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Multiplexed fluorescence measurement at the single-
molecule level provides unique insight into the

molecular composition and interaction within a complex
system.1,2 However, fluorescence-based detection is typically
restricted to 3−4 colors at a time, due to a low signal-to-noise
ratio, high spectral overlap, and the need to maintain chemical
compatibility of dyes. Although chemically diverse fluoro-
phores offer a potentially broad spectroscopic palette, further
multiplexing is ultimately constrained by the chemical
compatibility and varying labeling performance of different
fluorophores.
Förster resonance energy transfer (FRET) represents a well-

established strategy to generate a plethora of distinct
spectroscopic signals from a limited number of chemical
compounds. FRET is influenced by not only the photophysical
properties of fluorophores per se but also the geometry of the
donor and acceptor. DNA nanotechnology offers a powerful
platform to precisely position and orient covalently linked
fluorophores.3 The photophysical property of a fluorophore on
DNA is influenced by the local physicochemical environment
including the dye attachment chemistry and neighboring base
sequence.4 These photophysical changes, combined with the
capability of DNA nanotechnology to control donor−acceptor
geometry with subnanometer precision,5 allow construction of
DNA-FRET nanostructures with tunable spectroscopic
features such as fluorescence emission and lifetime.6

In a recent report in Nature Nanotechnology, Squires and
colleagues reported dozens of DNA nanostructure-based
FRET labels called FRETfluors, which enabled multiplexed
fluorescence detection at the single-molecule level.7 FRET-
fluors are facilely constructed from merely three chemical
components (DNA, Cy3, and Cy5). Figure 1a illustrates the
FRETfluor design of ABN constructs, where Cy3 and Cy5 are
site-specifically incorporated into two complementary DNA
strands (“A” and “B”), respectively, separated by N base pairs
(6 ≤ N ≤ 20). More FRETfluor variants (ABskN, AcBN, and
ABinN) with unique spectroscopic signatures were created by
varying the DNA sequence and introducing an additional Cy3
fluorophore (Figure 1b). Within each FRETfluor construct, an
additional “bridge” strand facilitates sequence-specific labeling
of nucleic acid targets or the introduction of functional groups
for general protein labeling. With meticulously designed local
sequence and attachment chemistry, the FRET efficiency and
donor lifetime of FRETfluor could be precisely modulated
(Figure 1c,d).

The authors employed a custom-built Anti-Brownian
ELectrokinetic (ABEL) trap, which enables precise character-
ization of each FRETfluor across multiple parameters such as
emission brightness and fluorescence lifetime. Moreover,
ABEL trap measurement allows monitoring the size of a
FRETfluor (or FRETfluor-labeled molecule) and analysis of a
FRETfluor-labeled sample at a concentration down to tens of
femtomolar. The single-molecule emission properties (e.g.,
green and red channel brightness and donor lifetime) of most
FRETfluors produce characteristic tight clusters in the
detection parameter space. Excluding those prone to
misclassification, the authors identified a subset of 27
FRETfluors that were suitable to use in a single mixture
(Figure 2a). Changes in environmental conditions such as salt
concentration and pH within a physiological range have a
minor effect on the FRETfluor signal, underscoring the
stability and reliability of FRETfluor performance and
providing a basis for its practical application.
Importantly, FRETfluors can be programmed to specifically

label biomolecules. For example, FRETfluor targets nucleic
acids via sequence complementarity of the “bridge” strand.
FRETfluor is also capable of covalently labeling proteins via a
conventional bifunctional linker (Figure 2b). Consequently,
FRETfluors allow multiplexed detection of complex mixtures
of low-abundance biomolecules including ssDNA, dsDNA,
mRNA, and protein. By separately labeling three mRNAs, six
dsDNAs, and two proteins with a subset of the 27-FRETfluor
combination, together with two off-target free FRETfluors, the
authors demonstrated that all 13 FRETfluors showed their
distinct spectroscopic signatures in the detection parameter
space (Figure 2c). Another advantage of ABEL trap-based
detection is that it can distinguish a FRETfluor bound to the
target from an unbound FRETfluor, thereby enabling wash-
free sensing.
Overall, the FRETfluor design exploits the nanoscale

addressability of DNA nanotechnology to precisely finetune
the dye photophysics, markedly expanding the multiplexing
capability of fluorescence detection. Moreover, this study
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provides a proof of concept for using dozens of FRETfluors for
multiplexed sensing of low-abundance biomolecules in a highly
heterogeneous mixture. This approach is compatible with
other multiplexing strategies such as additional excitation
lasers,8 novel fluorophore types, orientational control to
influence dye polarization, and DNA-PAINT.9,10 Alternative
molecular scaffolds could also be used to create FRETfluors
with appealing properties. Particularly, xeno-nucleic acids
(XNAs) with synthetic backbones are more resistant to
nuclease digestion and thus suitable for use in complex
biological mixtures.11−13 Additionally, an XNA scaffold offers a
platform to delicately modulate donor−acceptor geometry and
the local environment of a fluorophore, in a new chemical
space that is intrinsically inaccessible to DNA. A limitation of
the current approach is that a FRETfluor is functionalized to
react with an accessible cysteine residue on the protein surface,
which necessitates separate conjugation and precludes specific
labeling in a complex mixture. The FRETfluor specificity for
proteins of interest might be programmed using targeting
moieties such as antibodies and aptamers.
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