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Abstract

Background: Native T1-mapping provides quantitative myocardial tissue characterization for cardiovascular diseases
(CVD), without the need for gadolinium. However, its translation into clinical practice is hindered by differences
between techniques and the lack of established reference values. We provide typical myocardial T1-ranges for 18
commonly encountered CVDs using a single T1-mapping technique – Shortened Look-Locker Inversion Recovery
(ShMOLLI), also used in the large UK Biobank and Hypertrophic Cardiomyopathy Registry study.

Methods: We analyzed 1291 subjects who underwent CMR (1.5-Tesla, MAGNETOM-Avanto, Siemens Healthcare,
Erlangen, Germany) between 2009 and 2016, who had a single CVD diagnosis, with mid-ventricular T1-map assessment. A
region of interest (ROI) was placed on native T1-maps in the “most-affected myocardium”, characterized by the presence
of late gadolinium enhancement (LGE), or regional wall motion abnormalities (RWMA) on cines. Another ROI was placed
in the “reference myocardium” as far as possible from LGE/RWMA, and in the septum if no focal abnormality was present.
To further define normality, we included native T1 of healthy subjects from an existing dataset after sub-endocardial pixel-
erosions.

Results: Native T1 of patients with normal CMR (938 ± 21 ms) was similar compared to healthy subjects (941 ± 23 ms).
Across all patient groups (57 ± 19 yrs., 65% males), focally affected myocardium had significantly different T1 value
compared to reference myocardium (all p < 0.001). In the affected myocardium, cardiac amyloidosis (1119 ± 61 ms) had
the highest native T1 compared to normal and all other CVDs, while iron-overload (795 ± 58 ms) and Anderson-Fabry
disease (863 ± 23 ms) had the lowest native reference T1 (all p < 0.001). Future studies designed to detect the large T1
differences between affected and reference myocardium are estimated to require small sample-sizes (n < 50). However,
studies designed to detect the small T1 differences between reference myocardium in CVDs and healthy controls can
require several thousand of subjects.

Conclusions: We provide typical T1-ranges for common clinical cardiac conditions in the largest cohort to-date, using
ShMOLLI T1-mapping at 1.5 T. Sample-size calculations from this study may be useful for the design of future studies and
trials that use T1-mapping as an endpoint.
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Background
Cardiovascular magnetic resonance (CMR) offers a
range of methods for non-invasive myocardial tissue
characterization in cardiovascular diseases [1–4]. Late
gadolinium enhancement (LGE) enables accurate de-
lineation of the size and location of myocardial infarc-
tions [3], and the pattern of non-ischemic LGE has
diagnostic value for cardiomyopathies [5–7]. However,
signal intensities on LGE imaging are displayed on
relative grayscales, rendering clinical interpretation
subjective, depending on threshold-windowing and
the quality of nulling of the “reference” myocardium,
which may not be present in diseases with global in-
volvement or diffuse interstitial fibrosis [8–11]. From
a safety viewpoint, LGE requires administration of
gadolinium-based contrast agents (GBCA), which are
contra-indicated in patients with end-stage renal fail-
ure due to risks of nephrogenic sclerosing fibrosis
[12]; more recently, reports also suggest that GBCA
can deposit in the brain, especially with repeated MRI
scans and accumulative GBCA exposure [13–15].
Native T1-mapping is a quantitative and GBCA-free

myocardial tissue characterization method that can detect
changes in a variety of cardiac conditions, sometimes be-
yond what LGE imaging can reveal [16, 17]. T1 (proton
spin-lattice relaxation time) is a CMR property of tissue,
prolonged by increased free water content [18, 19]. Each
tissue type, including the myocardium, has its own normal
range of T1 values, deviation from which may be indica-
tive of disease [18]. Native T1-mapping has widely proven
sensitivity to pathological changes in diseases, including
detection of myocardial edema, infarction, ischemia, car-
diomyopathies and diffuse fibrosis [2, 6–8, 11, 20–29].
Currently, the application of T1-mapping for the clin-

ical diagnosis of cardiovascular diseases is hindered by a
lack of standardization for the methods used and the dif-
ferent reference T1 values. A wide range of different T1-
mapping techniques, each with different normal T1
ranges, are being used to study relatively small (n < 100),
typically highly pre-selected patient cohorts, often with-
out accounting for regional variations in myocardial
pathology [20, 22, 24, 30]. Hence, despite its obvious ad-
vantages, native T1-mapping has yet to make full trans-
lation from proof-of-principle studies to wide adoption
in clinical practice, which requires a stable method with
significant published clinical evidence. Establishing refer-
ence T1 values for normal and disease conditions using
a single stable T1-mapping method is pivotal towards
widespread clinical applications, and to provide reliable
sample size calculations to guide the design of future
studies and clinical trials.
T1-mapping using the Shortened Modified Look-

Locker Inversion Recovery (ShMOLLI) technique has
been validated in single- and multi-center clinical studies

for a variety of cardiovascular diseases [17–28, 30–41]. It
is also used in the UK Biobank (over 10,000 datasets ac-
quired; projected total: 100′000, [42, 43]), and the on-
going multi-centre Hypertrophic Cardiomyopathy
Registry study (HCMR; 2750 patients, [42–44]). We have
a large resource of clinical and research scans with T1-
mapping accumulated from pooled evidence from the
past 7 years [18, 19, 23, 24, 26, 28, 30, 31, 34, 35, 39, 45].
In this study of 1291 subjects, we characterized com-
monly encountered clinical myocardial conditions using
T1-mapping, derived native T1 ranges, and produced
sample-size calculations to guide future clinical studies
and trials.

Methods
Study population
To study myocardial T1 values of cardiovascular dis-
eases, we screened CMR scans undertaken for relevant
scans, clinical and research, performed between June
2009 and June 2016 in our tertiary-referral CMR unit,
the Oxford Centre for Clinical Magnetic Resonance Re-
search (OCMR), Oxford, United Kingdom. We included
the scans of patients diagnosed with a single cardiovas-
cular disease and patients with normal CMR (no cardio-
vascular disease or significant comorbidities and normal
ECG), as determined by at least one clinical consultant
cardiologist CMR expert. We excluded scans without
T1-maps, in patients under 18 years old, repeated in the
same patient and in patients diagnosed with more than
one cardiovascular disease (e.g. hypertrophic cardiomy-
opathy and coronary artery disease). We also excluded
patients (n = 53) who had a history of cardiovascular
risk factors (e.g. diabetes mellitus or smoking) and/or
abnormal ECG, but had no clear-cut features of cardio-
vascular disease on CMR (Additional file 1: Table S1).
We included only good-quality T1-maps with good R2

goodness-of-fit maps, free from artefacts on inversion
recovery (IR)-weighted images, as previously published
[24]. Following the peer review, we performed an add-
itional 4 month (July 2016 – December 2016) targeted
search for three diseases underrepresented in the ori-
ginal sample (iron overload, Anderson Fabry Disease
and atrial fibrillation).
In total, 1291 CMR scans were included in final ana-

lysis and all scans had a mid-ventricular short-axis T1-
map, defined by the clear presence of LV papillary mus-
cles and located approximately half-way between the mi-
tral valve annulus and the LV apex on long-axis cines
[46]. The study comprised clinical scans of patients with
a single cardiovascular disease (n = 1221), clinical and
re-analysis of our prior research scans for patients with
pheochromocytoma [23], Takotsubo cardiomyopathy
[24], and acute myocarditis [25]), and clinical scans of
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patients found to have normal CMR (n = 70, no cardio-
vascular history and normal ECG, Additional file 2:
Table S2).
This study was approved by the relevant local ethics

authorities. All study subjects gave written informed consent.

CMR protocol
All CMR scans were performed at 1.5 T (Magnetom
Avanto, Siemens Healthcare, Erlangen, Germany) using
established techniques as previously described [25].
These included long- and short-axis cines, LGE, and na-
tive T1-mapping (ShMOLLI prototype sequence with
inline map generation, WIP 561 and 448C) [37]. Precise
statement on the WIP prototype used is essential to
highlight that ShMOLLI underwent only one change in
the inversion time calculation required to address regu-
latory issues, with clearly documented impact on the
measured T1 values [37].

T1-Mapping analysis
Separate data files containing all T1-maps were created
and anonymized before analysis by an observer blinded
to clinical information. To assess the impact of focal
pathology on native T1 changes, regions of interest
(ROIs) were manually placed on mid-ventricular T1-
maps in areas corresponding to focal enhancement on
LGE images. In diseases without focal LGE, ROIs were
placed as follows. For Takotsubo cardiomyopathy, ROIs
were placed in areas on T1-map corresponding to the
maximal regional wall motion abnormality (RWMA)
[24], defined as severe hypokinesia, akinesia or dyskin-
esia on short-axis cines. For iron overload and Anderson
Fabry disease, the ROIs were placed in the septum of the
mid ventricular slice [28]. For AL amyloid which did not
have LGE negative myocardium, a single septal ROI was
drawn. Where possible, ROIs were drawn as large as
possible to span one-sixth of the myocardial circumfer-
ence, with particular care taken to avoid partial-volume
contamination from the surrounding blood pool. A ref-
erence ROI was placed in myocardium as far as possible
from any focal changes. In the 70 patients with normal
CMR and normal ECG, a ROI was placed in the
septum. The mean T1 values within the ROI were re-
ported with 1SD.
All T1 values presented in this study apply to the con-

temporary WIP448C, 780B and 1048. A significant pro-
portion of T1 values in this study (42% or 541/1273 of
the subjects) was measured using the original ShMOLLI
WIP561 [18, 19]. The small known difference between
this and all subsequent distributions arising from the
change in inversion time calculations was compensated
for with an empirical formula T1(all current

WIPs) = 1.0221*T1(WIP561) - 32.795, established with
material previously described [37]. Overall, these

corrections caused a trend towards lower mean native
T1 values (by ~10 ms) without reaching statistical sig-
nificance: these changes are within the variability (2%) of
the method [18, 19]. For consistency, we performed the
same T1 correction on our previously published normal
T1 values in 342 healthy volunteers [19], which reduced
the mean normal native T1 by 12 ms (uncorrected nor-
mal T1 953 ± 23 ms using eroded myocardial contours
vs. corrected eroded normal T1 941 ± 23 ms). Conse-
quently, 941 ± 23 ms was used as the healthy normal T1
for this study and for sample size calculations.

Statistical analysis
All data are parametric, as determined by the Kolmogorov-
Smirnov test, and were expressed as mean ± SD. Paired
samples were assessed by paired Student t-test and un-
paired samples were assessed by the unpaired 2-tailed Stu-
dent t-test. Comparisons between ≥3 separate data groups
were performed using analysis of variance (ANOVA) with
Bonferroni post-hoc correction. The associations between
native T1 values, clinical demographics and LV function
were analyzed using multi-variable analysis with stepwise
selection method for significant associations (p < 0.05). All
data were analyzed on per-subject basis using MedCalc
12.7.8 (Ostend, Belgium). In all cases, p < 0.05 denotes stat-
istical significance.

Sample size calculations for future studies using ShMOLLI
native T1-mapping
Calculations of sample sizes and effect sizes (Cohen’s d)
were performed for two comparisons, using methods as
previously described [47–49]: (1) for detecting significant
differences between native T1 in the most affected myo-
cardium (LGE+, or RWMA+ for Takotsubo cardiomyop-
athy) and reference myocardium in patients; and (2) for
detecting significant differences between native T1 of
reference myocardium in patients (LGE-, or RWMA- for
Takotsubo cardiomyopathy) and T1 of healthy volun-
teers (2-pixel eroded and WIP442-corrected; normal
ShMOLLI T1 = 941 ± 23 ms) [19].
In brief, the sample size required for native T1 values

to show a significant change with power of 80% and α
error of 0.05 was calculated using the following formula
[47, 49]:
n ¼ f a; Pð Þ � σ2 � 2

δ2

Where n is the sample size needed, α is the signifi-
cance level, P is the study power, and f is the value of
the factor for different values of α and P, with σ as the
inter-study standard deviation and δ as the difference to
be detected [49]. The effect size (Cohen’s d) was also de-
termined as the differences between means divided by
the pooled SD for each comparison, as previously de-
scribed [48].
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Results
Subject characteristics
Subject characteristics are summarized in Table 1. CMR
scans of 1291 patients (57 ± 19 yrs., 65% males) were an-
alyzed, which included 16 different cardiovascular dis-
eases and a group of patients with normal CMR.
Patients with normal CMR were used as the study con-
trols, with an important distinction from previously pub-
lished healthy volunteers [19], which was also used to
define normality for sample size calculations.
Compared to patients with normal CMR, patients with

acute myocarditis were statistically younger (all p < 0.05);
patients with obesity had higher body mass index; patients
with dilated cardiomyopathy, cardiac amyloidosis and
chronic coronary artery disease had significantly lower LV
ejection fraction (all p < 0.05); patients with hypertrophic
cardiomyopathy and cardiac amyloidosis had significantly
higher maximal LV wall thickness (all p < 0.05), while
patients with dilated cardiomyopathy had a significantly
lower minimum LV wall thickness (all p < 0.05).

Normative native T1 ranges in cardiovascular disease and
norm
Native T1 in typical tissue classes in cardiovascular dis-
eases and in patients with normal CMR are shown in
Table 2. In this study, gender did not affect myocardial
T1 values significantly (2-way ANOVA, data not shown),

and thus only overall T1 values are provided. Patients
with normal CMR (938 ± 21 ms) had similar native T1
compared to healthy volunteers [19] (941 ± 23 ms).
All cardiovascular diseases demonstrated focal enhance-

ment on LGE imaging, except for Takotsubo cardiomyop-
athy and iron overload, where no LGE was detected, and
regional wall motion abnormality (RWMA) was used to de-
fine abnormality. In all diseases with focal LGE, enhanced
myocardium had significantly higher native T1 values com-
pared to the unenhanced reference myocardium within the
same disease type, all paired p < 0.001. For Takotsubo car-
diomyopathy, myocardium with RMWA had significantly
higher native T1 compared to the reference myocardium
without RWMA, paired p < 0.001. There was no LGE nega-
tive myocardium in the AL amyloidosis subgroup. AL
amyloidosis also had significantly higher T1 values in the af-
fected (LGE positive) myocardium compared to ATTR
amyloidosis (1158 ± 75 ms vs 1061 ± 29 ms, respectively,
p < 0.01), similar to previously published values [50] With
respect to “apparently normal” reference myocardium in
various cardiac diseases, native T1-mapping was still able to
detect additional abnormalities. Despite apparent lack of ab-
normalities either on cines (Takotsubo cardiomyopathy;
RWMA-, 988 ± 41 ms) or LGE (LGE negative reference
myocardium in ATTR amyloidosis; 1002 ± 63 ms) the na-
tive T1 values were significantly higher compared to pa-
tients with normal CMR and the reference myocardium in

Table 1 Characteristics of study subjects

n Age
(years)

Male
(n)

BMI
(kg/m2)

HR
(bpm)

LVEF
(%)

LV mass index
(g/m2)

LV Wallmin

(mm)
LV Wallmax

(mm)

Patients with normal CMR 70 48 ± 17 45 24 ± 3 65 ± 13 66 ± 9 56 ± 14 7 ± 1 10 ± 2

Cardiac Amyloidosis (AL) 32 73 ± 11 11 28 ± 5 73 ± 13 55 ± 15a 111 ± 32 12 ± 4 18 ± 3a

Cardiac Amyloidosis (ATTR) 22 75 ± 13 14 26 ± 4 79 ± 19 53 ± 14 120 ± 16 12 ± 3 20 ± 5

Anderson-Fabry diseaseb 21 50 ± 17 20 27 ± 5 62 ± 14 60 ± 15 62 ± 25 8 ± 2 13 ± 5

Aortic Stenosis 24 63 ± 18 19 29 ± 7 73 ± 13 62 ± 13 83 ± 23 9 ± 3 14 ± 3

Atrial Fibrillationb 23 66 ± 11 18 28 ± 4 89 ± 19 50 ± 13a 61 ± 13 7 ± 1 11 ± 2

Chronic CAD 309 62 ± 12 193 28 ± 5 69 ± 14 50 ± 16a 74 ± 23 7 ± 2 12 ± 3

Dilated Cardiomyopathy 151 60 ± 15 98 27 ± 7 72 ± 15 35 ± 14a 81 ± 29 5 ± 2a 8 ± 2

Hypertrophic Cardiomyopathy 185 56 ± 15 138 29 ± 11 68 ± 12 69 ± 12 88 ± 33 9 ± 3 19 ± 4a

Hypertension 59 62 ± 14 42 29 ± 5 68 ± 15 61 ± 16 83 ± 38 9 ± 2 14 ± 3

Cardiac Iron-Overloadb 23 53 ± 21 17 23 ± 9 77 ± 14 65 ± 13 56 ± 27 7 ± 2 14 ± 3

Myocarditis (acute) 146 41 ± 12a 68 27 ± 5 75 ± 13 58 ± 13 69 ± 18 8 ± 2 12 ± 2

Myocarditis (previous) 93 47 ± 17 72 27 ± 4 69 ± 14 61 ± 10 62 ± 17 7 ± 1 11 ± 2

Obesity 38 53 ± 15 22 35 ± 4a 70 ± 14 60 ± 10 60 ± 21 7 ± 1 10 ± 2

Pheochromocytoma 29 50 ± 14 14 25 ± 6 71 ± 29 65 ± 10 57 ± 12 8 ± 1 10 ± 1

Cardiac Sarcoidosis 21 59 ± 9 10 28 ± 6 74 ± 13 60 ± 14 64 ± 20 8 ± 2 13 ± 3

Takotsubo cardiomyopathy 45 64 ± 12 35 25 ± 5 74 ± 18 60 ± 15 58 ± 17 8 ± 1 11 ± 3

All values are n (%) or mean ± SD. ARVC arrhythmogenic right ventricular cardiomyopathy, BPM beats per minute, BMI body mass index, CAD coronary artery
disease, g gram, HR heart rate, kg kilograms, LVEF left ventricular ejection fraction, LV left ventricular, m metre, mm millimetre, Max maximum, Min minimum
adenotes values significantly different from patients with normal CMR (all p < 0.05)
bindicates material from extended analysis period included to address peer review
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all other cardiovascular diseases (all p < 0.01). In diseases
with generally low T1 values, reference myocardium in pa-
tients with cardiac iron-overload (LGE-, 793 ± 58 ms) and
Anderson-Fabry disease (LGE-, 863 ± 23 ms) had signifi-
cantly lower native T1 compared to patients with normal
CMR and the reference myocardium in all other cardiovas-
cular diseases (all p < 0.01). Further, reference myocardium
in patients with cardiac iron-overload had lower native T1
compared to Anderson-Fabry disease (p < 0.01). The above
findings support that these diseases are likely global in na-
ture, with myocardial abnormalities beyond LGE detection.
In all other cardiovascular diseases, the reference myocar-
dial T1 was comparable with patients with normal CMR
and each other (p > 0.07 by ANOVA with Bonferroni post-
hoc method).
All data were normally distributed, as determined

using the Kolmogorow-Smirnoff test (previously de-
scribed in statistical methods section), and were pre-
sented accordingly in Table 2 as mean ± 1SD. After the

peer-review process, the data were also presented in a
non-parametric fashion in Fig. 1, to offer a more com-
prehensive description of the data distribution.

Sample size calculations
The minimum estimated sample sizes for studies using
ShMOLLI native T1-mapping with the typical power cal-
culation assumptions are presented in Table 3. Within-
subject differences between the reference myocardium
(LGE-, or RWMA- in Takotsubo cardiomyopathy) and
focal abnormalities (LGE+, or RWMA+ in Takotsubo
cardiomyopathy) are characterized by large effect sizes
and relatively small sample size requirements. Con-
versely, departures of T1 in the reference myocardium
in various cardiovascular diseases from healthy-
volunteer native T1 [19] are smaller, leading to smaller
effect sizes and large sample size requirements. These
included diseases such as pheochromocytoma where the
effect sizes for comparisons against healthy subjects are
small (Cohen’s d = 0.09), similar to that between patients
with normal CMR and healthy subjects (Cohen’s
d = 0.14), if only using a mid-ventricular T1-map with
select manual ROIs without more advanced image ana-
lysis. This leads to large sample size requirements for
future studies, in the order of a few thousand subjects.
Diseases such as cardiac iron-overload, cardiac amyloid-
osis and Takotsubo cardiomyopathy have large effect
sizes for comparisons against healthy volunteers, and
offer easily manageable sample sizes of <50 per group
for future studies.

Discussion
This is the first large-scale study with over 1200 subjects
to address the need for published normative ranges for
myocardial native T1 in a wide variety of cardiac condi-
tions, with a single T1-mapping technique at the most
common for clinical CMR 1.5 T field strength.

Native T1 in patients with normal CMR and healthy
subjects
As study controls, we measured the mean native T1
using mid-ventricular septal ROI in patients with normal
CMR (no cardiovascular disease with normal ECG, Fig.
1). To further define normal T1 values, we quoted data
for the 342 healthy subjects previously used to establish
the normal ranges at 1.5 T [19]. Patients with normal
CMR had similar native myocardial T1 compared to
healthy-subjects T1 [19], which provided a robust base-
line for comparison against native T1 of disease condi-
tions and for sample size calculations.

Native T1 in disease states
In this study, cardiac amyloidosis had distinctively high
native myocardial T1, similar to previous studies [41,

Table 2 Normative ranges for the native ShMOLLI-T1 ranges for
the most common myocardial tissue conditions encountered in
clinical practice

Native T1 [ms] Reference
myocardium

LGE+ or RWMA+
myocardium

Patients with normal
CMR

938 ± 21 –

Cardiac Amyloidosis
(AL)

– 1158 ± 75

Cardiac Amyloidosis
(ATTR)

1002 ± 63 1061 ± 29

Anderson-Fabry Diseasec 863 ± 23 902 ± 17

Aortic Stenosis 952 ± 20 1019 ± 23a

Atrial Fibrillationc 945 ± 25 1010 ± 54

Chronic CAD 951 ± 33 1078 ± 94a

Dilated Cardiomyopathy 945 ± 27 1038 ± 38a

Hypertrophic
Cardiomyopathy

932 ± 81 1041 ± 86a

Hypertension 944 ± 24 1022 ± 43a

Cardiac Iron-Overloadc 795 ± 58 –

Myocarditis (acute) 947 ± 39 1058 ± 74a

Myocarditis (previous) 941 ± 36 1026 ± 47a

Musculo-dystrophy 935 ± 23 1006 ± 10a

Obesity 936 ± 22 1031 ± 28a

Pheochromocytoma 939 ± 24 1006 ± 20a

Cardiac Sarcoidosis 934 ± 47 1030 ± 53a

Takotsubo Cardiomyopathyb 988 ± 41 1093 ± 64a

All values are mean ± SD. RWMA regional wall motion abnormalities, LGE late
gadolinium enhancement. All other abbreviations are as per Table 1
ap < 0.001 compared to native T1 of reference myocardium
bDisease entity in which affected myocardium is characterized by regional wall
motion abnormalities (RWMA) only
c- indicates material from extended analysis period included to
address peer-review
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51]. The distinctively low native T1 of cardiac iron over-
load and Anderson-Fabry disease indicate that in these
diseases, the diagnosis could possibly be confirmed or
ruled out using native T1-mapping in combination with
other relevant imaging features and clinical information,
although this needs to be tested in larger studies. For
cardiac iron-overload, our patients had a less diverse
range of precipitating causes (beta-thalassaemia, heredi-
tary haemochromatosis, transfusion-dependent myelo-
dysplasia and sickle cell anaemia) compared to those
reported previously [28] which may explain the slightly
lower observed T1 in our patients. For Anderson-Fabry
disease, our patients had similar native T1 values com-
pared to previous reports [39]. In patients with acute
and previous myocarditis, native T1 was elevated in LGE
+ myocardium, which is consistent with existing evi-
dence of typically increased T1 in areas of acute myocyte
necrosis and chronic scarring [24, 25, 27, 29, 31, 35, 52].
For chronic myocardial infarctions, we reported lower
native T1 values than previously published [27], which
may be related to lipomatous metaplasia. Lipomatous
metaplasia increases the fat fraction within the chronic
myocardial infarction, which leads to a bias in T1 esti-
mations through the partial volume effect [51]. Kellman
et al. showed that infarcts with low fat fractions (<10%)
have a modest increase in T1 (~50 ms) compared to

remote myocardium [51]. However, higher fat fractions
(>10%) can lead to nearly 400 ms increase in the infarct
T1 values, compared to remote myocardium. This effect
was even greater in the infarct core with high fat fraction
(35–50%) where the T1 values were ~1000 ms greater
than the remote myocardium. However, this effect may
disappear with extensive fatty infiltration, where theoret-
ically the entire voxel becomes occupied by fat, and the
infarct T1 in the areas of lipomatous metaplasia be-
comes low [53, 54]. Therefore, the differences in infarct
T1 values may be accounted for by different degrees of
lipomatous metaplasia present in the infarcts.

Native T1-mapping – The quantitative cardiovascular
biomarker
A fundamental limitation of LGE is that it is relatively in-
sensitive for the detection of global pathologies, such as
diffuse myocardial fibrosis, or very early changes that may
not yet be apparent on LGE. In these diseases, native T1-
mapping offers unique evaluation of the myocardial tissue
by directly quantifying deviation from established norms.
This can then detect more extensive areas of myocardial
involvement even in areas without apparent LGE or any
other abnormality using conventional imaging features,
and may have prognostic implications in certain diseases
[41, 55, 56]. In many cardiovascular diseases, once

Fig. 1 Characteristic native myocardial T1 values (1.5 Tesla) for 16 different cardiovascular conditions, stratified by the presence of late gadolinium
enhancement (LGE) or regional wall motion abnormality (RWMA). Data presented as box and whisker plots with the median, upper and lower quartiles,
min and max excluding outliers, and outliers that are more than 3/2 the upper and lower quartiles. Disease names are as per abbreviations list. Areas of
abnormality for all diseases except Takotsubo cardiomyopathy were defined using LGE, whereby LGE positive denotes myocardial regions with
enhancement on LGE images and LGE negative denotes myocardial regions with no enhancement on LGE images. In Takotsubo cardiomyopathy, where
there is no enhancement on LGE images, abnormality was defined by the presence of RWMA (RWMA positive). *There were no LGE negative regions in AL
Amyloidosis subjects
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structural changes such as fibrosis set in, therapeutic op-
tions may begin to lose their effectiveness [9]. T1-
mapping may enable detection of early pathological pro-
cesses, and serve as a tool for early diagnosis or screening,
differentiation of cardiomyopathies from normal pheno-
types (e.g athletic hearts [57]), and monitoring disease
progression or therapeutic response to novel treatments
in clinical trials.

Native T1 for definitive sample size calculations for future
studies
For diseases with significantly higher or lower native T1
compared to controls, only a small sample size is re-
quired to detect statistically significant changes. Sample
size calculations have been previously attempted, with 7
patients needed to detect 40 ms difference between sam-
ples [58]. Our large cohort provides confirmation of this,
which will pave the way for tissue characterization stud-
ies and potentially clinical trials using native T1 as a safe,
reproducible and gadolinium-free study endpoint.

The role of advanced T1-map analysis and sample size
calculations
Apart from cardiac amyloidosis, iron overload and
Anderson-Fabry disease, native T1 mapping using basic
image analysis techniques, such as septal ROI placement

[2, 6–8, 29], alone cannot reliably distinguish between
the remaining cardiovascular diseases, since the effect
size for the T1 differences between these diseases are
relatively small. Advanced image analysis techniques
based on native T1 thresholds and that take into account
the extent, distribution and patterns of myocardial in-
volvement may better distinguish between different dis-
eases or even disease spectrum within a single condition
[23, 24, 32, 35].

Limitations and future directions
This is a single-centred study addressing one specific
T1-mapping technique [18], typically as a single-slice
add-on to an already busy clinical exam, and rarer dis-
eases deserve further investigation in future dedicated
studies with larger sample sizes. The T1 values presented
in this study were derived using a single T1-mapping
technique. Due to the intrinsic technical differences,
caution should be applied before directly translating
values derived in this study to other T1 mapping tech-
niques. Moreover, even within the same T1-mapping
technique, different versions of sequences can lead to
small differences in T1-estimations. These differences
may not be immediately apparent to the operator or new
users. The standardization of normative T1 values across
sequences/vendors is highly desirable, but has not yet

Table 3 Sample size calculation using native ShMOLLI T1-mapping for clinical studies and trials, arranged according to Cohen’s d effect
size (largest to smallest)

Departure of focally abnormal myocardium from
reference myocardium (within subjects)

Departure of reference myocardium from healthy
myocardium [19] (between groups)

Cohen-d Paired, n> Cohen-d Unpaired, n>

Patients with normal CMR N/A N/A 0.14 1604

Cardiac Amyloidosis (AL) 4.58 2 – –

Cardiac Amyloidosis (ATTR) 3.91 4 1.28 9

Aortic Stenosis 3.39 6 0.68 146

Takotsubo Cardiomyopathy 3.33 6 1.06 32

Dilated Cardiomyopathy 3.09 6 0.56 104

Pheochromocytoma 3.02 6 0.09 3880

Myocarditis (acute) 2.92 6 0.52 120

Obesity 2.81 8 0.21 716

Hypertension 2.36 8 0.57 100

Myocarditis(previous) 2.30 10 0.0 N/A

Cardiac Sarcoidosis 2.28 10 0.0 N/A

Cardiac Iron-Overloada 2.06 10 13.30 4

Chronic CAD 2.06 10 0.47 146

Hypertrophic Cardiomyopathy 1.59 16 0.15 1398

Atrial Fibrillationa 1.47 18 0.29 376

Anderson-Fabry Diseasea 0.82 50 2.81 8

All abbreviations are as per Tables 1 and 2. Focally abnormal myocardium: myocardium affected by either late gadolinium enhancement (LGE) or by regional wall
motion abnormalities (RWMA) defined as severe hypokinesia, akinesia or dyskinesia on cines in patients with Takotsubo cardiomyopathy. Reference myocardium:
myocardium not affected by RMWA or LGE. aindicates material from extended analysis period included to address peer review
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been achieved. LGE was needed in most cases to deter-
mine the location of focal abnormalities and derive myo-
cardial T1 ranges. The T1 ranges reported in this study
need to be validated in future studies for their potential
standalone diagnostic value or their incremental diag-
nostic value to LGE. For diseases with regional abnor-
malities, such as CAD and HCM, the mean native T1
values are heavily dependent on the size and location of
the ROI, which continues to be a limitation of all similar
studies using this methodology to derive T1 values. Fu-
ture development of automated image analysis tech-
niques may enable visual diagnosis and distinction of
cardiovascular diseases without the need for gadolinium-
based contrast agents and serve as effective imaging
endpoints for clinical trials. Finally, all sample size calcu-
lations were based on T1 values derived by ROI place-
ment on a single mid-ventricular slice, and advanced
image analysis or whole-heart coverage may decrease
sample size required for clinical studies looking at dis-
eases with small effect sizes.

Conclusions
We provide typical T1-ranges for common clinical cardiac
conditions in the largest cohort to-date, using ShMOLLI
T1-mapping at 1.5 T. Sample-size calculations from this
study may be useful for the design of future studies and
trials that use T1-mapping as an endpoint.
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