related receptors (Rodriguez
et al., 2003; Yachimovich-Cohen et al., 2010). In addition,
arginine deficiency reduced the dephosphorylation level of cofilin
protein and affected the recovery of actin in turn, which was
necessary for the production of immune synapses and T cell
proliferation (Feldmeyer et al., 2012). Furthermore, NO activated
cyclooxygenase-2 (COX-2) and other inflammatory mediators,
thereby creating a pro-oxidant microenvironment that supported
cancer cell growth and suppressed antitumor immunity (Tham
et al., 2014; Hugo et al., 2016). Besides, iNOS/NO positively
regulated the production of COX-2, microsomal prostaglandin E
synthase-1 (mPGES1), and prostaglandin E2 (PGE2), which was
related to immune-based anticancer therapies (Feun et al., 2008).

At present, the research concerning arginine and colorectal
cancer immunity was very limited. Studies have found that
myeloid suppressor cells (MDSCs) in colon cancer cells could
inhibit the function of Th1/Th17/Th2 lymphocytes and form
an immunosuppressive environment (Kang et al., 2010; Galon
et al., 2013), which was crucial for the survival of tumor cells.
MDSCs could be divided into M1 and M2 types according to
cell morphology and polarization state. The activity of iNOS
was significantly increased in M1 type, which has anti-tumor
effect (Modolell et al., 1995; Allavena and Mantovani, 2012;
Fridlender and Albelda, 2012). On the contrary, the up-
regulation of ARG1 level shows cancer promoting effect In M2
type (Fridlender et al., 2009; Ma et al., 2011). It was also shown
that NO is required in pathogen-induced colon inflammation
and immune cell infiltration, leading to dysplasia and colon
cancer development (Erdman et al., 2009). In parallel, NO could
activate macrophages and cytotoxic T cells, and augment the
immune response against tumor cells (MacMicking et al., 1997;
Marigo et al., 2016). Moreover, it has been demonstrated that
macrophage-derived NO induced the expression of the adhesion
molecule VCAM-1 in tumor vessels of melanoma xenografts,
which is important for T-cell extravasation. Additionally,
Nos2-/- macrophages could not co-transfer with CD8 + T
cells yield T-cell homing to the tumor and tumor rejection
(Sektioglu et al., 2016).

MIRNAS AND LONG NON-CODING
RNAS IN ARGININE METABOLISM
AND CRC

miRNAs are also involved in the regulation of arginine
metabolism. miRNA can regulate arginine metabolism
by regulating the expression of key molecules in arginine

metabolism pathway, such as ASS (Bates et al., 2010; Tu et al.,
2020), ARG1 (Bates et al., 2010; Yoo et al., 2019), ARG2
(Dunand-Sauthier et al., 2014; Jin et al., 2014; Kim et al., 2017;
Wang Y. et al., 2017), CAT-1 (Chang et al., 2004; Li Y. et al.,
2018), ODC (Jagannathan et al., 2015) and NOS (Perske et al.,
2010; Yan et al., 2011; Guo et al., 2012; Sun et al., 2012; Zhu
et al., 2013; Li et al., 2014, 2017, Li H.T. et al., 2018; Fu et al.,
2015; Jiang et al., 2015; Zhang et al., 2015, 2020; Rasheed
et al., 2016; Reilly et al., 2016; Muxel et al., 2017, 2018; Wang
C. et al., 2017, Wang et al., 2019; Cui et al., 2020; Lin et al.,
2020; Scalavino et al., 2020; Table 1). It has been found that
multiple miRNAs could target the same enzyme or transporter
protein, and the same molecule could also be regulated by
multiple miRNAs. In addition, the regulatory mechanisms
were diverse, which include binding to 3′-UTR region to
degrade target genes by, inhibiting or increasing the expression
of target genes or the enzyme activity at the same time. For
example, microarray analysis of affinity purified RNAs and
their validation identified CAT-1 as target gene of miR-122
(Bhattacharyya et al., 2006; Li et al., 2012), suggesting that
arginine metabolism regulatory mechanisms are modulated
by miRNA expression. Another example was the applying of
ODC inhibitors to successfully reverse the LIN28/Let-7 axis
and inhibit glycolytic metabolism in neuroblastoma (an entity
similar to CRC in terms of arginine metabolism) (Lozier et al.,
2015). Overexpression of ODC enhanced menin translation by
reducing miR-29b, whereas polyamine depletion by inhibiting
ODC increased miR-29b and suppressed menin expression
(Ouyang et al., 2015). Since arginine metabolism is related
to rectal cancer, searching the miRNAs targeted arginine
metabolism—related enzyme may be new sights for the diagnosis
and treatment of CRC.

Apart from argininemetabolism, specific microRNAs
(miRNAs) have been identified in CRC. miRNAs are now
known to be essential in malignancies, functioning as tumor
suppressors and oncogenes (Kong et al., 2012). miRNAs can be
used to diagnose the presence of CRC and help predict disease
recurrence (Zhang et al., 2013). Differential expression of specific
miRNAs sampled in tissues or plasma offers the prospect of
their use in early detection and screening for colorectal cancer
(Schetter et al., 2008; Ng et al., 2009; Liu et al., 2013; Luo et al.,
2013; Toiyama et al., 2013; Chen et al., 2015; Table 2). miR-21,
miR-92a, miR-29a, and miR-150 have strong potential as novel
non-invasive biomarkers for early detection and prognosis of
colorectal cancer (Huang et al., 2010; Ma et al., 2012; Wu et al.,
2012). Analysis of colorectal tumors and adjacent non-neoplastic
tissues from patients and colorectal cancer cell lines identified
a group of 13 significantly altered miRNAs, including miR-31,
miR-96, miR-133b, miR-135b, miR-145, and miR-183 (Bandres
et al., 2006). Downregulation of the miR-143/145 cluster has
been repeatedly reported in colorectal cancer (Ibrahim et al.,
2011; Chivukula et al., 2014), allowing further CRC therapeutic
investigations. A first cancer-targeted miRNA drug- MRX34, a
liposome- based miR-34 mimic, entered Phase I clinical trials
in patients with advanced hepatocellular carcinoma in 2013
(Ling et al., 2013). The immediately observed and promising
advantage of using microRNA approaches is based on the ability

Frontiers in Cell and Developmental Biology | www.frontiersin.org 6 May 2021 | Volume 9 | Article 658861

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-658861 May 13, 2021 Time: 15:50 # 7

Du and Han Arginine Metabolism in Colorectal Cancer

TABLE 1 | miRNAs target to arginine metabolism.

Study Target miRNA identified Diseases or cells Methods of analysis

Tu et al. (2020) ASS1 miR-1291-5p Pancreatic carcinoma qRT-PCR

Bates et al. (2010) ASS1 mmu-miRs-22, -127, -470, and -411 Mice qRT-PCR

Bates et al. (2010) ARG1 mmu-miRs-29b, -676, -382, and -669b Mice qRT-PCR

Yoo et al. (2019) ARG1 miR-340-5p Peripheral Blood Cells Luciferase reporter assay

Wang Y. et al. (2017) ARG2 miR-613 HCMV-positive glioblastoma Luciferase reporter assay

Jin et al. (2014) ARG2 miR-17-5p Human pulmonary artery smooth muscle cell qRT-PCR

Kim et al. (2017) ARG2 miR-1299 Melasma Luciferase reporter assay

Dunand-Sauthier et al. (2014) ARG2 miR-155 T cell Luciferase reporter assay

Li Y. et al. (2018) CAT-1 miR-122 Isoniazid-induced liver injury qRT-PCR

Chang et al. (2004) CAT-1 miR-122 Primary human hepatocytes Luciferase reporter assay

Jagannathan et al. (2015) ODC miR-29b Myeloma cells qRT-PCR

Wang C. et al. (2017) eNOS miR-138 and miR-199a Rats Luciferase reporter assay

Zhang et al. (2020) eNOS miR-221 Atherosclerosis qRT-PCR

Wang et al. (2019) eNOS miR-155-5p and miR-24-3p Atrial fibrillation qRT-PCR

Li et al. (2017) eNOS miR-455-3p HUVECs qRT-PCR

Fu et al. (2015) eNOS miR-335 and miR-543 Prostate cancer Luciferase reporter assay

Jiang et al. (2015) eNOS miR-584 and miR-335 Severe preeclampsia Luceriferase assay

Yan et al. (2011) eNOS 27-nt miRNA Endothelial cell qRT-PCR

Li et al. (2014) eNOS miR-155 Severe preeclampsia, HTR-8/SVneo cells qRT-PCR

Zhang et al. (2015) eNOS miR-155 Human aortic SMCs (HASMCs) Luciferase reporter assay

Sun et al. (2012) eNOS miR-155 Human umbilical vein endothelial cell Luciferase reporter assay

Li H.T. et al. (2018) eNOS miR-24 Subarachnoid hemorrhage (SAH) Luciferase reporter assay

Muxel et al. (2018) iNOS let-7e Lamazonensis-infected qRT-PCR

Scalavino et al. (2020) iNOS miR-369-3p Inflammatory dendritic cells qRT-PCR

Lin et al. (2020) iNOS miR-206-3p and miR-381-3p Macrophages qRT-PCR

Cui et al. (2020) iNOS miR-302b-5p Parkinson’s disease Luciferase reporter assay

Perske et al. (2010) iNOS miR-146a Mouse renal cell carcinoma cell line qRT-PCR

Guo et al. (2012) iNOS miR-939 Human hepatocytes Luciferase reporter assay

Zhu et al. (2013) iNOS miR-26a NPM-ALK(+) T-cell lymphoma Luciferase reporter assay

Rasheed et al. (2016) iNOS miR-26a-5p Human osteoarthritis chondrocytes Luciferase reporter assay

Reilly et al. (2016) nNOS miR-31 Human atrial fibrillation qRT-PCR

Muxel et al. (2017) NOS2 miR-294 and miR-721 Lamazonensis-infected qRT-PCR

to concurrently target multiple effectors of pathways involved
in cell differentiation, proliferation and survival, as opposed
to targeting a single enzyme or transporter of the arginine
metabolic network (which involve over 10 key enzymes and 2
critical transporters). However, there was little direct evidence
that miRNAs affect the occurrence and development of CRC by
regulating arginine metabolism. Since arginine metabolism is
related to rectal cancer, searching the miRNAs targeted arginine
metabolism-related enzyme may be new sights for the diagnosis
and treatment of CRC.

Long non-coding RNAs (lncRNAs) are the second most
commonly studied ncRNAs in colorectal cancer, with increasing
evidence of their implications in CRC specific gene expression
and miRNAs. LncRNAs can act as miRNAs sponges and
affect translation efficacy (Guttman and Rinn, 2012). Aberrant
lncRNAs may have a functional role in the pathogenesis of
colorectal cancer and clinical implications, such as HOTARI
and MALAT1 (Gupta et al., 2010; Okugawa et al., 2015).
Detecting interaction networks and causal relationships between

the dysregulation of miRNAs/lncRNAs and hyperactivity of
arginine metabolism will be offer insights into novel strategies for
secondary prevention and treatment of colorectal cancer.

SPECIFIC TARGETING OF ARGININE
METABOLISM IN COLORECTAL
CANCER TREATMENT

Based on previously mentioned, hyperactive arginine metabolism
play important roles in CRC development and development.
Therefore, it is hopeful to inhibit this pathway for therapeutic
purposes. For instance, drugs for ODC inhibition and SSAT
induction have been used for cancer therapy. Nevertheless, the
long-term efficacy needs further study.

The use of arginine deaminase (ADI) and arginine
deprivation to inhibit tumor growth has made important
progress, and many clinical trials are in progress,
including in liver cancer, sarcoma and lymphoma
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TABLE 2 | Circulating miRNAs changes associated with colorectal cancer.

Study Sample size Source Method of analysis miRNA identified Normalizer Observations

Patients controls

Ng et al. (2009) 120 90 Plasma Microarray profiling and
Validation by qPCR

miR-17-3p, miR-92,
miR-95, miR-135b,
miR-222, etc.

RNU6B First study to evaluate
circulating miRNA in CRC

Huang et al. (2010) 120 79 Plasma qPCR on specific
miRNAs

miR-29a, miR-92a miR-16 Non-invasive biomarkers for
early detection of CRC

Pu et al. (2010) 103 37 Plasma qPCR on specific
miRNAs

miR-221 N/A 86% sensitivity and 41%
specificity in CRC

Liu et al. (2013) 200 80 Serum qPCR on specific
miRNAs

miR-21 and miR-92a miR-16 Both miRNAs have potential
value for early detection

Kanaan et al. (2012) 30 30 Plasma Microarray profiling and
Validation by qPCR

miR-21 U6 miR-21 differentiated CRC with
90% specificity and sensitivity

Zhang et al. (2013) 78 86 Plasma qPCR on specific
miRNAs

miR-18 and miR-200c RNU6B 84.6% sensitivity and 75.6%
specificity in CRC

Luo et al. (2013) 130 244 Plasma Microarray profiling and
Validation by qPCR

miR-18a, miR-20a,
miR-21, miR-29a,
miR-92a, miR-106b,
miR-133a, miR-143,
miR-145

miR-16 Potential use in a multi-marker
blood based test for early
detection of CRC

Toiyama et al. (2013) 198 65 Serum qPCR on specific
miRNAs

miR-21 cel-miR-39 92% sensitivity and 81%
specificity in CRC

Wang et al. (2014) 113 89 Serum qPCR on specific
miRNAs

miR-21, miR-31,
miR-92a, miR-181b,
miR-203, let-7g

miR-16 Non-invasive biomarkers for
early detection of CRC

Zanutto et al. (2014) 29 29 Plasma qPCR on specific
miRNAs

miR-21 and miR-378 miR-16 miR-378 discriminates CRC
from healthy individuals

Du et al. (2014) 49 49 Plasma qPCR on specific
miRNAs

miR-21 and miR-92a cel-miR-39 miR-21 had a higher diagnostic
efficiency than miR-92a

Ogata-Kawata et al. (2014) 88 11 Serum
(Exosome)

Microarray profiling and
Validation by qPCR

miR-21, let-7a, miR-23a,
miR- 150, miR-223,
miR-1229, miR-1246

miR-451 First study to serum exosomal
miRNAs in CRC

Basati et al. (2014) 40 40 Serum qPCR on specific
miRNAs

miR-21 RNU6B 77% sensitivity and 78%
specificity in CRC

Lv et al. (2015) 146 60 Serum qPCR on specific
miRNAs

miR-155 N/A Upregulated in CRC

Chen et al. (2015) 100 79 Plasma qPCR on specific
miRNAs

miR-20a and miR-106a miR-16 miR-20a: 46% sensitivity and
73% specificity; miR-106a: 74
and 44%, respectively

Fang et al. (2015) 111 130 Plasma qPCR on specific
miRNAs

miR-24, miR-320a,
miR-423-5p

cel-miR-39 Sensitivity: miR-24: 78%;
miR-320a: 91%; miR-423: 89%

(Phillips et al., 2013). However, it has to be emphasized
that for various reasons this strategy cannot be very promising
for CRC. In vitro experiments It have been shown that the
intracellular arginine synthesis enzyme ASS is defective in
many cancer, including renal cell carcinoma, HCC and so
on, so that their growth is dependent on external arginine
supplementation (Cheng et al., 2007; Kim et al., 2009; Delage
et al., 2010) or intracellular synthesis with ASS and ASL. Thus,
arginine deprivation (potentially also combined with ASL down-
regulation) is only a viable option for cancers with defects
in these enzymes.

Nevertheless, there is nevertheless a positive outlook in
arginine-targeting in CRC. L-arginine is an important material
for protein synthesis for human, and play important roles for
all kind of cells (Rodriguez et al., 2007; Norian et al., 2009;
Wu et al., 2009; Morris, 2010). Tumor-infiltrating immune

cells cannot effectively uptake L-arginine in the tumor tissues
(Rodriguez et al., 2007; Norian et al., 2009), thus, significantly
increased L-arginine and L-Citrulline concentrations were found
in CRC tissues (Mao et al., 2010). This indicated that L-arginine
bioavailability is higher in the CRC tissue. In addition, ASS
and ASL38 are high expression in colorectal cancer cells.
Thus, arginine deprivation was rather expected to decrease the
effectiveness of tumor-infiltrating cells, therefore, its function is
limited on cancer cells. However, clinical data confirmed that
L-arginine successfully improved cancer patient immunity, thus
demonstrated a benefit of L-arginine as a supplement to the
treatment of colorectal cancer (Ma et al., 2007). As such, we
supposed that inhibiting arginine uptake by specifically targeting
arginine transporters may be better for CRC than a systemic
arginine deprivation. Studies on specific interventions in related
regulatory mechanisms of L-arginine transport pathways and the
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innate compensation of each arginine transporter in CRC cells
are ongoing in our team.

CONCLUSION

Colorectal cancer is one of the common malignant tumors, but
the curative effect of metastatic colorectal cancer is poor. With
the deepening of research, more and more evidence shows that
arginine metabolism is closely related to the occurrence and
development of colorectal cancer. As polyamines are the most
important metabolite of arginine, metabonomics analysis may
be used in the diagnosis and screening of colorectal cancer in
the future. In addition, arginine deprivation may be a viable
option for cancer treatment, although further clinical trials are
needed to confirm it. Because blocking arginine transporter
can inhibit the uptake of arginine and inhibit the growth of
tumor, blocking arginine transporter may be another potential
anticancer strategy. Finally, more studies are needed to fully
elucidate the regulatory role of arginine metabolism cycle in
colorectal cancer.

miRNAs have been established as critical plays in colorectal
cancer pathogenesis, early detection and prognosis. The
advantage of using microRNA-based therapeutic is based on
its ability to concurrently target multiple effectors of pathways
involved in cancer cell differentiation, proliferation and survival,
and arginine metabolism pathways. Therefore, applying one

or two miRNAs cocktail targeting more than two enzymes or
arginine transporters, such as targeting CAT-1 and ASS, should
be expected more efficient in the treatment of colorectal cancer.
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