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Elevation in sphingolipid upon SARS-CoV-2 infection:
possible implications for COVID-19 pathology
Einat B Vitner , Roy Avraham , Boaz Politi, Sharon Melamed, Tomer Israely

Understanding pathways that might impact coronavirus disease
2019 (COVID-19) manifestations and disease outcomes is nec-
essary for better disease management and for therapeutic de-
velopment. Here, we analyzed alterations in sphingolipid (SL)
levels upon infection with severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2). SARS-CoV-2 infection induced ele-
vation of SL levels in both cells and sera of infected mice. A
significant increase in glycosphingolipid levels was induced early
post SARS-CoV-2 infection, which was essential for viral repli-
cation. This elevation could be reversed by treatment with gluco-
sylceramide synthase inhibitors. Levels of sphinganine, sphingosine,
GA1, and GM3 were significantly increased in both cells and the
murinemodel upon SARS-CoV-2 infection. The potential involvement
of SLs in COVID-19 pathology is discussed.
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Introduction

In December 2019, the novel coronavirus severe acute respiratory
syndrome coronavirus-2 (SARS-CoV-2) was identified as the causa-
tive agent of a cluster of acute atypical pneumonia cases in the city of
Wuhan, China (Zhou et al, 2020). In February 2020, the World Health
Organization named the disease COVID-19 (Yang & Wang, 2020).

COVID-19 primarily manifests as a respiratory tract infection
causing hypoxemic respiratory failure. However, there is an enor-
mous amount of data demonstrating that it may involve multiple
organ systems, including the nervous, cardiovascular, respiratory,
gastrointestinal, renal, hematopoietic, and immune systems (Erdinc
et al, 2021). Understanding pathological pathways involved in
COVID-19 manifestations might reveal new approaches for thera-
peutic strategies and disease management.

Sphingolipids (SLs) are a major class of eukaryotic cell mem-
brane constituents. In addition to playing a structural role, some SLs
are bioactive and control vital biological functions by regulating signal
transduction pathways involved in several processes. Some bioactive
SLs are implicated in pathological processes, including inflammation-
associated illnesses such as atherosclerosis, rheumatoid arthritis,

inflammatory bowel disease, type II diabetes, obesity, cancer, and
neurological and neurodegenerative diseases (Ogretmen, 2018;
D’Angelo et al, 2019; Hussain et al, 2019; Gomez-Larrauri et al,
2020). Furthermore, SLs play an important role in the control of
virus replication and the innate immune response (Schneider-
Schaulies & Schneider-Schaulies, 2013; Schneider-Schaulies &
Schneider-Schaulies, 2015; Bezgovsek et al, 2018; Yager & Konan,
2019; Melamed et al, 2020; Vitner, 2020).

Bioactive SLs are regulated by various enzymes and fluxes of
different metabolites, with ~40 enzymes involved in their meta-
bolism in mammals (Hannun & Obeid, 2018) (see Fig S1 for the SL
synthesis pathway). Glycosphingolipids (GSLs) are a heterogeneous
group of membrane lipids formed by a Cer backbone covalently
linked to a glycan moiety. Glucosphingolipids depend initially on
the enzyme glucosylceramide (GlcCer) synthase (GCS), which at-
taches glucose as the first residue to the C1 hydroxyl position
(D’Angelo et al, 2013).

Recent studies suggested a role of sphingolipids in modulating
SARS-CoV-2 infection (Carpinteiro et al, 2020; Törnquist et al, 2021). In
addition, we have recently shown that the synthesis of GSLs is
necessary to support SARS-CoV-2 replication in vitro, suggesting
alterations in SL levels upon SARS-CoV-2 infection (Vitner et al, 2021).

In this study, we show that SARS-CoV-2 induces an increase in
the levels of SLs in vitro and in vivo and discuss the possible
implications of such alterations.

Results

SARS-CoV-2 infection induces an increase in SL levels early upon
infection

Previously reported data suggest that inhibiting GCS interrupts
early stages in the replication cycle of SARS-CoV-2 (Vitner et al,
2021). Thus, SL levels were examined in Vero E6 cells at an early
stage upon infection with SARS-CoV-2. At 3 hours post infection
(hpi) with SARS-CoV-2, a significant elevation in 3-ketosphinganine
(3KSa) (d16:0, d18:0, d18:1, and d20:0), sphinganine (Sa), sphingosine
(So), and sphinganine-1-phosphate (d18:0-P and Sa1P) levels was
detected (Fig 1).
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The alteration of SL levels was also reflected by an elevation in the
levels of many other downstream SLs; DHCer and Cer levels were
significantly elevated in SARS-CoV-2-infected cells (Fig 2). In addition,
SARS-CoV-2 induced a significant elevation in GSL levels and, to a
lesser extent, in DHSM, SM and C1P levels (Fig 2). Hexosylceramide
(HexCer, β-galactosylceramide [GalCer] and β-GlcCer) levels were
mostly elevated, as well as the levels of lactosylceramides (LacCers)
(Fig 2). The elevation was not specific to certain fatty acid chain
lengths and seemed to reflect the distribution of the different
species in Vero E6 cells (Fig 2). LacCer is the precursor of gangliosides,
a family of sialic acid-containing GSLs, as well as of asialo-series
gangliosides (Yu et al, 2011). Infection of E6 cells with SARS-CoV-2
induced elevation in the levels of the asialo-gangliosides GA1 and
GA2 (Fig 3A) and the gangliosides GM2 and GM3 (Fig 3B). These data
indicate elevation in the levels of many SLs, including GSLs and
gangliosides, early after infection with SARS-CoV-2.

A GCS inhibitor prevented the elevation in GSL levels upon
SARS-CoV-2 infection

We have recently shown that GCS inhibitors disrupt the early stages
of SARS-CoV-2 replication (Vitner et al, 2021). The antiviral effect of
GCS inhibitors could be due to decreased levels of GSLs or elevated
levels of ceramide. To determine whichmechanism was applied, we
examined the influence of a GCS inhibitor on the SL profile upon
SARS-CoV-2 infection. The GCS inhibitor that was examined was
(1R,2R)-nonanoic acid [2-(29,39-dihydro-benzo [1,4] dioxin-69-yl)-2-
hydroxy-1-pyrrolidin-1-ylmethyl-ethyl]-amide-l-tartaric acid salt
(Genz-123346), termed hereafter GZ-346. GZ-346 is an analog of the
FDA-approved drug eliglustat, which is indicated for the long-term
treatment of adult patients with Gaucher disease type 1 (GD1) (Zhao
et al, 2007). GZ-346 significantly prevented the elevation in the
levels of HexCer, GA1, GA2, and GM3 upon SARS-CoV-2 infection (Fig
4). However, no significant differences in the levels of Cer, LacCer,
SM, and GM2 were detected (Fig 4). Our data suggest that the in-
duction of GSL biosynthesis by SARS-CoV-2 early upon infection is
necessary for viral replication.

SARS-CoV-2 infection induces elevation in the levels of SLs in
mouse sera

Next, we examined whether the elevation in the levels of SLs in-
duced by SARS-CoV-2 was also applied in vivo. Alterations in SL

levels are implicated in the pathogenesis of various diseases, in-
cluding lysosomal storage diseases, cardiovascular diseases, and
neurodegenerative disorders (Platt, 2014; Borodzicz et al, 2015;
Alessenko & Albi, 2020), and might have implications in SARS-CoV-2
infection pathology. SL levels were measured in serum 5 days post
infection (dpi) of K18-hACE2-transgenic mice with SARS-CoV-2 just
before the appearance of symptoms (Fig S2A). Five mice were
analyzed: two asymptomatic mice that survived the infection and
three symptomatic mice that succumbed to death (Fig S2A). Al-
terations in SL levels were detected in all mice. Amarked increase in
the levels of Sa, So, sphinganine d18:2, sphinganine d20:0, and Sa1P
(44-, 24-, 42-, 5-, and 1.4-fold increases, respectively) were detected
in the serum of SARS-CoV-2-infected mice (Figs 5 and S2B), sug-
gesting significant activation of the SL biosynthesis pathway by
SARS-CoV-2 in vivo.

In addition to those for Sa, alterations in downstream SL levels
were also detected: DHCer (C16:0 and C:20), Cer (C6:0 and C24:0),
HexCer (C14:0, C16:0, C18:1, C22:0, and C23:0), DHSM (C16:0, C18:0, and
C18:1), SM (C10:0, C12:0, C16:0, C18:0, C18:1, C20:1, and C21:0), and C1P
(C12:0, C14:0, C16:0, C18:0, C18:1, and C20:0) levels were elevated in the
sera of SARS-CoV-2–infected mice (Figs 6 and S2B). The levels of
LacCer were unaltered (Fig 6).

In addition, similar to the elevation observed in infected cells
(Fig 3), the levels of GA1 (C:16), GA2 (C16:0 and C24:0), and GM3 (C:16:0)
were significantly increased in the sera of SARS-CoV-2–infected
mice (Figs 7 and S2B).

Discussion

SARS-CoV-2 infection induces elevation of SLs not only in cells but
also in vivo. Levels of Sa, So, GA1, and GM3 were significantly in-
creased in both cells and the murine model upon SARS-CoV-2
infection. The mechanism by which SARS-CoV-2 induces eleva-
tion in SLs needs to be elucidated. It was recently shown that
pseudoviral SARS-CoV-2 induces acid sphingomyelinase activity,
which affects the levels of ceramide (Carpinteiro et al, 2020).
However, our data, demonstrating elevation of several SL species,
together with previous data showing that inhibition of GCS is im-
portant to viral replication, suggest that the activity of an early enzyme
in the SL synthesis pathway is elevated. These data are consistent
with previous studies demonstrating the involvement of fatty acid
synthase (FASN) in the replication of many viruses (Li et al, 2004;

Figure 1. SARS-CoV-2 infection induces elevation of
sphingoid base levels in vitro.
Vero E6 cells were infected with SARS-CoV-2 at a MOI of
5, and SL levels were quantified at 3 hpi by LC–MS. 3KSa,
3-ketosphinganine; Sa, sphinganine; Sa1P,
sphinganine-1-phosphate; S1P, sphingosine-1-
phosphate. Data are the means of four biological
replicates ± SEMs. Statistical analysis was performed
using a two-tailed unpaired t test. P-values are
indicated by asterisks, as follows: *P < 0.05, **P < 0.01,
and ****P < 0.0001. Differences with a P-value of 0.05
or less were considered significant. Graphs were
generated using GraphPad Prism software version 8.4.3.
Complete dataset in Table S1.
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Kapadia & Chisari, 2005; Machesky et al, 2008; Yang et al, 2008;
Diamond et al, 2010; Heaton et al, 2010; Perera et al, 2012; Huang et al,
2013; Tongluan et al, 2017; Chotiwan et al, 2018). Although the focus of
this study is SLs, it is reasonable that other lipid levels are also altered
by SARS-CoV-2.

SARS-CoV-2 significantly increased the levels of Sa and So in the
serum. Alterations in So levels in symptomatic COVID-19 patients
were recently described (Janneh et al, 2021). However, whereas
symptomatic COVID-19 patients exhibited a robust decrease in their
serum sphingosine levels, the mice exhibited the opposite effect.
This difference might be a result of the time point of serum de-
tection, and more studies should be conducted to answer this
question.

Increases in the serum levels of Sa and So have implications in
cardiovascular dysfunction; fumonisin B1 (FB1), a mycotoxin, has
been shown to lead to altered SL biosynthesis and dose-dependent
increases in serum and tissue Sa and So concentrations (Riley et al,
1993). In pigs, ingestion of FB1 has been shown to affect the car-
diovascular system, causing cardiovascular dysfunction (Smith
et al, 1996; Smith et al, 1999; Constable et al, 2000). Moreover, SL
metabolism has been suggested to be involved in the patho-
physiology of Kawasaki disease (KD), an acute systemic vasculitis
(Konno et al, 2015). Inhibition of sphingolipid de novo synthesis has
been shown to improve atherogenesis signs (Park et al, 2004; Hojjati
et al, 2005; Glaros et al, 2007; Hornemann & Worgall, 2013; Borodzicz
et al, 2015). An association between COVID-19 cardiovascular dis-
ease and KD has been reported (Viner & Whittaker, 2020). Preex-
isting cardiovascular disease seems to be linked with worse
outcomes and increased risk of death in patients with COVID-19,
whereas COVID-19 itself can also induce myocardial injury, ar-
rhythmia, acute coronary syndrome and venous thromboembolism
(Nishiga et al, 2020). Whether elevation of SL levels contributes to
cardiovascular manifestations observed in SARS-CoV-2 has not
been examined.

The elevation of gangliosides in response to SARS-CoV-2 is in-
triguing. Gangliosides are ubiquitously found in tissues and body
fluids and are most abundantly expressed in the nervous system
(Sipione et al, 2020). Anti-ganglioside antibodies (AGAs) are asso-
ciated with an autoimmune condition in which the host’s immune
system attacks the gangliosides of neurons (Willison et al, 2016).
There is growing evidence indicating that neurological manifes-
tations occur in patients with COVID-19 (Sharifian-Dorche et al,
2020; Andalib et al, 2021; Shehata et al, 2021). Our data showing
increased levels of gangliosides in the sera of SARS-CoV-2–infected
mice can provide a distinct potential mechanism by which elevated
levels of host GSLs upon viral infection may trigger AGA generation.

GM1 is the most common AGA found in patients with GBS,
whereas GQ1b is associated with MFS. Aside from one case report, a
review of available articles yields no reported cases of COVID-19-
related GBS or MFS that included positive tests for GM1 or GQ1b
(Dufour et al, 2021). Our data indicate no elevation in GM1 levels in
cells or sera upon SARS-CoV-2 infection, but GA1, GA2, and mostlyFigure 2. SARS-CoV-2 infection induces elevation of GSL levels in vitro.

Vero E6 cells were infected with SARS-CoV-2 at a MOI of 5, and SL levels were
quantified at 3 hpi by LC–MS. DHCer, dihydroceramide; Cer, ceramide; HexCer,
hexosylceramide; LacCer, lactosylceramide; DHSM, dihydrosphingomyelin; SM,
sphingomyelin; C1P, ceramide-1-phosphate. Data are the means of four
biological replicates ± SEMs. Statistical analysis was performed using a two-tailed
unpaired t test. P-values are indicated by asterisks, as follows: *P < 0.05, **P < 0.01,

and ***P < 0.001. Differences with a P-value of 0.05 or less were considered
significant. Graphs were generated using GraphPad Prism software version 8.4.3.
Complete dataset in Table S1.
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GM3 levels were elevated (Figs 3 and 7). Interestingly, GM3 is a major
ganglioside in the lungs (Iwamori et al, 1984) that is primarily in-
fected by SARS-CoV-2. However, it is important to note that our
study was performed in a transgenic mouse model and in Vero E6
cells. The specific models that were examined might affect the GSL
profile that is being altered. Thus, a comprehensive unlimited
analysis of gangliosides and anti-GSL antibodies in patients with
COVID-19 might reveal novel target(s).

Interestingly, the SL elevation observed in the asymptomatic
mice was similar to that observed in symptomatic mice. Thus, the
elevation of SLs does not seem to be involved directly in patho-
genesis and disease severity. However, if elevated SL indeed
contributes to long-term manifestations, our data suggest that SL-
related complications might also be present in asymptomatic in-
dividuals upon infection with SARS-CoV-2. This can suggest an
explanation for signs, such as neurological and cardiovascular
signs, with unknown etiology.

In addition to their potential role in pathology, SLs were found to
be significantly useful markers of disease prediction, diagnosis,
prognosis and treatment monitoring (Matanes et al, 2019). SLs have
been linked to the pathophysiology of many diseases in the human
body, including cardiovascular diseases, cancer, metabolic disor-
ders, dementia, and mental diseases (Matanes et al, 2019) and

recently also in COVID-19 (Janneh et al, 2021). Our data, showing
elevation in SL levels in all infected mice, suggest the possible use
of SLs as diagnostic biomarkers for viral diseases. This possibility
should be further evaluated in patients rather than in mice.

Our data support the need for further research on the role of SLs
in SARS-CoV-2 infection. First, SL quantification in patient serumwill
delineate whether the enrichment observed in the transgenic
mouse model recapitulates the enrichment in humans. In addition,
quantification of SLs upon other viral infections is needed to de-
termine whether alterations in SL levels are common to many
viruses. Next, studies exploring the role of SLs in cardiovascular and
neurological complications in COVID-19 patients might open new
therapeutic targets. The availability of FDA-approved drugs with the
capacity to restore the elevation of serum GSL levels may reveal
new strategies to prevent COVID-19 clinical complications.

Materials and Methods

Cell sample preparation

Vero E6 (ATCC CRL-1586) cells were obtained from the American
Type Culture Collection. Cells were grown in DMEM supplemented
with 10% FBS, MEM nonessential amino acids (NEAAs), 2 mM
L-glutamine, 100 units/ml penicillin, 0.1 mg/ml streptomycin, and
12.5 units/ml nystatin (P/S/N) (Biological Industries). Cells were
cultured at 37°C in a 5% CO2 and 95% air atmosphere.

Vero E6 cells were seeded at a density of 1 × 106 cells per 60 mm
plate. After incubating overnight, cells were treated in four repli-
cates with 10 μM GZ-346. The cells were infected 1 h later with SARS-
CoV-2 (MOI: 5). At 3 hpi, the cells were washed three times in cold
PBS and collected with a rubber policeman.

GZ-346 ((1R,2R)-nonanoic acid [2-(29,39-dihydro-benzo [1,4] di-
oxin-69-yl)-2-hydroxy-1-pyrrolidin-1-ylmethyl-ethyl]-amide-l-tartaric
acid salt) was obtained from Sanofi. The compound was stored as a 5
mM stock solution in PBS at −20°C until use.

Animal experiment

Treatment of animals was in accordance with regulations outlined
in the U.S. Department of Agriculture (USDA) Animal Welfare Act and
the conditions specified in the Guide for Care and Use of Laboratory
Animals (National Institutes of Health, 2011). Animal studies were
approved by the local ethics committee on animal experiments
(protocol number M-51-20). Male and female K18-hACE2 transgenic
(B6.CgTg(K18ACE2)2Prlmn/J HEMI) mice (Jackson Laboratories) were
maintained at 20–22°C and a relative humidity of 50 ± 10% on a 12-h
light/dark cycle, fed commercial rodent chow (Koffolk Inc.), and
provided with tap water ad libitum. Animals were 6- to 8-wk old. All
animal experiments involving SARS-CoV-2 were conducted in a
BSL3 facility. Infection experiments were carried out using the
SARS-CoV-2 isolate Human 2019-nCoV ex China strain BavPat1/2020,
which was kindly provided by Prof. Christian Drosten (Charité)
through the European Virus Archive—Global (EVAg Ref-SKU: 026V-
03883). The original viral isolate was amplified by five passages,
quantified by a plaque titration assay in Vero E6 cells, and stored at

Figure 3. SARS-CoV-2 infection induces elevation of ganglioside levels in vitro.
Vero E6 cells were infected with SARS-CoV-2 at a MOI of 5, and ganglioside
levels were detected at 3 hpi by LC–MS. (A) Levels of asialogangliosides. (B) Levels
of gangliosides. Data are themeans of four biological replicates ± SEMs. The LC–MS
peak area was divided by milligrams of protein in the sample for calibration.
Statistical analysis was performed using a two-tailed unpaired t test. P-values are
indicated by asterisks, as follows: *P < 0.05 and **P < 0.01. Differences with a
P-value of 0.05 or less were considered significant. Graphs were generated
using GraphPad Prism software version 8.4.3. Complete dataset in Table S2.
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−80°C until use. The viral stock DNA sequence and coding capacity
were confirmed as recently reported (Finkel et al, 2021). The SARS-
CoV-2 BavPat1/2020 virus (20 pfu) diluted in PBS supplemented
with 2% FBS (Biological Industries) was used to infect animals by
intranasal instillation (20 μl) of anesthetized mice. Control groups
were administered PBS. Serum samples were collected at day 5 post
infection from SARS-CoV-2–infected and control mice. All sera were
heat-inactivated (HI) (at 56°C for 30 min).

Sphingolipid quantification

Sample preparation
Each cell pellet and each 50 μl serum sample were suspended in
100 μl of methanol/chloroform (1:1), and the samples were sent to
The Metabolomics Innovation Centre (TMIC) for analysis. Each
sample was mixed with 100 μl of a mixture of 5 deuterium-labeled

sphingolipids as internal standards and 300 μl of methanol/
chloroform (3:1) containing BHT as an antioxidant. The mixture
was vortexed for 2 min at 1,000g and then ultrasonicated in an ice-
water bath for 5 min before centrifugal clarification for 10 min at
21,000g. The clarified supernatant was collected for LC-MRM/MS,
and the protein pellet was used to perform protein quantitation
using a standardized Bradford procedure.

Calibration solutions and LC–MS
A mixed standard-substance stock solution of targeted sphingo-
lipids was prepared at a concentration of 40 μM for each compound
in methanol-chloroform (3:1) containing the same internal stan-
dards. This solution was serially diluted 1:4 (vol/vol) with the same
solvent to obtain 10 calibration solutions. 10-μl aliquots of the
calibration solutions and the sample solutions were injected onto
an LC column (C8, 2.1 × 50 mm, 1.7 μm) to perform UPLC-MS/MS on a

Figure 4. Treatment with GZ-346 prevents the
elevation in the levels of HexCer and gangliosides
upon SARS-CoV-2 infection in vitro.
Vero E6 cells were infected with SARS-CoV-2 at a MOI of
5 with or without GZ-346 (10 μM). GZ-346 was added
to the medium 1 h before infection. Cer, ceramide;
HexCer, hexosylceramide; LacCer, lactosylceramide; SM,
sphingomyelin; GA1, asialo GM1; GA2, asialo GM2. Data
are the means of four biological replicates ± SEMs.
Statistical analysis was performed using one-way
ANOVA followed by Tukey’smultiple comparison test.
P-values are indicated by asterisks, as follows: *P <
0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001.
Differences with a P-value of 0.05 or less were
considered significant. Graphs and analysis were
performed using GraphPad Prism software version 8.4.3.
Complete dataset in Table S1.

Figure 5. SARS-CoV-2 infection induces elevation in
sphinganine levels in murine serum.
K18-hACE2 transgenic mice were infected with SARS-
CoV-2 (20 pfu, intranasally inoculated, n = 5) or
uninfected (control, n = 4). Sphingoid base levels in
serum samples obtained at day 5 post infection were
analyzed by LC–MS. 3KSa, 3-ketosphinganine; Sa,
sphinganine; So, sphingosine; Sa1P, sphinganine-1-
phosphate; S1P, sphingosine-1-phosphate. Data are
means± SEMs. Statistical analysis was performed using
a two-tailed unpaired t test. P-values are indicated
by asterisks, as follows: *P < 0.05, and ****P < 0.0001.
Differences with a P-value of 0.05 or less were
considered significant. Graphs were generated using
GraphPad Prism software version 8.4.3. Complete
dataset in Table S3.
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Waters Acquity UPLC system coupled to a 4000 QTRAP mass
spectrometer, which was operated in multiple-reaction monitoring
(MRM) mode with positive ion detection for sphingolipids and
negative ion detection for sphingolipid phosphates. The mobile
phase was 0.01% formic acid in water and acetonitrile-isopropanol
(2:1) for binary-solvent gradient elution (25–100% organic solvent in
12.5 min), followed by a 3-min column cleanup and 4-min column
equilibration at 400 μl/min and 55°C. The ion transitions for MRM
detection of each sphingolipid were optimized by direction infusion
of an individual standard solution to produce two ion transitions
per compound. The UPLC-MRM/MS data files were recorded using
Sciex Analyst 1.6 software and were processed using Sciex Multi-
Quant 2.0 software. Linear regression calibration curves of indi-
vidual sphingolipids were constructed with internal-standard
calibration, and the concentrations of sphingolipids detected in
each sample were calculated from the calibration curves with the
measured analyte-to-internal standard peak area ratios.

Gangliosides were detected on an LTQ-Orbitrap Velos Pro with
highmass resolution detection (FWHM 60,000 at m/z 400) in a mass
range ofm/z 300–2,000 and in positive ionmode. Gangliosides were
assigned based on comparison of themeasured accuratemasses of
gangliosides to their theoretically calculated masses within an
allowable mass error of 3 ppm and with the aid of standard
substances of the gangliosides GM1, GM2, and GM3. The ion
chromatograms of detected gangliosides were extracted using their
accurate masses within a mass window of 3 ppm, and the peak
areas were used for relative quantitation. Peak area was normalized
to milligrams of protein.

Statistical analysis

Statistical analyseswere performedwith a two-tailed unpaired t test or
one-way ANOVA followed by Tukey’s multiple comparison test, as
indicated in the figure legends. P-values are indicated by asterisks in
the figures, as follows: *P < 0.05, **P < 0.01, ***P < 0.001, and ****P <
0.0001. Differences with a P-value of 0.05 or less were considered
significant. The exact value of n is indicated in the figure legends. Data
for all measurements are expressed as the means ± SEMs. Analyses
were performed using GraphPad Prism software version 8.4.3.

Data Availability

This manuscript does not have large-scale data sets to deposit to
the public databases.

Supplementary Information

Supplementary Information is available at https://doi.org/10.26508/lsa.
202101168.

Figure 6. SARS-CoV-2 infection induces elevation in sphingolipid levels in
murine serum.
K18-hACE2 transgenic mice were infected with SARS-CoV-2 (20 pfu, intranasally
inoculated, n = 5) or uninfected (control, n = 4). Sphingolipid levels in serum
samples obtained at day 5 post infection were analyzed by LC–MS. DHCer,
dihydroceramide; Cer, ceramide; HexCer, hexosylceramide; LacCer,
lactosylceramide; DHSM, dihydrosphingomyelin; SM, sphingomyelin; C1P,

ceramide-1-phosphate. Data are means± SEMs. Statistical analysis was
performed using a two-tailed unpaired t test. P-values are indicated by asterisks,
as follows: *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001. Differences with a
P-value of 0.05 or less were considered significant. Graphs were generated
using GraphPad Prism software version 8.4.3. Complete dataset in Table S3.
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