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Abstract

A critical question in biology is the identification of functionally important amino acid sites in proteins. Because functionally
important sites are under stronger purifying selection, site-specific substitution rates tend to be lower than usual at these
sites. A large number of phylogenetic models have been developed to estimate site-specific substitution rates in proteins
and the extraordinarily low substitution rates have been used as evidence of function. Most of the existing tools, e.g.
Rate4Site, assume that site-specific substitution rates are independent across sites. However, site-specific substitution rates
may be strongly correlated in the protein tertiary structure, since functionally important sites tend to be clustered together
to form functional patches. We have developed a new model, GP4Rate, which incorporates the Gaussian process model
with the standard phylogenetic model to identify slowly evolved regions in protein tertiary structures. GP4Rate uses the
Gaussian process to define a nonparametric prior distribution of site-specific substitution rates, which naturally captures the
spatial correlation of substitution rates. Simulations suggest that GP4Rate can potentially estimate site-specific substitution
rates with a much higher accuracy than Rate4Site and tends to report slowly evolved regions rather than individual sites. In
addition, GP4Rate can estimate the strength of the spatial correlation of substitution rates from the data. By applying
GP4Rate to a set of mammalian B7-1 genes, we found a highly conserved region which coincides with experimental
evidence. GP4Rate may be a useful tool for the in silico prediction of functionally important regions in the proteins with
known structures.
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Introduction

An important question in biology is the identification of

functional residues in proteins. This information can help us

understand the relationship between protein structures and

functions as well as guide us to design new proteins by genetic

engineering. However, experimental techniques for identifying

functional sites, e.g. mutagenesis, are time consuming and

expensive, which prohibits the brute force scanning of functional

sites by experiments. Therefore, bioinformatics tools are useful,

because they can narrow down the candidate sites for experimental

investigation. Evolution operates similar to a high-throughput

mutagenesis experiment: spontaneous mutations introduce protein

variants in each generation and then the functional effects of the

spontaneous mutations are ‘‘measured’’ by natural selection [1].

Therefore, protein sequences contain signatures of natural selection

which reflect the functions of amino acid residues. For example,

mutations at the functionally important sites tend to disrupt the

proteins’ normal functions, so these sites usually are more conserved

than unimportant ones. If the sequences of a family of homologous

proteins can be collected from multiple species, we may compare

these sequences to infer which sites are more important than others.

A number of bioinformatics tools based on phylogenetics have

been developed to infer functional sites by the simple idea that

functionally important amino acid sites tend to be more conserved

than unimportant ones [2–11]. Given the multiple sequence

alignment and the phylogenetic tree of a protein family, these

phylogenetic methods can infer the amino acid substitution rate at

each site in the alignment and an unusually low substitution rate

implies that the site is functionally important. It has been shown

that the predicted conserved sites coincide with experimental

evidence, which confirms that these bioinformatics tools are useful.

However, these existing methods are far from flawless. Most of

the popular methods, e.g. Rate4Site [7] used in the ConSurf web

server [11], assume that the substitution rates are independent

across sites. In statistical terms, this means that the sites in the

alignment are independent and identically distributed (i.i.d.). The

i.i.d. assumption simplifies the statistical modeling, but it is unreal-

istic from the viewpoint of biology. The i.i.d. assumption implies

that the slowly evolved functional sites are randomly distributed in

the protein tertiary structure. In contrast, it is well known that

functionally important sites tend to be close to each other in the

protein tertiary structure and form functional regions, e.g. ligand

binding sites or catalytic active sites. Clearly the i.i.d. assumption is

inappropriate if a functional region consists of a number of sites.

Several methods have been developed to incorporate the spatial

correlation of evolutionary patterns, e.g. substitution rates at the

protein level or dN/dS ratios at the codon level, to overcome the
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drawbacks of the i.i.d. assumption [3,5,8,12–16]. Most of these

methods use a sliding window framework, in which the amino acid

substitution rate or the dN/dS ratio at a focal site is approximated

by the average substitution rate in a set of neighbor sites in the

protein tertiary structure [3,12,13]. A site is considered to be a

neighbor of the focal site if the Euclidean distance between the two

sites is smaller than a predefined window size. Unfortunately, these

sliding window methods also have intrinsic drawbacks. Firstly, in

most, if not all, of sliding window methods the neighbor sites,

including the focal site itself, are weighted equally in the inference

of the substitution rate. However, clearly the focal site itself

contains more information on its substitution rate than the sites

near the boundary of the sliding window. Secondly, it is unclear

how to determine the optimal window size [17,18]. If the window

size is too large, there will be too many distant sites in the window,

which could bias the estimation at the focal site. In contrast, if the

window size is too small, the sliding window methods will not be

able to capture the spatial correlation of substitution rates and may

lead to overfitting. Furthermore, there is evidence that the optimal

window sizes may vary among different protein families [12].

Very recently, a Bayesian model which combines the Potts

model in statistical physics and the phylogenetic model has been

proposed by Watabe and Kishino to infer protein patches under

positive selection in protein tertiary structures [16]. In Watabe and

Kishino’s model, the Potts model is used to define a prior

distribution of dN/dS ratios over a protein tertiary structure. This

model solved many problems of the sliding window framework.

However, the prior distribution in Watabe and Kishino’s model is

unnormalized [16], which makes it difficult to design efficient

algorithms to estimate hyperparameters. An advanced algorithm,

thermodynamic integration [19], was used in Watabe and

Kishino’s model to infer hyperparameters. However, the algo-

rithm may be very inefficient, especially if there are many hyper-

parameters in the Potts model.

Here we propose to incorporate a Gaussian process with the

phylogenetic model to overcome the drawbacks of the existing

methods. The Gaussian process has been widely applied in

geostatistics and machine learning to capture the spatial correla-

tion of interesting features [20,21]. Here we will briefly introduce

the basic idea of the Gaussian process. More details of the

Gaussian process and its applications can be found in the

geostatistics and machine learning literature, e.g. [20]. A Gaussian

process defines a probability distribution over functions, namely

that a single sample point of the Gaussian process is a function

over a space, e.g. a 3D space. Because the sample points of the

Gaussian process are ‘‘smooth’’ functions, the Gaussian process

encodes an intrinsic spatial correlation. Thus physically closely

located points in the space are more likely to have similar function

values. Therefore, the Gaussian process is very useful for defining

prior distributions over spatially correlated patterns. For example,

in this paper we are interested in modeling the spatial correlation

of site-specific substitution rates in protein tertiary structures. If we

image each residue in a protein tertiary structure as a single point

in the 3D space, the Gaussian process can be used to define a prior

distribution of site-specific log substitution rates over these points

(residues). The ‘‘smoothness’’ property of Gaussian process prior

suggests that two physically closely located sites are more likely to

have similar site-specific log substitution rates than two distantly

located sites. Then, the Gaussian process prior can be combined

with standard phylogenetic likelihood functions [22] to infer site-

specific substitution rates from real data.

We name this kind of hybrid model of Gaussian processes and

phylogenetics as a phylogenetic Gaussian process model (Phylo-

GPM). In the Phylo-GPM framework, the spatial correlation of

substitution rates can be naturally described and the strength of

spatial correlation can be learned from the data. Therefore, it

overcomes the common drawback of the sliding window methods

that the window size must be manually specified. Unlike Watabe

and Kishino’s model [16], the phylogenetic Gaussian process

model uses a normalized prior, so simple algorithms, i.e. the widely

used Metropolis algorithm [23,24], can be used to efficiently infer

hyperparameters. We have developed software, GP4Rate, based

on the Phylo-GPM framework. In both simulated and real

datasets, GP4Rate outperforms Rate4Site, a widely used tool

based on the i.i.d. assumption. Therefore, GP4Rate may be a

useful tool for the identification of functionally important sites.

Results

2D toy protein simulations
Simulations were implemented to evaluate the performance of

GP4Rate and to compare it with the widely used software,

Rate4Site [7]. In the comparisons, Rate4Site is used as a

representative of the classic phylogenetic models which use the

discrete Gamma distribution to describe the variation of substi-

tution rates across sites [25] but do not consider the spatial

correlation of site-specific substitution rates in the protein tertiary

structure. Because the true site-specific substitution rates are

known in the simulated alignments, the estimated site-specific

substitution rates can be compared with the true rates to evaluate

the performance of the two methods. We generated two sets of

simulated alignments based on different assumptions. In this and

the next section, we will describe the first set of simulations which

were based on a 2D toy protein structure. Thereafter we will

describe the second set of simulations which were based on more

realistic assumptions.

To generate simulated alignments, we need a phylogenetic tree

to describe the evolutionary relationship between simulated

sequences, a protein structure to calculate the pairwise Euclidean

distances between sites, a substitution model, and a vector of

substitution rates. Note that the following discussions will be

mainly based on the substitution rates rather than their log values.

A simple phylogenetic tree was used in all simulations (Figure 1A).

Author Summary

To understand how a protein functions, a critical step is to
know which regions in its protein tertiary structure may be
functionally important. Functionally important protein
regions are typically more conserved than other regions
because mutations in these regions are more likely to be
deleterious. A number of phylogenetic models have been
developed to identify conserved sites or regions in
proteins by comparing protein sequences from multiple
species. However, most of these methods treat amino acid
sites independently and do not consider the spatial
clustering of conserved sites in the protein tertiary
structure. Therefore, their power of identifying functional
protein regions is limited. We develop a new statistical
model, GP4Rate, which combines the information from the
protein sequences and the protein tertiary structure to
infer conserved regions. We demonstrate that GP4Rate
outperforms Rate4Site, the most widely used phylogenetic
software for inferring functional amino acid sites, via
simulations with a case study of B7-1 genes. GP4Rate is a
potentially useful tool for guiding mutagenesis experi-
ments or providing insights on the relationship between
protein structures and functions.

Phylogenetic Gaussian Process Model
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The tree consisted of four sequences and all the branch lengths

were equal to 0.2 substitution per site. Because the total branch

length was equal to 1 substitution per site, on average an amino

acid site only contained a single substitution. Therefore, the

accurate estimation of substitution rate at a single site is

challenging. The JTT substitution model [26,27] was used in all

simulations. Note that the protein tertiary structure and the vectors

of substitution rates used in the two sets of simulated alignments

were different and will be described in detail below.

In the 2D toy protein model, the protein tertiary structure was

described by a 20 by 20 regular 2D grid, in which each dot

corresponds to an amino acid in the toy protein structure

(Figure 1B). In addition, we assumed that the distance between

adjacent sites in the 2D grid is equal to 5 Å. This distance is

comparable to the average distance between a{carbon atoms of

the physically interacting residues in real proteins. Even though

the 2D toy protein model is artificial and no real protein has a

similar structure, it is useful because the estimated site-specific

substitution rates can be easily visualized by a heatmap (Figure 2).

Therefore, we used the 2D toy protein model to check the

correctness of the program and to get insights on the performance

of GP4Rate.

Two different spatial configurations of site-specific substitution

rates were used in the 2D toy protein simulations. In the first

configuration, the 20 by 20 grid was divided into 4 non-

overlapping blocks, each of which was a 10 by 10 grid

(Figure 2A). Sites within a block had the same substitution rates

but different blocks could have different substitution rates. Two

substitution rates, 0.2 and 1.8, were used for simulations and the

substitution rates of blocks were alternatively arranged in the 2D

protein structure (Figure 2A). Therefore, the toy proteins consisted

of two conserved blocks with low substitution rates (0.2) and two

variable blocks with high substitution rates (1.8). The second

configuration was similar to the first one, but the sizes of non-

overlapping blocks were 5 by 5 instead of 10 by 10 (Figure 2B).

Twenty simulated alignments were generated for each configura-

tion of site-specific substitution rates. It is easy to notice that the

average site-specific substitution rate is equal to 1 in both

configurations.

A program based on Bio++ [28,29] was developed to implement

the simulations. For each simulated alignment, we ran two

separate MCMC chains using GP4Rate to estimate site-specific

substitution rates. For each MCMC chain, 106 iterations were

implemented and the trace plots of the MCMC outputs were

monitored to ensure the convergence of the MCMC chains. The

first 30% of the iterations were discarded as burn-in. Then, the two

chains were combined to calculate the average substitution rate at

each site. To compare the performance of GP4Rate with that of

Rate4Site, we also used Rate4Site to estimate the substitution

rates. To make the results of GP4Rate and Rate4Site more

comparable, the phylogenetic tree and branch lengths were fixed

to the true values in both GP4Rate and Rate4Site.

We firstly randomly sampled two simulated alignments, one for

each configuration, as examples to get insights on the perfor-

mances of GP4Rate and Rate4Site. As shown in Figure 2C and

2D, the site-specific substitution rates estimated by GP4Rate are

smoothly distributed within the 2D protein structures. In addition,

GP4Rate segments the 2D protein structures into blocks which

correspond to the true patches with different substitution rates. In

contrast, the spatial distributions of substitution rates estimated by

Rate4Site are far from smooth. The sites with similar substitution

rates are not clustered together and do not form clearly bounded

patches (Figure 2E and 2F). Thus, GP4Rate can capture the

spatial correlation of substitution rates but Rate4Site cannot.

Quantitative evaluation of different models
To quantitatively evaluate the performance of GP4Rate and

Rate4Site, we used receiver operating characteristic (ROC) curves

to measure the power of the two methods. ROC curves are widely

used to evaluate the accuracy of binary classifiers. The area under

a ROC curve is usually used as a measure of the power of the

Figure 1. The phylogenetic tree used in all simulations and an
example of 2D toy protein structure. (A) the phylogenetic tree
used in all simulations; (B) a 5 by 5 2D toy protein. In the phylogenetic
tree, there are 4 species and all branch lengths are equal to 0.2
substitutions per site. In the example of 2D toy protein, there are 25
amino acids which are dots in a 5 by 5 2D grid. Lines between dots
correspond to the ‘‘covalent bonds’’ between amino acid residues. A
larger 20 by 20 2D toy protein with 400 residues is used in the 2D toy
protein simulations.
doi:10.1371/journal.pcbi.1003429.g001

Phylogenetic Gaussian Process Model
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corresponding method. To apply ROC curves to the simulated

datasets, we must divide the amino acid sites into two categories,

functional sites and nonfunctional sites, before generating simu-

lated alignments. The functional sites are used as true positives

while the nonfunctional sites are used as true negatives. In the 2D

toy protein simulations, functional sites evolved at the lower rate

(0.2) while nonfunctional sites evolved at the higher rate (1.8).

Then, the ROC curves were created by plotting the average true

positive rates versus the average false positive rates using the

ROCR library in R [30]. As shown in Figure 3A and 3B, the areas

under the ROC curves generated by GP4Rate are larger than

those generated by Rate4Site, which suggests that GP4Rate

outperforms Rate4site.

ROC curves measure whether a model can distinguish slowly

evolved functional sites from the other sites. If a model can assign

relatively low substitution rates to slowly evolved sites and

Figure 2. The visualization of the estimated site-specific substitution rates in the 2D toy protein simulations. The heatmaps are based
on two randomly selected alignments, one for each configuration. The substitution rates in the heatmaps are arranged according to the toy 2D
protein structure. (A, B) the true substitution rates in the first and second configurations, respectively; (C, D) the substitution rates estimated by
GP4Rate in the first and second configurations, respectively; (E, F) the substitution rates estimated by Rate4Site in the first and second configurations,
respectively.
doi:10.1371/journal.pcbi.1003429.g002

Phylogenetic Gaussian Process Model
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relatively high rates to the other sites, it will perform well in the

evaluations based on ROC curves. However, ROC curves cannot

capture potential systematic biases of the model. For example, if

the model adds a constant bias to the site-specific substitution

rates, its ROC curves will be exactly the same regardless of the

magnitude of the constant bias. Therefore, we used a simple loss

function complementary with the ROC curves to capture any

potential systematic biases of the estimated site-specific substitution

rates. The loss function is defined by the following formula

Loss(ŴW,WTrue)~SN
i~1(ŴWi{WTrue

i )2, ð1Þ

in which N is the total number of sites in the alignment, while

WTrue
i and ŴWi are the true and estimated log substitution rates at

site i, respectively. The log values of site-specific substitution rates

are used in the right-hand side of Equation 1, since we want to

emphasize the differences between low substitution rates. It is

desirable because both GP4Rate and Rate4Site were designed to

detect conserved regions with low substitution rates. Unlike ROC

curves, a model which introduces a larger systematic bias will have

a higher average loss than a model which introduces a smaller

bias.

We plotted the losses of both GP4Rate and Rate4Site in the 2D

toy protein simulations. As shown in Figure 3C and 3D, GP4Rate

outperforms Rate4Site, as evident by the lower losses produced by

GP4Rate (paired Wilcoxon test, p valuesv10{6 for both of the

two configurations). The improved accuracy originates from

GP4Rate’s ability to model the spatial correlation of site-specific

substitution rates, since the performance gap between GP4Rate

and Rate4Site becomes smaller in the second configuration which

consists of smaller conserved and variable patches.

GP4Rate has two hyperparameters, i.e. the characteristic length

scale l and the signal standard deviation s, which model the

strength of spatial correlation of substitution rates and the

marginal variation of substitution rate at a single site, respectively.

Figure 3. The quantitative comparison of GP4Rate and Rate4Site in the 2D toy protein simulations. (A) the ROC curves of GP4Rate and
Rate4Site in the first configuration; (B) the ROC curves of GP4Rate and Rate4Site in the second configuration; (C) the losses of GP4Rate and Rate4Site
in the first configuration; (D) the losses of GP4Rate and Rate4Site in the second configuration. In the ROC curves, the solid lines correspond to the
performance of GP4Rate while the dotted lines correspond to the performance of Rate4Site. In the plots of losses, each point corresponds to a
simulated alignment. The losses of the two methods are calculated by Equation 1.
doi:10.1371/journal.pcbi.1003429.g003

Phylogenetic Gaussian Process Model
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An advantage of GP4Rate over the sliding window methods is that

the hyperparameters can be learned from the data. In contrast, the

window size of the sliding window methods must be predefined

before analyses. To show that GP4Rate can learn the hyperpara-

meters from the data, we plotted the estimated median hyper-

parameters of the simulated alignments. As shown in Figure 4A,

the characteristic length scales l estimated in the first configuration

are about 3 fold larger than those estimated in the second con-

figuration. Because the patches are much larger in the first

configuration, the result suggests that GP4Rate can learn the

magnitude of the spatial correlation of substitution rates from the

data. The estimated signal standard deviations s in the two

configurations are similar, which matches the intuition that the

two configurations are similar except in the strength of spatial

correlations of substitution rates.

In summary, when spatial correlation of substitution rates exists

in proteins, GP4Rate always outperforms Rate4Site. However, the

spatial correlation of site-specific substitution rates may be

insignificant in some proteins. Therefore, we also evaluated both

GP4Rate and Rate4Site in simulated alignments in which the

spatial correlation of site-specific substitution rates is absent. These

simulated alignments were generated by randomly shuffling the

columns in each alignment in the first spatial configuration of

substitution rates (Figure 2A). The permutations of alignments

destroyed the spatial patten of site-specific substitution rates. Here

we only summarize the performance of GP4Rate and Rate4Site in

the permuted alignments and more details can be found in the

online Supplementary Material. The absence of spatial correlation

results in close-to-zero characteristic length scales in GP4Rate,

which confirms that GP4Rate can detect the absence of spatial

correlation when there is none. Plots of ROC curves show that

GP4Rate and Rate4Site have effectively the same power to

distinguish slowly evolved sites from the other sites. In contrast,

when we use the loss function (Equation 1) to measure the accuracy

of estimated substitution rates, GP4Rate is less accurate than

Rate4Site. Nevertheless, GP4Rate and Rate4Site have similar

power to find slowly evolved functional sites, since in practice it is

the relative rankings of sites instead of their absolute substitution

rates tell us which sites may be more likely to be functional.

Realistic simulations
We generated a second set of simulated alignments based on

more realistic assumptions. The basic idea is that if we have a large

number of highly diverged sequences, a simple method which does

not consider the spatial correlation of substitution rates may

accurately estimate the site-specific substitution rates because of the

rich information in a very large dataset. We may generate simulated

alignments based on the real protein tertiary structure and the

presumably accurately estimated site-specific substitution rates.

These simulated alignments may have similar features as real proteins.

In this set of simulations, we used the same phylogenetic tree

(Figure 1A) and the JTT substitution model [26,27] used in the 2D

toy protein simulations. The protein tertiary structure and the site-

specific substitution rates were based on a real protein, B-cell

lymphoma extra large (Bcl-xL). This protein has been studied

using Rate4Site and the two predicted conserved patches coincide

with the regions with known functions [31]. We downloaded the

protein tertiary structure of Bcl-xL from Protein Data Bank (PDB

ID: 1MAZ [32]). The site-specific substitution rates estimated by

Rate4Site were obtained from the ConSurf-DB database [10]. In

ConSurf-DB, 131 unique homologs of Bcl-xL were automatically

collected and then Rate4Site was applied to estimate the site-

specific substitution rates. Because of the very large number of

sequences in the dataset, the estimation of site-specific substitution

rates may be relatively accurate. We generated 20 simulated

alignments based on the above assumptions and both GP4Rate

and Rate4Site were applied to the simulated alignments using the

same setting described in the 2D toy protein simulations.

To evaluate the performance of GP4Rate and Rate4Site by

ROC curves, we divided the sites into two categories before

generating simulated alignments: slowly evolved functional sites

Figure 4. The hyperparameters estimated by GP4Rate in the 2D
toy protein simulations. The unit of the characteristic length scale is
Å while the signal standard deviation is unitless. (A) the estimated
characteristic length scale; (B) the estimated signal standard deviation.
doi:10.1371/journal.pcbi.1003429.g004

Phylogenetic Gaussian Process Model
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and others. Based on the site-specific substitution rates reported by

ConSurf-DB, the 10 percent most slowly evolved sites were

considered to be functional while the others were not. As shown in

Figure 5A, GP4Rate is more powerful to distinguish slowly

evolved sites from the other sites, since the area under the ROC

curve of GP4Rate is larger than that of Rate4Site. In addition,

based on the loss function defined by Equation 1, GP4Rate

produces lower losses in 18 out of the 20 simulated alignments

(Figure 5B) and the median loss of GP4Rate is significantly smaller

than that of Rate4Site (paired Wilcoxon test, p value,1024).

Therefore, GP4Rate still outperforms Rate4Site in the realistic

simulations.

Case study of B7-1 genes
The B7-1 (CD80) family is a member of the immunoglobulin

superfamily (IgSF) and is critical for the regulation of immune

responses [33]. The protein tertiary structure of the human B7-1

protein has been determined [34,35]. The human B7-1 protein

consists of two IgSF domains (IgV and IgC), each of which shows

an anti-parallel b sandwich structure [34]. We applied GP4Rate

and Rate4Site to 7 mammalian B7-1 sequences downloaded from

the NCBI HomoloGene database [36] and compared their

performances. The N-terminal and C-terminal sequences were

trimmed in the alignment, because the corresponding atoms are

absent in the X-ray crystal structure. The resulting alignment

consists of 199 amino acid sites. Then the phylogenetic tree was

inferred by PhyML with the JTTzC model [37]. The protein

sequences in the alignment are very similar to each other as

evident by the lack of gaps in the alignment (data not shown).

Therefore, the information in each site in the alignment is very

limited and it is hard to infer site-specific substitution rates

accurately.

We used the human B7-1 protein structure (PDB ID: 1I8L [35])

to calculate the pairwise Euclidean distances between the

a{carbon atoms of amino acids. Then, we applied GP4Rate to

the B7-1 alignment to infer site-specific substitution rates. We ran

two independent MCMC chains for 106 iterations, and the first

30% of the iterations were discarded as burn-in. We first estimated

the posterior marginal distributions of hyperparameters based

on the MCMC samples. As shown in Figure 6, the estimated

characteristic length scale l is significantly higher than 0, which

confirms that the substitution rates are correlated in real proteins.

The presence of spatial correlation of substitution rates may

facilitate the discovery of slowly evolved functional regions. To test

this hypothesis, the mean site-specific substitution rates of the

MCMC samples were calculated and the 20 most slowly evolved

sites were considered to be functional. Then, the 20 most slowly

evolved sites were superimposed onto the protein tertiary structure

(PDB ID: 1I8L [35]). As shown in Figure 7A, the slowly evolved

sites predicted by GP4Rate are not randomly distributed and

instead form a single large region in the IgC domain. A systematic

mutagenesis study has suggested that the IgC domains are

important for binding CTLA-4 and CD28 [38], even though the

effects of the IgC domain may be indirect [35]. To test whether

the predicted slowly evolved sites overlap with the experimentally

verified functional sites [38], the 7 experimentally verified

functional sites in the IgC domain were mapped onto the human

B7-1 structure (Figure 7A). Clearly 4 experimentally verified

functional sites in the IgC domain, i.e. Q157, D158, E162, and

L163, are within the slowly evolved patch predicted by GP4Rate,

which highlights the potential usefulness of GP4Rate.

To compare GP4Rate with Rate4Site, we also applied Rate4-

Site to the same dataset. The superimposition of the 20 most

slowly evolved sites predicted by Rate4Site is shown in Figure 7B.

The sites predicted by Rate4Site are present in both the IgV and

IgC domains and do not form clearly bounded regions. Even

though 2 experimentally verified functional sites in the IgC

domain, i.e. F106 and I113, overlap with the sites predicted by

Rate4Site, the 4 experimentally verified functional sites detected

by GP4Rate do not overlap with the sites predicted by Rate4Site.

Therefore, GP4Rate and Rate4Site can provide complementary

insights to real data.

To investigate which model, GP4Rate or Rate4Site, fits the B7-

1 dataset better, we performed a Bayesian model comparison. The

direct comparison between GP4Rate and Rate4Site is impractical,

because Rate4Site is based on the maximum likelihood principle

Figure 5. The quantitative comparison of GP4Rate and Rate4Site in the realistic simulations. (A) the ROC curves of GP4Rate and
Rate4Site in the realistic simulations; (B) the losses of GP4Rate and Rate4Site in the realistic simulations. In the ROC curves, the solid line corresponds
to the performance of GP4Rate while the dotted line corresponds to the performance of Rate4Site. In the plot of losses, each point corresponds to a
simulated alignment. The losses of the two methods are calculated by Equation 1.
doi:10.1371/journal.pcbi.1003429.g005

Phylogenetic Gaussian Process Model

PLOS Computational Biology | www.ploscompbiol.org 7 January 2014 | Volume 10 | Issue 1 | e1003429



instead of the Bayesian principle. However, it is not very difficult

to develop a Bayesian version of Rate4Site by specifying a prior

distribution over parameters. Therefore, we developed a Bayesian

version of Rate4Site and compared it with GP4Rate. Details of

the Bayesian model comparison can be found in the online Sup-

plementary Material and we only summarize the results here. We

compared the site-specific substitution rates estimated by the

original Rate4Site and its Bayesian version and found that the two

programs produced essentially the same result. Therefore, the

marginal likelihood estimated by the Bayesian version of Rate4Site

may be used to evaluate how good the original Rate4Site fits the

B7-1 dataset. The log marginal likelihood of GP4Rate is equal to

{1705:1 while the log marginal likelihood of the Bayesian

Rate4Site is equal to {1710:9, which suggests a very large Bayes

factor of GP4Rate compared with the Bayesian Rate4Site

(BF~e{1705:1z1710:9~330:3). Therefore, GP4Rate fits the B7-1

dataset much better than the Bayesian Rate4Site.

Discussion

Many phylogenetic methods have been developed to identify

slowly evolved amino acid sites which may be functional.

However, the most widely used methods, e.g. Rate4Site, ignore

the spatial correlation of site-specific substitution rates. Some other

methods use the sliding-window framework to capture the spatial

correlation of substitution rates, but the statistical method for

choosing the optimal window size is largely unknown. Since the

strength of the spatial correlation of substitution rates is unknown

in most of proteins, the sliding window methods are problematic in

real data analyses. In GP4Rate, both of the two issues are solved

under a Bayesian statistical framework. By using the Gaussian

process to define the prior distribution of the site-specific log

substitution rates, GP4Rate can naturally model the spatial

clustering of functionally important sites and the hyperparameters

which measure the strength of spatial correlation can be inferred

from the data instead of being manually specified before the

analyses.

In simulated datasets, GP4Rate significantly outperforms

Rate4Site. The power of GP4Rate is mainly derived from the

fact that GP4Rate has the added ability to model the spatial

correlation of substitution rates. By borrowing statistical informa-

tion from neighbor sites with similar substitution rates, GP4Rate

can estimate the site-specific substitution rates with a much higher

accuracy than Rate4Site. In the case study of B7-1 genes,

GP4Rate predicted a slowly evolved functional patch in the

protein tertiary structure and 4 sites within the region are well

supported by experimental evidence. In contrast, the slowly

evolved sites predicted by Rate4Site are scattered and do not form

clearly bounded regions. In addition, we have shown that

GP4Rate fits the B7-1 dataset much better than Rate4Site based

on Bayesian model comparison.

The performance gap between GP4Rate and Rate4Site will be

maximized when the protein sequences are very similar to each

other and the spatial correlation is strong. Therefore, GP4Rate is

most suitable to analyze small gene families, e.g. new genes or

small gene families derived from recent gene duplication events.

When the spatial correlation of substitution rates is weak,

GP4Rate and Rate4Site may generate similar results. For

example, we applied GP4Rate to 38 RH1 genes [39] and found

that the spatial correlation of substitution rates is much weaker in

the RH1 dataset than that in the B7-1 dataset (data not shown). In

this case, the difference between GP4Rate and Rate4Site is subtle.

Therefore, a rigorous model comparison as shown in the case

study of B7-1 genes may be important in data analyses.

Because GP4Rate is based on MCMC simulations, it is slower

than Rate4Site. For example, it took about 1 CPU day for

GP4Rate to analyze the B7-1 dataset. However, GP4Rate is still

very useful for small scale problems, e.g. guiding mutagenesis

experiments, since the experimental time is much longer than the

execution time of GP4Rate. The time cost of GP4Rate can be

reduced in the future using advanced algorithms, e.g. more

Figure 6. The empirical marginal density functions of the
hyperparameters in the case study of B7-1 genes. The unit of the
characteristic length scale is Å while the signal standard deviation is
unitless.
doi:10.1371/journal.pcbi.1003429.g006
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efficient MCMC sampling algorithms or sparse approximations of

the Gaussian process [40]. The most time consuming step of

GP4Rate is the Cholesky decomposition whose time complexity is

a cubic function of the number of sites in the alignment. In

practice, a simple method to reduce the computational time is to

perform the analyses based on a selected subset of amino acid sites.

For example, it is well known that surface residues are more likely

to be involved in interactions with other proteins or ligands. If

these interactions are most interesting to users, a fast analysis based

only on the surface residues may be appropriate.

In addition to modeling the spatial correlation of site-specific

substitution rates, protein tertiary structures have been used to

improve phylogenetic models and the estimation of site-specific

substitution rates in a few other studies [41–46]. These methods

can be roughly divided into two categories. The first category of

models assumes that the fixation probability of new mutations is

determined by how the mutations influence the stability of the

protein [41–43]. Typically it is assumed that mutations which

stabilize the protein structure are more likely to be fixed than

mutations which destabilize the protein structure. Unlike this

category of models, the Phylo-GPM framework does not provide a

mechanistic interpretation for the estimated substitution rates.

However, GP4Rate may be more powerful to identify functional

regions which are not directly relevant to the stability of proteins.

The second category of models assumes that the site-specific

substitution rates or dN/dS ratios are influenced by the local

environment of the focal site in the protein tertiary structure [44–

46]. For example, it has been shown that the dN/dS ratio of a site is

influenced by its relative solvent accessibility (RSA) [44–46]. It is

relatively straightforward to combine the Phylo-GPM framework

with local features of amino acid sites. For example, in this study

we assume that the site-specific log substitution rates follow a zero-

mean Gaussian distribution. We may replace the zero-mean rate

vector by a new one in which the mean of log substitution rate at a

site is a linear function of its local features, e.g. RSA. It is very

interesting to investigate whether adding local features to the

Phylo-GPM framework improves model fitting in the future.

The Phylo-GPM framework proposed in this paper may be

used as a general tool to model the spatial correlation of patterns in

the protein tertiary structure. The phylogenetic hidden Markov

model (Phylo-HMM) is a popular method which combines the

hidden Markov model and statistical phylogenetics [47]. It has

been used to model the spatial correlation of evolutionary patterns

along primary sequences [17,48–53]. The Phylo-GPM framework

may be viewed as an extension of the Phylo-HMM to the protein

tertiary structures. In the future, new methods based on the Phylo-

GPM framework may be developed to identify functional

divergence or positive selection in proteins.

Models

Overall design of the phylogenetic Gaussian process
model

GP4Rate is an open-source software application written in C++
and its source code is freely available from http://info.mcmaster.

ca/yifei/software.html. GP4Rate combines the protein alignment

Figure 7. The locations of the 20 most conserved sites in the protein tertiary structure of the human B7-1 protein (PDB ID: 1I8L). The
blue sites are the 20 most conserved sites and the space-filled atoms correspond to the experimentally verified functional sites in the IgC domain [38].
The experimentally verified functional sites in the IgV domain are not shown. The protein structures are visualized by Jmol [59]. A list of the most
conserved sites can be found in the online Supplementary Material. (A) the 20 most conserved sites predicted by GP4Rate; (B) the 20 most conserved
sites predicted by Rate4Site.
doi:10.1371/journal.pcbi.1003429.g007
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and the protein tertiary structure to infer groups of close-located

functional sites evolved at low rate. We assume that the protein

alignment, the phylogenetic tree, and the tertiary structure of one

protein in the alignment are provided by users. In GP4Rate, both

the topology and the branch lengths of the phylogenetic tree are

fixed to improve the speed of the program. In addition, we assume

that the protein sequences in the alignment belong to the same

gene family and have very similar functions, which implies that the

functionally important sites do not vary among sequences and the

site-specific substitution rates do not change over time. However,

we do assume that the substitution rates can vary across different

sites. The site-specific rates are used as proxies of functionality:

very low substitution rates suggest the corresponding sites are

functionally important.

In most molecular phylogenetic programs, e.g. Rate4Site [7],

PAML [54], and PhyML [37], the site-specific substitution rates

are assumed to be i.i.d. and follow a simple discrete distribution,

usually the discrete Gamma distribution [25]. Recently, Dirichlet

process pirors have been used to model the variable substitution

rates over sites to overcome the inflexibility of the simple discrete

distributions [55], but it is still assumed that the site-specific

substitution rates are i.i.d. The i.i.d. assumption implies that slowly

evolved functional sites are scattered in the protein tertiary

structure. The major contribution of this paper is to relax the i.i.d.

assumption using the Gaussian process [21] which can naturally

capture the spatial correlation of site-specific substitution rates in

the protein tertiary structure.

In GP4Rate, the parameters are estimated using the Bayesian

principle. In Bayesian statistics, the parameters are random

variables and the conditional distribution of parameters given

data, i.e. the posterior distribution, gives us an estimation of

parameters. For simplicity of presentation, first we focus on the

vector of site-specific log substitution rates, which is the collection

of log values of substitution rates at all amino acid sites, and defer

the discussions on the other parameters. The posterior distribution

of the vector of log site-specific substitution rates can be defined by

the following equation,

P(WDX,T )!P(W) P
N

i~1
Li(Wi; Xi,T ): ð2Þ

In the equation, W is the vector of site-specific log substitution

rates, X is the protein alignment while Xi is its i-th column, and T
is the phylogenetic tree with the associated branch lengths.

Li(Wi; Xi,T ) is the site-specific likelihood at site i, which is a

function of the site-specific log substitution rate at site i. P(W) is the

fundamentally important prior distribution of site-specific log

substitution rates.

A realistic P(W) should be able to describe the spatial

correlation of site-specific substitution rates. In GP4Rate, P(W)
is specified by a zero-mean Gaussian process. A Gaussian process

is a probability measure defined over a function space. In the

statistical modeling of site-specific substitution rates, we are only

interested in the marginal distribution of the Gaussian process over

a finite set of spatial locations which correspond to the locations of

residues in the protein tertiary structure. By the definition of

Gaussian processes, the marginal distribution of a zero-mean

Gaussian process is a zero-mean multivariate Gaussian distribu-

tion [21]. Therefore, P(W) may be rewritten in the following

format,

P(WDD,l,s)~
1

(2p)
N
2 DS(D,l,s)D

1
2

exp({
WT S(D,l,s){1W

2
): ð3Þ

The correlation of site-specific substitution rates is determined by

the covariance matrix S(D,l,s), in which D is the pairwise

distance matrix which measures the Euclidean distance between

the a{carbon atoms of amino acids in the protein tertiary

structure. Furthermore, the covariance function is parameterized

by two hyperparameters, l and s, which measure the strength of

spatial correlation and the variation of substitution rates across

sites, respectively. By plugging P(WDD,l,s) and P(l,s), the prior

distribution of the hyperparameters, into Equation 2, it can be

expanded to the following format,

P(W,l,sDX,D,T )!P(l,s)P(WDD,l,s) P
N

i~1
Li(Wi; Xi,T ): ð4Þ

In the following sections, we will provide more details on the

specifications of the right-hand side terms of Equation 4 and the

MCMC algorithm for the sampling of parameters, i.e. W, l, and s.

Gaussian process as a prior distribution of site-specific
log substitution rates

As mentioned above, W follows a zero-mean multivariate

Gaussian distribution (Equation 3). In the multivariate Gaussian

distribution, the covariance matrix S is specified by a covariance

function. By default, GP4Rate uses the Matérn 1.5 covariance

function,

Sij~s2(1z

ffiffiffi

3
p

dij

l
)exp({

ffiffiffi

3
p

dij

l
)z i~j(i,j)J

2: ð5Þ

In the equation, Sij is an element in the covariance matrix

S(D,l,s) while dij is an element in the distance matrix D which

measures the Euclidean distance between site i and site j in the

protein tertiary structure. i~j(i,j) is an indicator function which is

equal to 1 if site i and site j are the same site and equal to 0

otherwise. The covariance function contains two free parameters, l

and s. l is the characteristic length which determines the strength

of the spatial correlation of substitution rates. If it is small, the

spatial correlation is weak and only nearby sites have similar log

substitution rates. Instead, if it is large, the spatial correlation is

strong and distant sites can have similar log substitution rates. s is

the signal standard deviation which measures the marginal

variation of log substitution rates at a single site. Small s implies

that the variation of log substitution rates is small. J is a fixed

‘‘jitter’’ term which introduces a small amount of noise to the

diagonal elements in S(D,l,s). The ‘‘jitter’’ term ensures that the

Cholesky decomposition, a critical numerical algorithm in the

MCMC simulations, is numerically stable and improves the

mixing of the MCMC simulations [56]. The ‘‘jitter’’ term is

usually a small positive number (e.g. J~0:1), so it does not

significantly change the behavior of the covariance function [56].

Clearly Equation 5 implies that the covariance of log substitution

rates are decreasing with increasing Euclidean distance between

two amino acid sites, which is compatible with our intuition that

nearby sites tend to have similar substitution rates due to similar

functions.

In addition to the Matérn 1.5 covariance function, GP4Rate has

two alternative covariance functions for users to choose. One is the

Matérn 2.5 covariance function,

Sij~s2(1z

ffiffiffi

5
p

dij

l
z

5d2
ij

3l2
)exp({

ffiffiffi

5
p

dij

l
)z i~j(i,j)J

2: ð6Þ

Phylogenetic Gaussian Process Model

PLOS Computational Biology | www.ploscompbiol.org 10 January 2014 | Volume 10 | Issue 1 | e1003429



The other is the widely used squared-exponential covariance

function,

Sij~s2 exp({
d2

ij

2l
)z i~j(i,j)J

2: ð7Þ

The three covariance functions are all special cases of the

general Matérn covariance function [21]. The major difference

between them is that the three covariance functions describe

different levels of smoothness in the spatial distribution of site-

specific log substitution rates [21]. In the squared-exponential

covariance function, the site-specific log substitution rates are

smoothly distributed in the protein tertiary structure. Therefore, it

is most suitable to model proteins with relatively large functional

regions. In contrast, the Matérn 1.5 covariance function is the least

smooth one and is suitable to model proteins with small functional

patches. In this paper, we used the Matérn 1.5 covariance function

in all analyses to allow for proteins that may have relatively small

functional patches and could have nearby sites with very different

substitution rates.

The hyperparameters in the covariance functions, i.e. l and s,

follow a prior distribution P(l,s). We assume that the character-

istic length, l, and the signal standard deviation, s, are

independent and follow exponential distributions. Therefore, the

prior distribution is defined by the following probability density

function,

P(l,s)~m{1
l m{1

s exp({
l

ml

)exp({
s

ms
): ð8Þ

We choose ml and ms to be large so that the prior distribution has

relatively weak information.

Approximation of the phylogenetic likelihood function
To fully define the unnormalized posterior distribution (Equa-

tion 4), the likelihood L(Wi; Xi,T ) must be specified. We follow the

standard phylogenetic model first described by Felsenstein [22].

We assume that the substitution model in the phylogenetic

likelihood function is fixed to the JTT model [26,27] while the

phylogenetic tree is fixed to the one provided by the users. The

likelihood can be calculated by the pruning algorithm and the gaps

in the alignment may be treated as missing data [22]. However,

the calculation of the likelihood function can easily become the

most time consuming step in the MCMC sampling, because we

need to evaluate the likelihood millions of times. We have applied

a simple linear interpolation method to reduce the computational

time of the likelihood evaluation [57]. GP4Rate calculates the site-

specific log likelihoods at a set of evenly spaced substitution rates

and then approximates the site-specific log likelihoods at other

rates by interpolation. Note that the linear interpolation is

performed based on the site-specific substitution rates while W is

the vector of their log values, so an exponential transformation, i.e.

exp(Wi), must be performed for each site i before the interpolation.

By default, GP4Rate calculates and caches the site-specific log

likelihoods at 4000 evenly spaced substitution rates, ranging from

10{6 to 20. In each step of the likelihood calculation, if exp(Wi) is

between 10{6 and 20, the corresponding site-specific log

likelihood is approximated by the following formula,

log(Li(Wi; Xi,T ))~

log(Li0)z(log(Li1){log(Li0))
exp(Wi){Ri0

Ri1{Ri0
:

ð9Þ

On the right hand side, Ri0 and Ri1 are the two cached

substitution rates which are closest to exp(Wi), while log(Li0) and

log(Li1) are the site-specific log likelihoods of Ri0 and Ri1,

respectively. In practice, exp(Wi) is rarely bigger than 20 or

smaller than 10{6. If it is indeed outside this, the log likelihood at

the closest boundary is used as the approximate log likelihood.

Markov Chain Monte Carlo sampling
GP4Rate uses MCMC simulations to sample parameters from

their posterior distribution. The algorithm follows previous studies

by Neal [56,58]. As described in the previous sections, the

parameters in GP4Rate have two components. The first one is W
and the second one consists of s and l. In each iteration, the two

components are sequentially updated by the Metropolis algorithm

with symmetric proposals [23,24].

To update W, GP4Rate uses a proposal distribution suggested

by Neal [56],

W
0
~Wz Lz: ð10Þ

In the equation, W is the current vector of site-specific log

substitution rates while W
0

is the new proposal. L is the Cholesky

decomposition of the covariance matrix S(D,l,s) and z is a vector

of independent standard Gaussian variables. The proposal

distribution is tuned by the constant, e. A large e leads to large

changes of W while small e leads to small changes. e is chosen to

make the acceptance rate of new proposals close to 0.25.

Instead of updating s and l in the original scale, we transform

them to the log scale. The use of a log scale removes the

boundaries of the two parameters and makes the MCMC

sampling of s and l independent from the scale of the data [56].

The two parameters are updated by a sliding window method with

a bivariate Gaussian proposal [58]. The Gaussian proposal is

tuned so that the acceptance rate of new proposals is close to 0.25.

In practice, the update of W is much faster than the update of s
and l, because the update of s and l requires a Cholesky

decomposition whose time complexity is O(N3), in which N is the

total number of sites in the alignment. Therefore, it is reasonable

to update W more often than s and l [56]. In each iteration W is

updated 50 times while the pair of s and l is updated once. After

every 10 iterations, the values of l, s, and exp(W) are recorded.
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