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Abstract

Yeasts have been widely used for production of bread, beer and wine, as well as for production of bioethanol, but they have also
been designed as cell factories to produce various chemicals, advanced biofuels and recombinant proteins. To systematically under-
stand and rationally engineer yeast metabolism, genome-scale metabolic models (GEMs) have been reconstructed for the model yeast
Saccharomyces cerevisiae and nonconventional yeasts. Here, we review the historical development of yeast GEMs together with their
recent applications, including metabolic flux prediction, cell factory design, culture condition optimization and multi-yeast compara-
tive analysis. Furthermore, we present an emerging effort, namely the integration of proteome constraints into yeast GEMs, resulting
in models with improved performance. At last, we discuss challenges and perspectives on the development of yeast GEMs and the
integration of proteome constraints.
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Introduction
The yeast Saccharomyces cerevisiae is one of the earliest domesti-
cated organisms, as it has been used in food fermentation such as
brewing and baking since ancient times. In the modern era, this
yeast is used as a cell factory, by engineering its metabolism, to
produce diverse compounds, e.g. sustainable biofuels, high-value
chemicals and recombinant proteins (Wang, Huang and Nielsen
2017; Liu et al. 2021; Patra et al. 2021). Gaining extensive knowl-
edge of the metabolism of this yeast is therefore of high impor-
tance to improve the performance of yeast cell factories (Nielsen
and Keasling 2016). Furthermore, understanding the metabolism
of S. cerevisiae, which serves as a eukaryal model organism, is in-
strumental for studying fundamental pathways in other eukary-
otes, especially pathways associated with human diseases (Fer-
reira, Limeta and Nielsen 2019; Yu and Nielsen 2020).

To investigate metabolism, genome-scale metabolic models
(GEMs) have been widely used during the past decades (Kim,
Kim and Lee 2017). A GEM contains a whole set of an organ-
ism’s metabolic reactions with gene–protein–reaction associa-
tions (GPRs), which is a valuable knowledgebase of the organ-
ism’s metabolism. In addition, the GEM can be converted into a
computable format based on reaction stoichiometry, and there-
fore allows to predict genome-scale metabolic fluxes, i.e. rates
of metabolic reactions, using constraint-based modeling methods
(Lewis, Nagarajan and Palsson 2012), typically flux balance anal-
ysis (FBA) (Orth, Thiele and Palsson 2010).

Given the important role in understanding metabolism, GEMs
have been built for various yeast species, including S. cerevisiae and
various nonconventional yeasts (Lopes and Rocha 2017). Here, we
review the historical development of yeast GEMs and very recent

applications. Subsequently, we review emerging modeling frame-
works that improve the predictive power and expand the scope of
basic yeast GEMs. Finally, we shed light on challenges and future
perspectives of modeling yeast metabolism.

History of yeast GEMs
The first yeast GEM named iFF708 was published in 2003, which
was reconstructed for the most studied yeast S. cerevisiae based
on genomic, biochemical and physiological information (Förster
et al. 2003). Originating from this first effort, multiple updates
have been released for the S. cerevisiae GEM, which have been
reviewed (Österlund, Nookaew and Nielsen 2012; Sánchez and
Nielsen 2015; Lopes and Rocha 2017; Chen, Li and Nielsen 2019;
Lu, Kerkhoven and Nielsen 2021; Domenzain et al. 2021a). Here,
we highlight the most impressive feature of each update (Fig. 1).
There were three GEMs of S. cerevisiae directly derived from iFF708:
iND750 introduced five additional compartments (Duarte, Her-
rgård and Palsson 2004), iLL672 fixed unlinked reactions by ei-
ther removing or connecting them based on new biological knowl-
edge (Kuepfer, Sauer and Blank 2005), and iIN800 included a de-
tailed description of lipid metabolism, tRNA synthesis and trans-
port processes (Nookaew et al. 2008). Subsequently, iMM904 mod-
ified existing reactions and GPRs of iND750 and expanded the
content (Mo, Palsson and Herrgård 2009), and iAZ900 identified
120 corrections to iMM904 based on essentiality and synthetic
lethality data (Zomorrodi and Maranas 2010). In order to com-
bine all the knowledge into one model, Yeast1 was reconstructed
as the first genome-scale metabolic reconstruction of S. cerevisiae
using consensus annotation and standard terminology (Herrgård
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Figure 1. Development of GEMs of S. cerevisiae. The classical GEMs are in black, while the GEMs integrated with proteome constraints are in red. Arrow
connects a GEM with its predecessor(s).

et al. 2008). The model could, however, not be used for constraint-
based simulations due to gaps in the network. Yeast1 was used
as a template for further addition of new metabolic information
resulting in several updates, but Yeast4 was the first consensus
GEM of S. cerevisiae that could be used for simulations as it con-
tained enhanced network connectivity and a thorough represen-
tation of lipid metabolism (Dobson et al. 2010). Yeast5 (Heavner
et al. 2012), Yeast6 (Heavner et al. 2013) and Yeast7 (Aung, Henry
and Walker 2013) were successively updated consensus GEMs of
S. cerevisiae with further expansions and refinements. Meanwhile,
based on the consensus GEMs of S. cerevisiae, other models were
developed, i.e. iTO977 (Österlund et al. 2013) and iSce926 (Chowd-
hury, Chowdhury and Maranas 2015), in which the former merged
Yeast1 with iIN800 and contained the highest gene number at that
time, while the latter updated Yeast7 by 50 literature-supported
modifications.

Based on Yeast7.6, iTO977 and iSce926, the latest consen-
sus GEM of S. cerevisiae was developed, namely Yeast8 (Lu et al.
2019). In addition to representing the most comprehensive re-
construction of yeast metabolism, the reconstruction of Yeast8
also addressed issues that emerged in the development of pre-
vious yeast GEMs, including adding missing transporters (Öster-
lund, Nookaew and Nielsen 2012), updating the biomass equation
(Lopes and Rocha 2017) and making the reconstruction processes
transparent (Lopes and Rocha 2017). Yeast8 added transport re-
actions to fill gaps for metabolite transport between compart-
ments, and also assigned new re-annotated transporters to reac-
tions with missing information, which improved the gene cover-
age. Yeast8 also formulated a new biomass equation by introduc-
ing cofactors and metal ions, which can activate more reactions
such as cofactor synthesis in growth simulations and thereby
the model has improved prediction of essential genes. Lastly, to
make the changes transparent Yeast8 is using GitHub (https://gi
thub.com/SysBioChalmers/yeast-GEM) to record updates includ-
ing scripts, corrections, datasets and all released versions, which
promotes open and parallel collaboration for the yeast modeling
community.

With the multiple rounds of updates, the GEMs of S. cerevisiae
have been of high quality and coverage, and therefore served
as a starting point for the reconstruction of GEMs for noncon-
ventional yeasts such as Kluyveromyces marxianus (Marcišauskas,
Ji and Nielsen 2019), Pichia pastoris (Caspeta et al. 2012; Tomàs-
Gamisans, Ferrer and Albiol 2018), Rhodosporidium toruloides (Dinh
et al. 2019; Tiukova et al. 2019; Kim et al. 2021) and Yarrowia lipolytica

(Loira et al. 2012; Kavšcek et al. 2015; Kerkhoven et al. 2016; Czajka,
Oyetunde and Tang 2021). The development of the GEMs of non-
conventional yeasts has been reviewed in detail (Lopes and Rocha
2017; Domenzain et al. 2021a) and will not be discussed further
here.

Applications of yeast GEMs
While a few review papers (Österlund, Nookaew and Nielsen 2012;
Sánchez and Nielsen 2015; Lopes and Rocha 2017; Chen, Li and
Nielsen 2019; Lu, Kerkhoven and Nielsen 2021; Domenzain et al.
2021a) already discussed the applications of yeast GEMs, we focus
on the recent applications published within 2 years, which can be
classified into four areas: metabolic flux prediction, cell factory
design, culture condition optimization and multi-yeast compara-
tive analysis (Fig. 2).

Yeast GEMs are widely used for estimating metabolic fluxes. By
constraining GEMs with experimentally measured data such as
growth rate and exchange rates of exometabolites, genome-scale
metabolic flux distribution can be calculated using constraint-
based modeling methods (Fig. 2A), enabling quantifying metabolic
changes in response to environmental and genetic perturbations
(Liu et al. 2019; Olin-Sandoval et al. 2019; Lopes et al. 2020; Pin-
heiro et al. 2020; Qi et al. 2020; Tomàs-Gamisans et al. 2020; da
Veiga Moreira et al. 2021; Henriques et al. 2021). Furthermore, cal-
culated metabolic fluxes can serve as a new layer of omics, i.e.
fluxomics that can be integrated with other omics data to gain
new insight that a single omics type cannot provide. For exam-
ple, a recent study combined GEM-based fluxomics with abso-
lute proteomics data to estimate in vivo enzyme catalytic rates
for S. cerevisiae, suggesting large deviations between in vitro and
in vivo enzyme activities (Chen and Nielsen 2021a). Additionally,
the predicted metabolic fluxes were demonstrated to be key fea-
tures in machine learning (ML) models for predicting S. cerevisiae
growth (Culley et al. 2020) and Y. lipolytica chemical titers (Czajka,
Oyetunde and Tang 2021). However, despite the wide use of pre-
dicted metabolic fluxes, it should be noted that there are uncer-
tainties in the predicted fluxomics as an infinite number of fea-
sible flux distributions can be obtained by the model while only
one of them is usually selected based on biased objective func-
tions (Lewis, Nagarajan and Palsson 2012). Therefore, we recom-
mend also performing unbiased constraint-based methods such
as sampling algorithms (Bordel, Agren and Nielsen 2010; Haralds-
dóttir et al. 2017) to ensure reliable flux predictions.

https://github.com/SysBioChalmers/yeast-GEM
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Figure 2. Recent applications of yeast GEMs. (A) Metabolic flux prediction. By constraining a GEM with experimentally measured data such as
substrate uptake rates and product secretion rates, metabolic flux distribution can be simulated using constraint-based methods such as FBA, in
which an objective function is optimized. (B) Cell factory design. GEMs can be used to predict gene targets for improving a product of interest and
compare various pathways that assimilate the same substrate or synthesize the same product. (C) Culture condition optimization. Environmental
parameters such as DO and pH can be integrated into GEMs to investigate their effects on metabolism. (D) Multi-yeast comparative analysis. Multiple
yeast species and strains can be analyzed in a large scale based on GEM structures and simulations.

Another large portion of applications of yeast GEMs have fo-
cused on guiding the design of cell factories. Making cells into
factories that overproduce native products or secret new products
requires redirecting metabolic fluxes toward the desired products
optimally, which usually takes a long time due to inefficient trial
and error (Nielsen and Keasling 2016). GEMs enable analyzing en-
gineering strategies in silico, and therefore have the potential to
significantly reduce the time. In the past 2 years, GEMs have been
used to aid in developing yeast cell factories by predicting gene
targets and identifying optimal pathways (Fig. 2B). GEMs, with the
aid of computational algorithms (Long, Ong and Reed 2015), were
mostly used to predict targets on gene level, which could be can-
didates of upregulation, downregulation or knockout. While most
algorithms predicted knockout targets that improved product pro-
duction such as squalene (Paramasivan, Kumar HN and Mutturi
2019), l-phenylacetylcarbinol (Iranmanesh, Asadollahi and Biria
2020) and dicarboxylic acid (Pereira et al. 2021) in S. cerevisiae and
lipids in Y. lipolytica (Kim et al. 2019), a few also predicted testable
upregulation candidates. For example, a GEM-based approach can
predict upregulation and downregulation candidates based on
computed scores of genes, which guided the overproduction of 3-
hydroxypropionic acid (Ferreira et al. 2019) and tryptophan (Zhang
et al. 2020) by S. cerevisiae. Also, some already validated upregula-
tion targets could be captured by yeast GEMs implemented with
other algorithms for overproduction of lipids in Y. lipolytica (Kim
et al. 2019) and R. toruloides (Dinh et al. 2019). On the other hand,
yeast GEMs allow for comparison of various pathways such as
substrate assimilation (Vartiainen et al. 2019) and product biosyn-
thesis (Qin et al. 2021). For example, a recent study used Yeast7.6
to calculate maximum theoretical yields and pathway lengths of
seven spermidine biosynthetic pathways and accordingly selected
the most optimal one for further engineering (Qin et al. 2021).

In addition to cell factories, the cultivation conditions can also
be investigated by yeast GEMs. GEMs enable simulating the ef-
fects of cultivation parameters such as dissolved oxygen (DO) and
pH on yeast metabolism (Fig. 2C), which could guide process im-
provement and bioreactor control. For example, a GEM of P. pastoris

revealed a relationship between DO level and growth-associated
ATP requirement, providing practical insights into optimal con-
ditions for protein production (Torres et al. 2019). Another study
modified a GEM of S. cerevisiae by accounting for intracellular pH,
which enabled understanding of the impact of pH on growth and
introduced manipulations for ethanol overproduction (Ghaffari-
nasab and Motamedian 2021). In addition, GEMs can be directly
adopted in bioreactor control system, i.e. online simulations by
GEMs could be used to adjust cultivation parameters, enabling the
condition updated based on the cellular need. This was demon-
strated by a few studies in which GEM simulations were used to
control oxygen and feed flow in micro-aerated ethanol fermenta-
tion by S. cerevisiae (Mesquita et al. 2019, 2021).

An emerging application of yeast GEMs is comparative anal-
ysis among yeast strains and species. Attributed to the increas-
ing number of sequenced genomes in recent years, multiple GEMs
of yeast strains and species can be generated in a large scale, al-
lowing for conservation and diversity analysis (Fig. 2D). For exam-
ple, strain-specific GEMs for 1011 S. cerevisiae strains were recon-
structed, and while structural comparison of GEMs signified that
S. cerevisiae metabolism is well conserved, predictions of GEMs
captured great changes among various strains in some pheno-
types such as biomass yield on glucose that could be explained by
their ecological origins (Lu et al. 2019). In addition, species-specific
GEMs for 33 yeasts and fungi were also reconstructed, which pre-
dicted different amino acid yields from glucose and therefore re-
flected evolution of metabolic networks (Correia and Mahadevan
2020). Moreover, the large-scale reconstruction of species-specific
GEMs for 343 fungal species enabled comprehensive analyses of
evolutionary diversification of substrate utilization (Lu et al. 2021).

Integration of proteome constraints into
yeast GEMs
Besides the aforementioned applications, some yeast GEMs, as
well-curated models, are also a proper platform to explore
cutting-edge modeling frameworks that introduce more con-
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straints and biological processes. While previous efforts extended
yeast GEMs to include transcriptional regulatory constraints (Her-
rgård et al. 2006), N-glycosylation pathways (Irani et al. 2016),
iron metabolism (Dikicioglu and Oliver 2019) and other cellular
processes (Ye et al. 2020), here we focus on the integration of
proteome constraints and related biological processes into yeast
GEMs (Figs 1 and 3).

Proteome constraints define finite proteome resources within
cells due to limited cell size and space, which should be opti-
mally allocated among metabolic pathways and biological pro-
cesses in response to various perturbations (Basan 2018). The pro-
teome constraints were integrated with GEMs of many organ-
isms (Chen and Nielsen 2021b), and the first effort for yeast was
enzyme-constrained Yeast7.6, named ecYeast7.6 (Sánchez et al.
2017), while the latest version ecYeast8 was published in con-
nection with the release of Yeast8 (Lu et al. 2019). ecYeast7.6 was
generated using the GECKO toolbox (Sánchez et al. 2017), which
defines an upper bound on each metabolic flux by its enzymatic
capacity calculated by enzyme abundance and turnover number
(kcat). The enzyme abundance can be constrained by absolute pro-
teomics data when available, otherwise an upper bound on the
total abundance of all enzymes could be adopted (Fig. 3). Com-
pared with Yeast7.6, ecYeast7.6 largely reduced simulated flux
variability and performed better in predicting physiological be-
havior such as the Crabtree effect and growth on various car-
bon sources (Sánchez et al. 2017). Such enzyme-constrained mod-
els were also generated for some other yeast species including Y.
lipolytica and K. marxianus with the release of the upgraded GECKO
toolbox (Domenzain et al. 2021b).

Based on ecYeast7.6, a model was recently developed to ac-
count for temperature effects on S. cerevisiae metabolism, named
etcYeast7.6, i.e. enzyme and temperature constrained Yeast7.6 (Li
et al. 2021c). In addition to temperature-dependent maintenance
energy, the temperature constraints were also imposed by making
enzyme abundance and kcat temperature-dependent based on en-
zyme thermal parameters such as melting and optimal tempera-
ture (Fig. 3). etcYeast7.6 captured metabolic shifts at high tem-
peratures, which could therefore be explained by temperature-
induced proteome constraints. Moreover, etcYeast7.6 identified
squalene epoxidase to be the most rate limiting at superoptimal
temperatures, which was experimentally validated.

While the enzyme-constrained GEMs account for proteome
constraints in a coarse-grained manner, fine-grained approaches
that explicitly formulate protein expression processes enable pre-
diction and interpretation of cell behavior in more detail (Yang
et al. 2018; Chen and Nielsen 2021b). pcYeast, i.e. proteome-
constrained GEM of S. cerevisiae, was recently developed in such
a fine-grained manner (Fig. 3), which extended Yeast7.6 with
protein synthesis and degradation reactions for all proteins in-
volved in metabolism, protein expression and degradation pro-
cesses (Elsemman et al. 2021). In this model, metabolic fluxes are
constrained by the synthesis rates of the corresponding enzymes,
and there are also constraints on protein pools of compartments
such as cytosol, plasma membrane and mitochondria. Besides
predicting the Crabtree effect, pcYeast also suggested that the mi-
tochondrial constraint could explain the onset of ethanol forma-
tion.

Recently another fine-grained model for S. cerevisiae was pub-
lished, named yETFL (Oftadeh et al. 2021), which was constructed
using Yeast8 based on the ETFL formulation (Salvy and Hatzi-
manikatis 2020). In addition to metabolism and protein expres-
sion, yETFL takes into account thermodynamic constraints that
can be incorporated using metabolomics data, enabling to force

thermodynamically consistent directionality of metabolic reac-
tions (Fig. 3). yETFL showed better performance than Yeast8 in
predicting maximum growth rate and the Crabtree effect.

With the formulation of protein expression, the fine-grained
modeling frameworks can serve as a scaffold to mathematically
describe other protein-related components and processes. For ex-
ample, the model CofactorYeast was developed to integrate en-
zyme cofactors such as metal ions into Yeast8 by formulating pro-
tein translation and cofactor binding reactions (Chen et al. 2021)
(Fig. 3). CofactorYeast can predict condition-specific abundances
of metal ions binding on enzymes, which cannot be achieved
by the base GEM Yeast8 with condition-independent composi-
tion of metal ions in the biomass equation. In addition, Cofacto-
rYeast captured dependence of yeast growth and metabolism on
metal ions. Particularly, CofactorYeast predicted iron-dependent
performance of the cell factory that harbors heterologous iron-
containing enzymes to synthesize p-coumaric acid, which was ex-
perimentally validated.

The fine-grained framework of proteome-constrained genome-
scale models was recently expanded to also cover the protein se-
cretory pathway of S. cerevisiae in a model abbreviated pcSecYeast
(Li et al. 2021a). In addition to protein expression and degradation,
pcSecYeast also formulated within Yeast8 protein processing and
secretion processes, e.g. translocation, posttranslational modifica-
tion, folding, misfolding and so on (Fig. 3). pcSecYeast expanded
applications in the prediction and interpretation of protein secre-
tion related phenotypes such as the switch of glucose transporters
in response to changing extracellular glucose concentrations and
the growth reduction by protein misfolding. Moreover, pcSecYeast
can predict overexpression targets for improving production of
recombinant proteins, and the effectiveness of the targets for α-
amylase overproduction were experimentally validated.

Challenges and future perspectives
Given that GEMs of S. cerevisiae have developed much further
than those of the nonconventional yeasts, the presence of S. cere-
visiae’s GEMs could indicate the future of the nonconventional
yeasts’ GEMs. For example, future directions of the nonconven-
tional yeasts’ GEMs could include model expansion and refine-
ment with increasing knowledge of their metabolism and species-
specific information. Therefore, we focus here on the challenges
and future perspectives of the S. cerevisiae GEMs as well as GEMs
integrated with proteome constraints.

What is the next step in the improvement of the S. cerevisiae
GEM? It has been demonstrated that none of the published yeast
GEMs are the best for all applications, and that there might be
tradeoffs between model predictive accuracy and model cover-
age (Heavner and Price 2015). Thus, improving the model coverage
might not be a necessary step in near future. Instead, endeavors
would be to improve model quality based on increasing knowl-
edge on yeast metabolism. First, it will be necessary to contin-
uously fill gaps in the model. Even in the latest version 8.5.0 of
Yeast8 there are 464 out of 2742 metabolites participating in only
one reaction or can only be consumed or produced, and those
so-called dead-end metabolites indicate missing reactions in the
network, which could be linked by adding new reactions with
strong evidence. Besides the addition of reactions, genes and pro-
teins should be assigned to existing reactions once new evidence
becomes available, among which transport reactions still need
much attention as they are difficult to properly annotate (Zuñiga
et al. 2018; Zuñiga, Tibocha-Bonilla and Betenbaugh 2021). In con-
trast to the addition efforts, removal of redundant entries and low
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Figure 3. Yeast GEMs integrated with proteome constraints. ecYeast7.6 constrains metabolic fluxes based on enzyme turnover numbers (kcats) and
abundance. etcYeast7.6 constrains metabolic fluxes based on enzyme thermal parameters. pcYeast formulates protein expression within Yeast7.6 and
imposes constraints on protein pools of compartments. yETFL formulates protein expression within Yeast8 and enables incorporation of
thermodynamic constraints. CofactorYeast formulates protein translation and cofactor binding within Yeast8. pcSecYeast formulates protein
expression, processing and secretion within Yeast8.

confidence content was recently highlighted, which has already
been observed during the update of yeast GEMs and is believed
to be more efficiently performed in yeast GEM refinement with
the proposed content removal framework (Seif and Palsson 2021).
Another improvement could be on the biomass equation, which
has been almost condition-independent and scarcely changed in
yeast GEM sequels although Yeast8 has formulated metal ions
and vitamins of the biomass composition. Given that variations
in biomass equation can indeed affect model predictive accu-
racy (Dikicioglu, Kırdar and Oliver 2015), we foresee a wider use
of condition-specific biomass equations in yeast GEMs in future
studies.

In addition to the manual efforts based on increasing knowl-
edge, computer-aided methods especially machine learning can
also improve the model quality (Kim, Kim and Lee 2021). Machine
learning has been used in various GEMs to fill gaps (Rana et al.
2020), improve enzyme annotation by predicting Enzyme Com-
mission (EC) numbers (Ryu, Kim and Lee 2019) and specific sub-
cellular localization (Almagro Armenteros et al. 2017; Savojardo
et al. 2018; Jiang et al. 2021), which could hopefully aid in improv-
ing yeast GEMs. Note that all the computer-predicted additions
should be recorded and require expert level verification.

There are also some model issues independent of the knowl-
edge on yeast metabolism. The MEMOTE test (Lieven et al. 2020)
shows that while scores generally increase with upgraded yeast
GEMs, model annotation and consistency of Yeast8 can still be
improved (Domenzain et al. 2021a). The model annotation rep-
resents the fraction of genes, metabolites and reactions anno-
tated with standardized annotations. Improving annotations of
the yeast GEM can facilitate not only its use such as omics data
analysis, but also the role as a template for reconstructing other
eukaryal GEMs. The model consistency score indicates stoichio-

metric consistency and balance of mass and charge. Since the
publication of Yeast8, >1000 unbalanced reactions have been cor-
rected (https://github.com/SysBioChalmers/yeast-GEM/pull/222),
but this step is still not yet completed.

While it is an emerging effort to integrate proteome constraints
into GEMs, a few challenges have already been proposed, among
which the uncertainty in enzyme turnover numbers has received
much attention (Chen and Nielsen 2021b). The enzyme turnover
numbers play a key role in mathematically relating metabolic re-
action rates to enzyme abundances (in coarse-grained models) or
enzyme synthesis rates (in fine-grained models). However, in the
modified Yeast8, in which all reversible reactions are split into for-
ward and reverse reactions, only 343 out of 3445 enzymatic re-
actions have experimentally measured turnover numbers (Chen
and Nielsen 2021a). For the reactions without measured values,
the turnover numbers could be assigned from other organisms
based on various criteria (Chen et al. 2021; Domenzain et al. 2021b),
which may lead to uncertainties. Therefore, we see the need for
a large-scale estimation of yeast-specific turnover numbers, i.e.
yeast kcatome (Nilsson, Nielsen and Palsson 2017). In contrast to
traditional approaches that characterize one enzyme at a time,
two recent studies estimated enzyme turnover numbers for yeast
in a high-throughput manner. One of these studies proposed a
deep learning model that can predict enzyme turnover numbers
for diverse yeast species based on protein sequences and sub-
strate structures (Li et al. 2021b), and the other estimated in vivo
enzyme catalytic rates for S. cerevisiae using absolute proteomics
and flux data (Chen and Nielsen 2021a). The use of these two
types of high-throughput data both improved the predictive power
of enzyme-constrained GEMs (ecGEMs). Interestingly, the ecGEM
parameterized with in vivo catalytic rates even outperformed a
model with in vitro turnover numbers (Chen and Nielsen 2021a),

https://github.com/SysBioChalmers/yeast-GEM/pull/222
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suggesting that in vivo kinetic data would be preferable in future
studies.

Despite these achievements, the in vivo estimation for enzyme
complexes composed of multiple distinct subunits remain to be
solved as it is usually difficult to calculate the abundances of cat-
alytic sites (Davidi et al. 2016) and sometimes the measured sub-
unit stoichiometry based on proteomics data might not be as ex-
pected (Taggart et al. 2020; Yu et al. 2020). Also, the deep learning
model does not handle enzyme complexes well as it only predicts
turnover numbers for individual subunits (Li et al. 2021b). There-
fore, sensitivity analysis of turnover numbers of enzyme com-
plexes is required for model-driven research.

Another future step would be to integrate subcellular con-
straints into yeast GEMs, given that the integration of the mito-
chondrial and secretory constraints can improve model predic-
tions and explain observed phenotypes (Elsemman et al. 2021; Li
et al. 2021a). Theses constraints however rely heavily on experi-
mental measurements. For example, the feasibility of imposing
mitochondrial constraints could be supported by mitochondrial
proteome quantification (Di Bartolomeo et al. 2020; Elsemman
et al. 2021). Therefore, quantification of subcellular proteomes
(Wiederhold et al. 2010; Valli et al. 2020) is expected to advance
the development of yeast models.

In addition, the GEMs integrated with proteome constraints
are expected to be a proper platform to incorporate regulation
mechanisms such as gene expression, posttranslational modifi-
cation and allosteric regulation (Chubukov et al. 2014), which can
be readily implemented on enzyme abundances and activities in
the model structure. Despite such a promising platform, there are
however obstacles for modeling yeast regulation, among which
the major one is the lack of a complete understanding of reg-
ulation mechanisms. We believe that techniques such as omics
(Oliveira et al. 2012; Hackett et al. 2016) and ChIP-exo (Liu, Bergen-
holm and Nielsen 2016; Holland et al. 2019) could aid in identifica-
tion of novel regulatory functions, and therefore give new impetus
for incorporating regulatory information in yeast GEMs.

The efforts to integrate proteome constraints into yeast GEMs
are currently in an initial stage and therefore focus on the
improved performance over classical GEMs rather than the
widespread use in the yeast modeling community. Accordingly,
these advanced models have differences in nomenclatures and
formalisms even though they account for overlapping biological
components and processes. Given that standardization of mod-
els can facilitate effective communication within the community
of constraint-based metabolic modeling (Carey et al. 2020), we ex-
pect that a consensus model would emerge by integrating existing
yeast proteome-constrained models, which can hopefully formu-
late protein expression processes and implement proteome con-
straints in a standardized fashion.
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