
Copyright: © 2022 The Author(s). This article has been published under the terms of Creative Commons Attribution-Noncommercial 4.0 International License  
(CC BY-NC 4.0), which permits noncommercial unrestricted use, distribution, and reproduction in any medium, provided that the following statement is provided.  

“This article has been published in Journal of Clinical and Translational Hepatology at https://doi.org/10.14218/JCTH.2021.00023 and can also be viewed 
 on the Journal’s website at http://www.jcthnet.com ”.

Original Article

Journal of Clinical and Translational Hepatology 2022  vol. 10(1)  |  63–71 
DOI: 10.14218/JCTH.2021.00023

Associating Preoperative MRI Features and Gene  
Expression Signatures of Early-stage Hepatocellular 
Carcinoma Patients using Machine Learning
Xiaoming Li1#, Lin Cheng1#, Chuanming Li1, Xianling Hu1, Xiaofei Hu1, Liang Tan2,3, Qing Li4, Chen Liu1*   
and Jian Wang1*

1Department of Radiology, Southwest Hospital, Third Military Medical University (Army Military Medical University), Chong-
qing, China; 2Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Military Medical 
University), Chongqing, China; 3Department of Electrical and Computer Engineering, Faculty of Science and Technology, 
University of Macau, Macau, China; 4MR Collaborations, Siemens Healthcare Ltd., Shanghai, China

Received: 14 January 2021  |  Revised: 7 May 2021  |  Accepted: 18 May 2021  |  Published: 21 June 2021

Abstract

Background and Aims: The relationship between quanti-
tative magnetic resonance imaging (MRI) imaging features 
and gene-expression signatures associated with the recur-
rence of hepatocellular carcinoma (HCC) is not well studied. 
Methods: In this study, we generated multivariable regres-
sion models to explore the correlation between the preoper-
ative MRI features and Golgi membrane protein 1 (GOLM1), 
SET domain containing 7 (SETD7), and Rho family GTPase 1 
(RND1) gene expression levels in a cohort study including 92 
early-stage HCC patients. A total of 307 imaging features of 
tumor texture and shape were computed from T2-weighted 
MRI. The key MRI features were identified by performing 
a multi-step feature selection procedure including the cor-
relation analysis and the application of RELIEFF algorithm. 
Afterward, regression models were generated using kernel-
based support vector machines with 5-fold cross-validation. 
Results: The features computed from higher specificity MRI 
better described GOLM1 and RND1 gene-expression levels, 
while imaging features computed from lower specificity MRI 
data were more descriptive for the SETD7 gene. The GOLM1 
regression model generated with three features demon-
strated a moderate positive correlation (p<0.001), and the 
RND1 model developed with five variables was positively as-
sociated (p<0.001) with gene expression levels. Moreover, 
RND1 regression model integrating four features was mod-
erately correlated with expressed RND1 levels (p<0.001). 

Conclusions: The results demonstrated that MRI radiomics 
features could help quantify GOLM1, SETD7, and RND1 ex-
pression levels noninvasively and predict the recurrence risk 
for early-stage HCC patients.
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Introduction

HCC is among the leading causes of cancer-related death, 
with an estimated 42,030 new cases and 31,780 mortali-
ties each year in the USA.1 Although the overall survival 
(OS) has improved up to 18% in the last four decades, the 
mortality rate has doubled, and the incidence rate has tri-
pled during the same period.2 Hepatic resection and locore-
gional ablation are curative treatments that improve the OS 
of HCC patients. However, HCC recurrence, a key contribu-
tor to reducing the long-term survival rate, is observed up 
to 60–70% in the patients after surgical resection.3,4

Genomic profiling of tumors has revealed a complex ge-
netic landscape and characteristics of HCC; moreover, it 
has identified key genes that play roles in tumorigenesis 
and tumor growth.5–7 The identified genes can be used to 
discriminate heterogeneous responses to treatments and 
to predict HCC prognosis.8–10 Several genes are already 
identified as associated with the prognosis of HCC patients, 
as reported from previous studies in the literature.11–13 
Komatsu et al.11 linked poor prognosis of HCC patients 
with reduced Rho family GTPase 1 (RND1) gene expres-
sion, which was associated with increased HCC cell prolif-
eration, invasion, and chemoresistance to cisplatin. Golgi 
membrane protein 1 (GOLM1) was associated with tumor 
growth and metastasis, while being implicated as a cause 
of early recurrence and poor survival.12 Moreover, a previ-
ous study revealed the affiliation of decreased level of the 
SET domain containing 7 (SETD7) protein, which regulates 
cell cycle, with HCC recurrence and metastasis, and there-
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fore poor prognosis.13

Radiomics has great potential to describe the struc-
tural characteristics of the tissue by quantitative analysis 
of non-invasive medical image data using different math-
ematical perspectives. In the previous studies, radiomics 
features were utilized to predict disease stages,14 clinical 
outcomes,15 treatment responses,16 tumor heterogenei-
ties,17 and early detection of cancers.18 Recently, several 
studies utilized radiomics features to investigate the rela-
tionship between gene expression signatures and medical 
imaging data for several cancers, including glioblastoma 
multiforme,19 breast cancer,20 non-small cell lung cancer,21 
and HCC.22–24 Although significant correlations have been 
observed between imaging data and gene expression sig-
natures, the correlation between quantitative magnetic 
resonance imaging (MRI) features and genes associated 
with disease recurrence in early-stage HCC patients still 
remains the primary focus in cancer research.

In this study, we developed multivariable regression 
models by interpreting underlying structural characteristics 
from T2-weighted MRI of tumor tissues and investigated 
whether radiomics analysis of preoperative MRI data can 
assist noninvasive quantification of gene expression signa-
tures associated with disease recurrence in early-stage HCC 
patients.

Methods

Patients

Written consent was obtained from all study participants 

using protocols approved by the Institutional Research Sub-
panel on Human Studies at Southwest Hospital. The pa-
tients were selected according to pre-determined inclusion 
criteria: I) having Barcelona Clinic liver cancer stage 0 or A; 
II) having pathologically-verified HCC; III) having under-
gone preoperative MRI; IV) having undergone tumor surgi-
cal resection; and V) having gene expression signatures for 
resected tumor tissue. A total of 92 patients that visited 
our institution between October 2014 and September 2016 
were included in this retrospective study.

Genomic profiling

The microarrays were generated from formalin-fixed, par-
affin-embedded tissue specimens collected from surgically-
resected tumors, and immunochemistry analysis was per-
formed according to the commercial kits’ manufacturers’ 
protocols (GOLM1: A12584, ABclonal Technology, Woburn, 
MA, USA; SETD7: ab14820, Abcam, Cambridge, UK; RND1: 
ab206669, Abcam). The gene expression scores were eval-
uated by an expert pathologist and demographic informa-
tion was collected from unidentified patient data. Gene ex-
pression signatures and other information of the patients 
are presented in Tables 1–3.

MRI image acquisitions

Patients were imaged in our institution using a 3T MRI scan-
ner (MAGNETOM Trio; Siemens Healthcare, Erlangen, Ger-
many) with a 18-ch body coil. Preoperative T2-weighted 

Table 1.  Demographic information of the patients regarding GOLM1 gene expression levels

GOLM1 gene expression levels

1 2 3 4 5 6

Age in years 68 49±13.5 50.46±11.52 53±10.4 40±12 75

Gender

Male 2 14 18 34 2 1

Female 0 1 6 6 1 0

Liver cirrhosis

Positive 0 5 13 23 2 1

Negative 2 10 11 17 1 0

HBsAg

Positive 1 12 20 34 2 1

Negative 1 3 4 6 0 0

Blood test

AFP 2.65±1.32 197.46±318.81 160.63±262.56 121.8±228.2 266.7±461.9 800±0

ALP 90±1.24 97.2±26.60 92.08±41.43 88.8±30.9 89.7±31.8 101±0

GGT 38.5±19.09 40.87±25.04 50.83±45.08 67.7±56.2 42.3±32 32±0

AST 36.6±4.81 144.09±159.05 123.65±133.34 144.9±189.6 141.3±68.6 20±0

ALT 40.6±2.26 150.23±161.73 115.80±141.68 157.2±226.7 148.5±127.9 13±0

AFU 25.85±4.74 31.88±10.10 30.88±11.37 31±11.1 25.1±108 34.4±0

5′-NT 5.35±1.91 7.14±4.20 6.69±4.05 7.7±4.1 6.1±2.1 7.7±0

ADA 9.1±1.70 13.87±6.43 13.69±6.52 12.9±6.2 17.7±6 15.4±0

5′-NT, 5′-Nucleotidase; ADA, Adenosine deaminase; AFP, alpha fetoprotein; ALP, alkaline phosphatase; ALT, alanine aminotransferase; AFU, a-L-fucosidase; AST, aspar-
tate aminotransferase; GGT, gamma-glutamyltransferase; HBsAg, hepatitis B surface antigen.
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MRI data were acquired with a two-dimensional half Fourier 
acquisition single shot turbo spin echo sequence (“HASTE”) 
under breath-holding with imaging parameters: TR/TE: 
1,000/88 ms, slice thickness: 6 mm; section gap: 7.8 mm; 
matrix size: 244×320. Two radiologists (Observer 1: C Liu, 
with 10 years of experience in abdominal imaging; Observer 
2: X Li, with 6 years of experience in abdominal imaging) 
were blinded to other clinical information, and they indepen-
dently selected the slice with the biggest tumor diameter on 
T2-weighted images. Interobserver variation was measured 
with  statistics. The tumor diameter was measured 3 times 
and recorded as mean value by Observer 1.

Feature extraction and selection

Afterward, tumor tissues were outlined on MRI slice to gen-
erate a region of interest (ROI) using ITK-SNAP (v.3.6.0), 
by the two observers. Observer 1 repeated tumor seg-
mentation twice in a week and Observer 2 independently 
performed the segmentation to evaluate test-retest and 
interobserver reproducibility. The reproducibility was sub-
ject to the intraclass correlation coefficient. An example of 
T2-weighted MRI is presented in Figure 1 (panel A) with 
an enlarged HCC tumor shown in panel B. After tumors 
were outlined, the MRI image was resampled to 1×1 mm 
using a B-spline interpolation approach to match in-plane 
image resolution for consistency during tumor characteri-
zation with quantitative texture analysis.25 Afterward, MRI 
signal intensity was standardized by performing a z-score 
normalization method. The standardized image intensities 
were discretized using a fixed-bin size approach as pre-

ferred by Image Biomarker Standardization Initiative.26 
Four different bin sizes (8, 16, 32, and 64), as the level 
of image specificity, were evaluated to find the discretiza-
tion parameters that can perform the best interpretation of 
the association between tumor heterogeneity and gene ex-
pression levels. A representative MRI slice quantized with 
different levels (image specificity) is presented in Figure 
1C–F.

A total of 307 radiomic features regarding intensity, tex-
ture, pattern, and shape characteristics of the images was 
computed from ROIs of the selected slice in T2-weighted 
MRI using 10 different feature extraction approaches and 
two transformations (wavelet and gradients) using MATLAB 
(v.9.1; MathWorks, Natick, MA, USA). The feature extrac-
tion methods were: first-order statistics (FOS), with six fea-
tures; gray-level co-occurrence matrix (GLCM), with nine 
features; gray-level run-length matrix (GLRLM), with thir-
teen features; gray-level size-zone matrix (GLSZM), with 
thirteen features; neighborhood gray-tone difference matrix 
(NGTDM), with five features; local binary patterns (LBP), 
with ten features; fractal analysis, with one feature; (8) 
shape metrics, with nine features; and moments, with forty-
three features.16,27–29 In addition, six FOS features and one 
hundred ninety-two features (FOS, GLCM, GLRLM, GLSZM, 
variance, and power) were computed from oriented gradi-
ents histogram and four sub-band wavelet images, respec-
tively. GLCM and GLRLM features were computed through 
four main directions (0°, 45°, 90°, and 135°) and combined 
by averaging. Afterward, all the features were normalized 
to the range of 0 and 1 by utilizing min-max normalization. 
The complete list of features is presented in Supplementary 
Table 1.

The trivial features were identified by performing a multi-

Table 2.  Demographic information of the patients regarding SETD7 gene expression levels

SETD7 gene expression levels

0 2 4

Age in years 51.8±12 58.4±10.9 48±0

Gender

Male 66 6 0

Female 11 1 2

Liver cirrhosis

Positive 42 2 1

Negative 35 5 1

HBsAg

Positive 64 5 1

Negative 12 2 1

Blood test

AFP 171.1±277.1 6.7±5.8 402.3±562.5

ALP 90±32.2 102.7±40 100±19.8

GGT 56.8±49.2 50.1±37.3 29.5±14.9

AST 121.4±142.6 232±313.6 40.2±11.1

ALT 132.5±167.1 228.8±350.3 22.9±10

AFU 30.8±11 29±2.2 27.6±18

5′-NT 7.2±4.1 7±3 5±0.8

ADA 13.4±6.2 13.3±7.1 14.1±7.7

5′-NT, 5′-Nucleotidase; ADA, Adenosine deaminase; AFP, alpha fetoprotein; ALP, alkaline phosphatase; ALT, alanine aminotransferase; AFU, a-L-fucosidase; AST, aspar-
tate aminotransferase; GGT, gamma-glutamyltransferase; HBsAg, hepatitis B surface antigen.
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step feature selection process. Initially, features were se-
lected by their correlation with tumor size (r>0.75). After-
ward, features were clustered based on their cross-similarity 

(r>0.75) measured with Pearson correlation coefficient to 
minimize artificially increased numbers of candidate fea-
tures. In each cluster, correlations of each feature pair were 

Fig. 1.  A representative MRI slice for an early-stage HCC patient. (A) Original MRI slice (arrow). (B) Enlarged tumor. (C–D) Effect of image quantization performed be-
fore feature extraction. The same MRI slice is quantized with 8 (C), 16 (D), 32 (E), and 64 (F) levels (arrow). HCC, hepatocellular carcinoma; MRI, magnetic resonance imaging.

Table 3.  Demographic information of the patients regarding RND1 gene expression levels

RND1 gene expression levels

0 1 2 3 4 5

Age in years 50.9±10.6 53.9±11.7 54.7±11.4 47±1.4 37.5±13.4 63

Gender

Male 19 18 19 2 3 1

Female 8 1 3 0 1 0

Liver cirrhosis

Positive 11 11 15 1 1 1

Negative 16 8 7 1 3 0

HBsAg

Positive 22 15 16 2 3 1

Negative 5 4 6 0 0 0

Blood test

AFP 237.9±328.5 94.4±195.1 127.3±238.1 51.9±68 3.74±3.5 9.9

ALP 90.2±32.1 94.6±34 88.3±30.1 62.5±19.1 75.9±44.9 110

GGT 41.5±25.8 85.7±80.9 51.7±35.6 50.5±48.8 54±22.6 64

AST 87.9±129 164.8±218.1 104.9±106.7 407.7±185.8 106.7±73 37

ALT 90.2±141.5 176.8±231.9 105.4±109.5 323.4±78.6 101.9±86.1 41

AFU 28.3±7.9 35±13.8 28.3±7.5 28.6±3.7 37.8±17.3 33

5′-NT 5.7±2.3 8.7±5.3 6.7±4.6 4.7±3 7.4±1.4 8.1

ADA 12.9±5.9 15.1±5.8 13.3±4.9 8.5±8.9 13.9±8.3 13.7

5′-NT, 5′-Nucleotidase; ADA, Adenosine deaminase; AFP, alpha fetoprotein; ALP, alkaline phosphatase; ALT, alanine aminotransferase; AFU, a-L-fucosidase; AST, aspar-
tate aminotransferase; GGT, gamma-glutamyltransferase; HBsAg, hepatitis B surface antigen.



Journal of Clinical and Translational Hepatology 2022 vol. 10  |  63–71 67

Li X. et al: MRI and gene expression using machine learning

computed and the one with the largest average similarity 
was selected as the representative of the cluster. Later, 
the interactions of representative features were assessed 
using the RELIEFF algorithm with 10 nearest neighbors to 
determine feature importance/rank.30 The top-ranked 20 
features were selected as the final candidate-feature set to 
associate with gene expression signatures. The feature se-
lection procedure was repeated separately for each level of 
intensity (8, 16, 32, and 64) and key variables were deter-
mined separately for each gene.

Statistical analysis

The identified features with the RELIEFF algorithm were 
further examined in the exhaustive search experiment, 
while the features were applied to generate regression 
models using a support vector machines approach with 
a radial basis function kernel and 5-fold cross-validation. 
Spearman’s rank correlation coefficient was used to evalu-
ate the performance of the generated regression models. 
Wilcoxon rank-sum test was utilized to analyze continuous 
variables. Meanwhile the chi-squared test was performed 
to analyze dichotomous variables. Moreover, correlation 
analysis was performed to determine the association be-
tween patient clinical characteristics and gene expres-
sion signatures. The continuous variables were presented 
as mean±standard deviation (µ±σ) and p<0.05 was ap-

proved as statistically significant.

Results

Patients

A total of 92 patients were incorporated in our retrospec-
tive study, which includes 14 female patients (51.36±13.45 
years) and 78 male patients (52.17±11.67 years) with early-
stage HCC. The average size of the lesions was 3.9±1.5cm 
(range: 1.1–6.3cm). The correlation analysis demonstrated 
that patient characteristics including blood markers were 
not strongly correlated with any of the gene expression sig-
natures (|r|<0.254). For the GOLM1 gene, cirrhosis had the 
highest correlation value (r=0.234, p=0.027) and gender 
had the strongest association with the SETD7 gene signa-
ture (r=−0.254, p=0.018). Moreover, AFP was negative-
ly correlated with the expression level of the RND1 gene 
(r=−0.232, p=0.052). The agreement between the two ob-
servers was excellent (=0.78) for the chosen slice with the 
biggest diameter of tumor tissue.

Feature selection

The key features were identified in a multistep feature selec-

Fig. 2.  Correlation of gene expression signatures of GOLM1, SETD7, and RND1 and textural features extracted from MRI data with different quantiza-
tion levels. The statistically significant features are highlighted in green and features with a p-value between 0.05 and 0.10 are shown in gray. Multivariate analysis 
is required to improve the association between gene expression signatures and MRI image features. GOLM1, Golgi membrane protein 1; MRI, magnetic resonance 
imaging; RND1, Rho family GTPase 1; SETD7, SET domain containing 7.
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tion procedure. First, features with high stability (intraclass 
correlation coefficient >0.75) from both observers were 
kept for further analysis. An average of 33 variables (35 to 
31 features), strongly associated with tumor size (r≥0.75), 
was removed from the feature set. With decreasing num-
ber of features correlated with tumor size, the image speci-
ficity was improved, except for a bin size of 64 in which 
32 features were included. Later, remaining features were 
grouped into an average of 41 clusters (44 to 35 groups) 
based on their pairwise similarity measured by Pearson cor-
relation coefficients. However, we did not observe the same 
behavior with features computed from MRI data quantized 
with 64 levels (40 groups). The correlations between repre-
sentative features of each cluster and gene expression sig-
natures were visualized in Figure 2, which shows the need 
for multivariate models. The correlation between features 
and gene expression were seen in Supplementary Table 5.

The inter-relationship of representative features is dem-
onstrated in Figure 3A. The representative features were 
ranked by the RELIEFF algorithm via analysis of gene ex-
pression signatures. The top-ranked 20 features were se-
lected for multivariable regression models. The candidate 
variables computed from MRI with the lowest image speci-
ficity for GOLM1, SETD7, and RND1 genes are presented in 
Figure 3 (panels B–D). Other candidate features are pre-
sented in Supplementary Tables 2–4.

Model evaluation

The image specificity to predict gene expression levels were 
evaluated by measuring the association between the se-
lected features and gene expression signatures using mul-
tivariable regression models. In Figure 4, the relationship 
between the overall behavior of the models and the num-
ber of features was presented separately for three genes. 
For the training data, the correlation between multivariate 
regression models’ response and gene expression scores 
was improved with an increasing number of features. How-
ever, the correlation did not improve similar level for the 
validation data. r values for training and validation differed 
with increasing model complexity. Thus, the final regression 
models were generated with features determined by the 
overall performance of the circular training and validation 
experiments. Besides, there was no statistically significant 
difference between performances of the regression models 
with different image specificities (p>0.3). The final multi-
variate regression models were generated with key features 
and optimal level of image quantization levels (32-level 
for GOLM1 and RND1, and 8-level for SETD7). Therefore, 
results for the identified image quantization levels are re-
ported in this study.

Spearman correlation coefficients of GOLM1, SETD7, and 
RND 1 genes improved from 0.38 to 0.79, 0.3 to 0.53, and 
0.33 to 0.68 in the training cohort and from 0.37 to 0.56, 
0.3 to 0.53, and 0.32 to 0.64 in the validation cohort with 
an increasing number of variables in the regression model. 
The results in the r-value for training and validation of the 
final regression model were seen in Table 4. The r -value of 
the validation were all greater than 0.5, and the RND model 
was the best (r =0.67).

Discussion

We investigated the potential value of radiomics analysis to 
determine the correlation between imaging features from 
structural MRI data and expression signatures of GOLM1, 
SETD7, and RND1 genes associated with HCC recurrence by 
building multivariable regression models using a machine 

learning method. The quantitative texture features from 
T2-weighted MRI showed a positive correlation with gene 
expression levels in early-stage HCC patients. These results 
demonstrated that preoperative MRI data can reveal gene 
expression signatures noninvasively, which could be utilized 
to predict recurrence risk for HCC patients instead of using 
the invasive and expensive genomic tests.

Detection of gene expression profiles and characteristics 
of the malignant tissues has great potential to reveal com-
plex mechanisms of cancer biology and improve the pre-
diction of disease recurrence or other types of outcomes 
for each patient. The previous genetic studies have demon-
strated the potential values of GOLM1, SETD7, and RND1 
genes in the evaluation of tumor growth, metastasis, and 
prognosis for HCC patients.11–13 Preoperative biopsy is a 
gold-standard clinical method to measure gene expression 
profiles. However, the costly and invasive biopsy cannot 
represent the whole tumor structure.22,31,32 Therefore, the 
association between noninvasive imaging characteristics 
and gene expression profiles becomes an active research 
topic for cancer studies during recent years.33,34

Several studies investigated the relationship between 
quantitative features of noninvasive imaging data and gene 
expression levels associated with the prognosis of HCC dis-
ease. Taouli et al.35 examined the correlation between 13 
previously reported HCC gene signatures and characteristic 
features (11 qualitative and 4 quantitative) of noninvasive 
imaging (computed tomography or MRI) data. The results 
from 38 HCC patients showed a correlation between pheno-
typic imaging parameters and gene signatures of aggres-
sive HCC disease. Hectors et al.36 investigated the hetero-
geneity of HCC tumors utilizing multiparametric MRI data 
and also evaluated the correlations between quantitative 
MRI parameters and gene expression signatures. Despite 
the observed significant correlation between expression lev-
els of GLUL, FGFR4, EPCAM, and KRT19 and advanced MRI 
method parameters. Reproducibility is one of the main chal-
lenges that limits the generalization of the results. Xia et 
al.23 identified radiomics features extracted from contrast-
enhanced CT data for the prognosis of HCC patients. Eight 
radiomics features selected from imaging data were signifi-
cantly correlated with genes associated with HCC prognosis 
in 38 patients. Besides, they also found two features with 
significant correlation with OS. However, the authors stated 
the low number of patient cohorts limited the study in re-
producibility.

In this study, we explored the value of quantitative MRI 
features for noninvasive extraction of gene information via 
correlating the MR features with gene expression levels of 
GOLM1, SET7, and RND1 associated with HCC recurrence 
using multivariable regression models. The quantitative T2-
weighted MRI radiomics features were extracted and evalu-
ated by performing a multi-step procedure. The developed 
regression models with the identified important variables 
showed a significant correlation for SETD7 and RND1 gene 
expression levels. Meanwhile, the GOLM1 model had a mod-
erate correlation with a p-value closer to the significance 
level. The obtained results demonstrated the potential of 
quantitative analysis of conventional MRI data as a nonin-
vasive tool for evaluation of the recurrence of the disease 
in HCC patients.

There are several limitations in our study. First, single-
modality MRI data were analyzed to characterize tumor 
structure to predict gene expression levels. The correlation 
of image features with gene expression levels might be im-
proved utilizing multiparametric MRI data. Second, we only 
analyzed three genes for predicting the risk of HCC recur-
rence in early-stage HCC patients. Even though these three 
genes have been applied in clinical practice as a prediction 
for the risk of HCC recurrence. The radiomics analysis for 
early prediction of the recurrence risk could benefit from 
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Fig. 3.  Evaluation of the features to determine the candidate feature list for multivariate regression models. (A) Pairwise relationship of the representative 
features computed from 8-level MRI data. (B–D) The top-ranked 20 features of 8-level MRI data that was determined for GOLM1 (B), SETD7 (C), and RND1 (D) genes. 
GOLM1, Golgi membrane protein 1; MRI, magnetic resonance imaging; RND1, Rho family GTPase 1; SETD7, SET domain containing 7.
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an improved number of gene types. Third, we did not ana-
lyze the co-expression of the genes due to the small set 
of patient cohorts. Further studies including a larger num-
ber of the patient cohort with specialized patient selection 
procedure will improve interpretation of the imaging data 
for associating tumor characteristics and gene expression 
signatures.

In conclusion, the generated multivariable regression 
models obtained a good correlation with gene expression 
signatures associated with the recurrence of HCC in early-
stage HCC patients. Our results indicate that quantitative 
analysis of MRI images had the potential to serve as a non-
invasive approach for predicting gene expression levels by 
interpreting the tumor characteristics for early-stage HCC 
patients.
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