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Abstract

Critical infrastructure networks are vital for a functioning society and their failure can have

widespread consequences. Decision-making for critical infrastructure resilience can suffer

based on several characteristics exhibited by these networks, including (i) that there exist

interdependencies with other networks, (ii) that several decision-makers represent poten-

tially competing interests among the interdependent networks, and (iii) that information

about other decision-makers’ actions are uncertain and potentially unknown. To address

these concerns, we propose an adaptive algorithm using machine learning to integrate pre-

dictions about other decision-makers’ behavior into an interdependent network restoration

planning problem considering an imperfect information sharing environment. We examined

our algorithm against the optimal solution for various types, sizes, and dependencies of net-

works, resulting in insignificant differences. To assess the proposed algorithm’s efficiency,

we compared its results with a proposed heuristic method that prioritizes, and schedules

components restoration based on centrality-based importance measures. The proposed

algorithm provides a solution sufficiently close to the optimal solution showing the algorithm

performs well in situations where the information sharing environment is incomplete.

Introduction

Infrastructure networks are complex systems related to flow, movement, or exchange of enti-

ties such as electric power, water and wastewater, data and information, and critical goods and

services, among many others [1]. Such infrastructure networks are often interdependent,

implying that their integration and connection means that the performance of one network

can affect others [2–6]. These infrastructure networks are regularly becoming more connected

due to synergic efficiencies obtained by creating highly interdependent systems [1, 7]. There-

fore, maximizing the performance of an infrastructure network in isolation neglects the

mutual benefits that each network gains from interdependency with other networks, as well as

the basic reality of the connectedness of these networks [1, 7–9].

The proper operation of these interdependent infrastructure networks is crucial for a func-

tioning society, particularly from the perspective of economic productivity, public health, and

national security, among others [8, 10, 11]. Therefore, the restoration of disrupted
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infrastructure networks has been an important area of study. The traditional approach in solv-

ing such problems is to follow a top-down, centralized process, which is more suitable for gov-

ernment strategy developers dictating a solution [12]. As a result, many models and

algorithms have been developed to determine restoration schedules for disrupted networks

from a centralized perspective, where a complex system is controlled by an overarching deci-

sion-maker [13–20]. However, in many real cases, the restoration of infrastructure networks is

scheduled in decentralized manner, as different networks are controlled by different entities

(e.g., utility companies), potentially autonomous and potentially with conflicting interests [9,

21–24]. As such, game theory can be effective in describing the effect of the selection of differ-

ent strategies by one decision-maker on those of another.

Further, oftentimes deterministic assumptions are made about various aspects of the resto-

ration scheduling problem. Such assumptions may not be realistic as in many real decision

environments, there exists uncertainty due to a lack of information. This is especially true in

the time of disasters in which there is a lack of complete information with which to evaluate

the magnitude of the events and resources available for decision-makers across the system of

networks [9, 25–28]. Without proper information, decision-makers cannot easily anticipate

the preference of other decision-makers and their approach to the restoration problem. Gener-

ally, information regarding the functional status of various components in a disrupted system

of networks is dynamically accumulated over time while the network is gradually recovered

[29].

This paper proposes an iterative algorithm using ideas from (i) dictatorial game theory [30]

to address the decentralized environment of restoring disrupted interdependent infrastructure

networks and (ii) machine learning techniques to predict the restoration actions of other deci-

sion-makers under an imperfect information sharing environment. That is, the objective of

the proposed algorithm for the follower player is to adapt to the network restoration move-

ments of the leader player in the future when the leader is not willing to share or disclose their

restoration schedule for interdependent components. The algorithm employs a modified ver-

sion of the time-dependent interdependent network design problem (td-INDP) [31] to calcu-

late the best response given the available prediction of the other decision-maker actions. The

key attributes of the proposed algorithm are: (i) each network decision-maker (player) is con-

sidered to be self-interested, responsible only to minimize the unmet demand of their network,

(ii) only one-way interdependency among networks is considered, so that the proposer player

dictates their strategy selection to the responder player (representing a dictatorial game), and

(iii) the responder player is not aware of the decisions that have been taken by the proposer

player and needs to predict the proposer’s actions using some features related to the network

topology utilizing a machine learning model. Studies in this field have made contributions by

considering various assumptions, such as showing cooperative nature among decision-makers

where each decision-maker shares its plan with others until they converge into agreement

[32], or by being informed gradually from other decision-makers actions without having any

prediction of others action [9]. Although both studies illustrate the different perspectives of the

problem, the utility decision-making often lies somewhere between contrasting assumptions

of full information availability and no information sharing. Generally, neither players in the

same decision-making environment have full access to the information of the status of the

entire system, nor are they completely uninformed. In the proposed algorithm, we have con-

sidered a more realistic approach for predicting the moves of other decision-makers and then

incorporating the prediction in the decision-making process as definite information gradually

becomes available. Although machine learning is used in various studies, its application in the

restoration scheduling of the disrupted interdependent infrastructure networks in a decentral-

ized environment is unique in this paper.
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The key contributions of the proposed algorithm are: (i) improving the ability of the

responder player to be effectively and dynamically adaptive to the proposer player selected

strategies, (ii) combining definite information and the predicted restoration schedule of the

other decision-makers using a machine learning approach, and (iii) determining the best

response strategy for the responder considering the accuracy of the prediction for the propos-

er’s action. In simple terms, the best strategy response can be achieved for the responder if the

proposer selected strategy can be predicted accurately. Therefore, the higher the accuracy of

the prediction, the less costly strategy can be selected for the responder player. The remainder

of this paper is structured as follows. The Literature Review section offers an overview of

decentralized decision-making approaches. The methodology to develop the proposed algo-

rithm is offered in the next section. Then the performance and capability of the algorithm is

explored. Finally, concluding remarks wrap up the paper.

Literature review

Decentralized management has recently been applied to model the control of today’s complex

systems and infrastructure networks [9, 22]. Researchers have studied the use of decentralized

optimization in various practical domains such as path exploration systems for autonomous

vehicles [33–35], air traffic management [36], resource allocation in networks [37], and sensor

network management [38], among others. Generally, a decentralized optimization approach

deals with problems of multiple objectives that each maximize the interests of a specific deci-

sion-maker [22, 26, 39, 40]. This decentralization can be the result of either having variation

among the goals of different decision-makers in a non-cooperating manner or due to the lack

of clear information among them regarding their preference in a cooperative/semi-cooperative

environment.

Furthermore, researchers have extensively employed deterministic and stochastic decen-

tralized convex optimization to address decentralized decision problems. Tsitsiklis [41] and

Tsitsiklis et al. [42] investigated how like-minded decisions can be made in a decentralized

environment utilizing iterative optimization algorithms given delays in communication

among decision-makers. Some researchers have focused on optimizing the sum of local func-

tions, performing an averaging process for each decision-maker while descending stepwise

along the local sub-gradient direction considering their local constraints [43–48]. The general

drawbacks with this approach are slow convergence and lack of accuracy [49], therefore the

alternating direction method of multipliers (ADMM) was used by Boyd et al. [50] to achieve

linear convergence in exchange for higher computation time. Consequently, for improved

computation time, linearized ADMM algorithms have been utilized by Ling et al. [49]. These

methods emphasize the cooperative nature of the decision-makers to optimize a global objec-

tive function (i) that each understands only partially (ii) while their communication is also not

perfect and occurs in time intervals. Note that the cooperative nature in a decision-making

environment exists when only one objective function is optimized while each decision-maker

in the system can control certain variables of the main problem. Therefore, considering the

large size of the private market where these companies do their best to maximize their profit

regardless of the others (non-cooperative nature), cooperative behavior becomes less practical

in a free-market environment.

A Markov decision process (MDP) is another approach that has been utilized to investigate

the problem of decentralized decision-making [39, 51–53]. Using the concept of MDP,

Åström [54] introduced the partially observable MDP (POMDP) for centralized sequential

decision-making, which is appropriate in the imperfect information environment. In this

regard, the decentralized partially observable MDP (DEC-POMDP) is the generalized version
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of the POMDP that accounts for problems with two or more decision-makers available in the

system cooperating in an imperfect information environment [22]. Similar to decentralized

convex optimization, these players in the system cooperate to optimize the joint reward func-

tion while each has its different observation function [39]. Unfortunately, studies showed the

significant difficulty of solving the DEC-POMDP problem for multiple decision-makers com-

pared to the single agent POMDP problem. It turned out that the DEC-POMDP problem

finite-horizon is exponential time complete (NEXP-complete) when only two decision-makers

are available in the system [55]. Therefore, considering the various forms of the MDP

approach, the methodology is substantially time-intensive for problems with more than one

decision-maker in the system.

Game theory represents a different approach that focuses on the behavior of different deci-

sion-makers in a system with a cooperative/non-cooperative nature that has gained popularity

in solving problems with network characteristics [9, 11, 23, 26, 56]. Tosselli et al. [26] devel-

oped a repeated-negotiation game approach considering a conceptual enterprise model. The

approach deals with two types of multi-layer project and resource decision-makers that are

responsible for the scheduling of tasks and resources, respectively. Decision-makers maximize

their objectives related to the project deliverables and resource utilization metrics having a cli-

ent-server relationship. Their algorithm could be considerably time consuming as it uses

repeated negotiations to converge to a Nash equilibrium or a close Nash equilibrium solution.

Also, instead of predicting the other players’ move, the algorithm considers a certain behav-

ioral assumption which is altered according to a predefined probability in each iteration, and

such an assumption could affect the practicality of the algorithm. Huang and Zhu [56] pro-

posed an iterative algorithm based on the dynamic game framework to investigate the interac-

tions between a stealthy attacker and a proactive defender related to the security of a cyber-

physical system. Although this study does not provide a methodology for scheduling the recov-

ery of a disrupted network, it presents a Bayesian game-theoretic algorithm for detecting the

malevolent attacker of the cyber-physical system. The iterative algorithm assumes that it can

observe all interactions the users/attackers can make in each iteration related to the system.

Therefore, the defender of the system has access to the real-time information of all other users/

attackers, which may not be the case in practice. Sharkey et al. [32] considered the cooperative

nature among decision-makers, who find a resolution for their payoff function considering

optimistic/pessimistic assumptions and share their plan for recovery with other decision-mak-

ers to update their assumptions and find new resolutions for their payoff function. However,

the proposed framework assumes an unlimited number of negotiations between players

related to their recovery plans, which is time consuming and may not to be converged in some

cases since there is no upper bound for the number of negotiations [9]. Although several cen-

tralized approaches have been suggested by the researchers to address the problem of interde-

pendent infrastructure network recovery, only a few works have used game-theoretic models

to address the decentralized nature of decision-making in such networks. Smith et al. [9]

developed an ad hoc sequential game-theoretic model to address the restoration problem of

interdependent networks in a decentralized environment. They utilized the reduced version of

the interdependent network design problem (INDP) model developed by González et al. [19]

as the payoff function for the decision-makers of the system. The computational time of their

algorithm could be sensitive to the availability of resources and the number of disrupted com-

ponents related to each decision-maker in the system. This is because the algorithm must con-

sider all available strategies in each period and keep track of the total cost through the decision

path in the whole problem time horizon. Subsequently, the algorithm calculates the Nash equi-

librium using backward induction, which can be time-consuming as all possible outcomes of

strategy combinations are enumerated. Also, the assumption that decision-makers act in turn
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weakens the algorithm’s practicality. Furthermore, considering only definite information

about the actions of the other decision-makers is the other drawback of this research. Note

that communication among decision-makers and the quality of the exchanged information is

important in interdependent infrastructure network recovery problems [9, 22, 32, 57]. Fur-

thermore, Smith et al. [9] assumed decision-makers are unaware of the status of nodes on

which they depend in the other networks controlled by other decision-makers, and they will

be updated gradually when they are recovered. Therefore, although they do not have complete

information about the other decision-makers, the information that is available to the decision-

makers is considered definite. However, our proposed algorithm combines definite informa-

tion and the best guesses of decision-makers in their decision-making process to achieve a bet-

ter result. In addition, the proposed algorithm is an efficient framework for predicting future

decision-maker behavior and devising an adaptive plan concerning the recovery of the dis-

rupted interdependent infrastructure network. Therefore, with the aid of this method, an

acceptable solution can be achieved efficiently following a disruptive event. We present the

details of the proposed algorithm in the following section.

Interdependent network adaptive recovery model

It is important to determine the method for evaluating the benefits that each decision-makers

gain relative to their objectives. Regardless of the number of decision-makers in the system,

researchers have approached the network restoration problem from various angles. The main

objectives generally drive the restoration of infrastructure networks is to restore the network

components as quickly as possible so that user demand from the network is reinstated. In this

regard, some have designed their objective function to impose a cost for every period in which

user demand is not satisfied [15, 16, 19, 20, 58–61]. The other angles of this problem that have

been generally illustrated in the constraints of these models are (i) network flow cost, (ii) inter-

dependency, (iii) crew constraints, and (iv) resource and budget constraints, among others. In

these models, to be efficient in any of these perspectives, some costs have been associated with

them and included in the objective function [14]. They have considered different perspectives

that exist in practical situations to mirror essential characteristics in real network disruption

scenarios. The interdependent network adaptive recovery (INAR) algorithm proposed in this

paper can adapt with the variety of these models predicting the proposer’s network actions and

implementing them in the responder network’s optimization model to devise the best response

action. In this research, we considered a modified, shortened version of the INDP model

developed by González et al. [19] to calculate the best response given different predictions.

The algorithm is based on the continuous prediction of opponent player behavior, adaptive

strategy optimization, and updating assumptions with new information. We assumed that

each decision-maker has only full information about the network that they are responsible for,

yet their awareness of the other networks is limited to that network’s general topology and the

importance of its components related to its supply-demand capabilities. Aggregating our

assumption using opponent network features and considering the dependencies between the

networks, we used a machine learning approach to predict the opponent player recovery

schedule for subsequent periods. Therefore, the recovery process of the opponent’s network

can be approximated. As such, the responder can anticipate when to expect the dependency

relationship to be resolved by the opponent player. Having a good guess for the opponent stra-

tegic recovery schedule enables the decision-makers to incorporate this indefinite information

into their optimization models as parameters and constraint. Therefore, the higher the

responder’s prediction, the better the strategic reaction, and the closer it would represent the

best and ideal response. We assumed that the responder could be informed of an
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interdependent component recovery as soon as the proposer recovers it, thus the deviation of

the predicted recovery schedule from the actual can be realized as time passes. As the recovery

process of disrupted infrastructure networks is developed over time, the predictions made at

the beginning of the planning time horizon could be significantly biased from the opponent’s

actual strategic plan. Therefore, as the recovery process progress and information gradually

aggregate, we need to renew the prediction to minimize the deviation between the predicted

and actual plans.

Fig 1 provides a general overview of the proposed algorithm. Note that the algorithm breaks

the problem into two parts of prediction and strategy optimization. Therefore, the first level

predictions are inserted into a centralized recovery model as parameters and constraints to

find the best reaction response.

In the following three sub-sections, we describe (i) the prediction model characteristics,

including the data preprocessing and the learning process of the prediction model, (ii) the

optimization model responsible for finding the best response considering the available infor-

mation, and (iii) the algorithm for updating the strategy, including the continuous strategy

correction. Table 1 summarizes several acronyms used in our discussion, as well as the nota-

tion for sets, parameters, variables, and terms involved in Algorithms 1 and 2.

Prediction model

Adopting the Markov decision process concept that the best policy in a specific state is

selected, the proposed algorithm predicts the component from the opponent network that is

recovered in the next period. That is, the predictive model should classify whether the proposer

recovers any specific disrupted node in the next period. The model checks every remaining

disrupted component in each period and see if it is the next candidate for recovery. Hence, we

employed the random forest ensemble model to cluster each component into two classes in

each period: recovered and not recovered.

Beginning with Wollmer [62], who proposed an algorithm to find sensitive components of

a network by removing a number of them to maximize the flow reduction in a network,

numerous component importance measures have been developed to identify critical compo-

nents in a network. To approximate each component’s importance in the network, we used

several network centrality measures as the predictors of our random forest model. We are

motivated by the fact that, although decision-makers are not aware of the opponent player

reward function and constraints, generally, they can assume that the components with higher

importance are recovered earlier relative to others in the network. So, the service flow through

the network can be replenished faster and unmet demand costs could be reduced. Addition-

ally, we determined the actual target classes using a modified version of td-INDP model,

referred to as the mtd-INDP. In fact, when we find the solution of mtd-INDP model for the

proposer’s network recovery, then we can easily realize the class to which each node belongs at

each iteration.

Fig 1. General overview of the proposed algorithm.

https://doi.org/10.1371/journal.pone.0270407.g001
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Table 1. Summary of acronyms, sets, parameters, variables.

Acronyms Meaning

INDP Interdependent network design problem

td-INDP time-dependent interdependent network design problem

mtd-INDP Modified time-dependent interdependent network design problem

INAR The interdependent network adaptive recovery

PCA Principal component analyses

Index Meaning

Index for the components in the networks

t(i, j)2N Index for the time in the recovery time horizon

l Index for the type of the commodity

Sets Meaning

T Set of time periods in recovery time horizon

T0 Set of time periods where a disrupted interdependent component is predicted not be recovered in

the proposer’s network

T�a Set of actual earliest recovery times for the interdependent components

T 0p Set of predicted earliest recovery times for the interdependent components

N Set of all components in the network

N0 Set of disrupted components in the network

N̂ Set of disrupted interdependent components in responder’s network

N 0I Set of all interdependent components in the network

A Set of links in the network

L Set of commodities

R Set of resources

Parameters Meaning

cijlt Unit flow cost of commodity l through link (i, j) at time t
eit Recovery cost of component i at time t
Mþ

ilt Unit cost of component i excessive supply at time t for commodity l

M�
ilt Unit cost of component i unmet demand at time t for commodity l

bilt Supply/demand of component i at time t for commodity l
uijt Capacity of link (i, j) at time t
hirkt Required resource for recovery of component i at time t, from resource r
vrt Available resource r at time t
Variables Meaning

d
þ

ilt Excessive supply of component i at time t for commodity l

d
�

ilt Unmet demand of component i at time t for commodity l

fit Functionality of component i at time t
~f~it Extent of recovery of component i at time t

xijlt Flow on link (i, j) in network k and time t
Algorithm

terms

Meaning

i�t Index of the component that is recovered in time t

ti Recovery time of the disrupted component i in the recovery time horizon

tp Current time of the algorithm

cni Centrality metric for component i
rcit Rescaled centrality metrics for disrupted component i relative to the other disrupted components

in time t

Spi Minimum element in set T 0p
Sai Minimum element in set T�a
clsit Actual recovery status of component i in time t

https://doi.org/10.1371/journal.pone.0270407.t001

PLOS ONE Adaptive algorithm for dependent infrastructure network restoration

PLOS ONE | https://doi.org/10.1371/journal.pone.0270407 August 24, 2022 7 / 24

https://doi.org/10.1371/journal.pone.0270407.t001
https://doi.org/10.1371/journal.pone.0270407


The following stages were used to prepare the data, preprocessing, and learning the random

forest model: (i) perform data preparation considering various disruption scenarios, (ii) apply

principal component analyses (PCA), and (iii) learn the random forest ensemble model using

the prepared data and calculate the model accuracy. In the data preparation stage, we balanced

the data using the under-sampling method [63] to reduce the size of the abundant class to

improve the random forest model and more effectively distinguish the minority class. PCA

was used to make the clustering process easier for the random forest model [64]. We used the

random forest model for this study as it can provide accurate and efficient results for both pre-

diction and clustering problems considering a variety of applications [65, 66].

While the algorithm could be implemented with any number or selection of importance

measures, we selected six network centralities due to their ubiquity in the literature: (i) degree,

(ii) betweenness, (iii) closeness, (iv) Katz, (v) page-rank, and (vi) load. Naturally, different

topological measures might be more useful than others depending on how importance is being

defined [67]. However, note that it has been shown that in many instances topological mea-

sures are sufficient surrogates for different (and more difficult to estimate) flow-based mea-

sures [68]. Each of these centrality measures has been defined to represent the network

components importance from various perspectives. Degree centrality represents the connec-

tion of nodes to other nodes in the network. Betweenness centrality refers to the number of

shortest paths in the networks that pass through each component. Closeness centrality consid-

ers the sum of the shortest path length between one node and all other nodes in the network.

Katz centrality measures the number of immediate neighbors of a node and the other nodes

that connect to the node through its immediate neighbors to compute the relative influence of

that node in the network. Page-rank centrality is an extension of the Katz centrality, consider-

ing the advantage a node can receive connecting the network’s critical nodes. The load central-

ity for a node is calculated considering the number of all shortest paths passing through the

node, assuming each node sends a hypothetical unit of some materials to its neighbors.

Furthermore, in each period of recovery time horizon, these metrics are rescaled consider-

ing only the disrupted components and serve as the input variables for the classification

model. Additionally, we considered the nominal demand/supply capacity of each component

as another predictor, as such capacities may also provide insight on the importance of the

component.
Algorithm 1. Data processing procedure.
1. Input: proposer’s network relationships and parameters
2. Calculate the component actual recovery sequence using the mtd-INDP
model (i.e., component actual recovery time in the set ft�i : t 2 T; i 2 N0g)
3. Calculate the component centrality metrics (i.e., component cen-
trality in the set {cni:i2N})
4. for t in T do
5. Rescale the centrality metrics (rcit) for all i2N0, for time t
6. if i ¼ i�t then
7. Set actual component class (clsit) = 1
8. Remove i from N0

9. Else
10. Set actual component class (clsit) = 0
11. Output: Rescaled centrality metrics corresponded to the actual
recovery status of the component for every component in each period
{(rcit, clsit):i2N0,t2T}

The data processing algorithm (Algorithm 1) shows the data preparing process schemati-

cally, where T, N, and N0 are the set of periods in the recovery time horizon, the set of all com-

ponents in network, and the set of all disrupted components in the network, respectively

(discussed in Table 2 in the context of the restoration optimization problem). The notation cni
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and rcit represent the array of different centrality metrics calculated for each component and

the array of rescaled component centralities considering only disrupted components, respec-

tively. Note that whenever each component is restored, it is required to be removed from the

set of disrupted components in each period. Therefore, the remaining component centrality

metrics should again be rescaled to keep the summation domain of each centrality metric

between [0, 1]. This way, we also keep updating the priority of each remaining disrupted com-

ponent related to each centrality metric. Index i is associated with the components in the net-

work, while i�t in Algorithm 1 is the component of the network that is candidate for recovery

in specific period of t. The cluster to which a component belongs in a specific period is referred

to as clsit. Note that clsit shows whether or not component i is recovered in time t.
After preparing data using the algorithm, PCA is performed on the data to find the predic-

tors that capture the greatest variance. These principal components are added to the predictors

for our random forest classification model. As we use a classification model categorizing the

node’s status individually, the random forest model can mistakenly categorize several compo-

nents into the recovered class in each period. To address this concern, in case of having several

candidate components to recover in a specific time, we will use the probability produced by

the random forest model for each of those categorized components. We select the component

with higher probability as the recovered component in each period, as we consider having the

higher chance of correct classification.

Strategy optimization

After predicting opponent recovery behavior, these predictions are integrated into the strategy

optimization. In this study, we were inspired by the td-INDP model developed by González

et al. [31] which focused on the recovery of disrupted components in interdependent networks

in a centralized manner and with full information about all networks. We have modified the

td-INDP model to suit the proposed algorithm in this study. As the proposed algorithm

assumes multiple players in the system in an imperfect information sharing environment, we

need to address the interdependency perspective differently. Thus, the equations satisfying the

interdependency relationships of the networks are no longer required for the proposed algo-

rithm’s assumptions (in the INAR algorithm, the interdependencies among networks are

addressed by adding constraints representing the responder’s prediction for when interdepen-

dent disrupted component is recovered in the proposer’s network). The td-INDP also accounts

for geographical constraints, focusing on minimizing the land preparation fixed cost, which

we found deviant from the general practices in network recovery problems. Therefore, prun-

ing the td-INDP model, we focused on the constraints responsible for minimizing the cost of

Table 2. Illustration of variables and an example of prepared data.

Node Betweenness Page-rank Katz Closeness Degree Load PC1 PC2 PC3 Cluster (cls
78 0.012 0.013 0.015 0.021 0.012 0.003 418 0.031 0.02 1

38 0.012 0.013 0.018 0.023 0.012 0.002 0 0.061 -0.009 0

30 0.025 0.025 0.021 0.025 0.024 0.026 -112 0.081 0.013 0

44 0.019 0.025 0.018 0.023 0.024 0.015 -401 0.1 -0.021 1

23 0.025 0.035 0.028 0.027 0.036 0.025 -5 0.107 0.01 1

10 0.102 0.082 0.059 0.034 0.09 0.157 -522 0.219 0.137 0

102 0.014 0.014 0.019 0.025 0.013 0.004 492 0.092 -0.019 0

16 0.015 0.014 0.022 0.028 0.013 0.004 0 0.104 -0.035 1

53 0.013 0.015 0.016 0.023 0.013 0.002 -17 0.101 -0.039 0

https://doi.org/10.1371/journal.pone.0270407.t002
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unmet demand, excess supply, and network flow, considering a single-layered network

environment.

The objective function of the mtd-INDP model in Eq (1) consisted of three different terms

representing the costs for (i) commodity flows represented by xijlt, (ii) component recovery

represented by ~f it, and (iii) unmet demand and excessive supply represented by d
�

ilt and d
þ

ilt ,

respectively. Note that the ~f it is a binary variable showing if the disrupted component i is

recovered in time t.

min Z ¼
X

t2T

X

l2L

X

ði;jÞ2A

cijltxijlt þ
X

i2 �N

eit~f it þ
X

l2L

X

ði;jÞ2A

ðMþ

iltd
þ

ilt þM�

iltd
�

iltÞ
� �

ð1Þ

Also, six groups of constraints have been considered for the model that govern the follow-

ing: (i) the balance of goods/services flow through the network in Eq (2), (ii) the activation

mechanism for disrupted components in Eq (3), (iii) the link capacities in Eqs (4) and (5), (iv)

the availability of resources in Eq (6), and (v) enforcing disruption to the network for the first

period in Eq (7). The balance constraint in Eq (2) governs that the commodity output and

input outcomes be equal to the amount of consumption, unmet demand, and excessive supply.

Constraint (3) is responsible for keeping the disrupted components non-functional until

recovered. Constraints (4) and (5) prevent flow in link (i, j) if either node i or node j are not

functional. The nature of the decision variables is described by Eqs (8)–(10).
X

j:ði;jÞ2A

xijlt �
X

i:ði;jÞ2A

xijlt ¼ bilt � d
þ

ilt þ d
�

ilt 8i 2 N; 8l 2 L; 8t 2 T ð2Þ

fit �
X

t2T

~f it 8i 2 N 0; 8t 2 T ð3Þ

X

l2L

xijlt � uijtfit 8ði; jÞ 2 A; 8t 2 T ð4Þ

X

l2L

xijlt � uijtfjt 8ði; jÞ 2 A; 8t 2 T ð5Þ

X

i2 �N

hirt
~f it � vrt 8r 2 R; 8t 2 T ð6Þ

fi0 ¼ 0 8i 2 N 0 ð7Þ

xijlt � 0 8ði; jÞ 2 A; 8l 2 L; 8t 2 T ð8Þ

d
þ

ilt; d
�

ilt;� 0 8i 2 N; 8l 2 L; 8t 2 T ð9Þ

fit; ~f it 2 f0; 1g 8i 2 N; 8t 2 T ð10Þ

To include the restoration predictions in the model, two approaches can be considered. In

the first approach, it is assumed that the responder does not attempt to recover the interdepen-

dent disrupted components until its corresponding node in the proposer’s network is fixed.

This is governed by inserting Eq (11) into the optimization model. Alternatively, in the second

approach, the model recovers the disrupted node but it cannot be activated until its predeces-

sor in the proposer’s network are restored. To adopt this approach, Eq (12) is instead inserted
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into the model.

X

t2�T

~f it ¼ 0 8i 2 N 0 ð11Þ

X

t2�T

fit ¼ 0 8i 2 N 0 ð12Þ

Best response and strategy update

Using the random forest model predictions of the proposer ’s behavior with recovered and not

recovered classes for each node, we need to find the best response to the proposer ’s behavior

considering the mtd-INDP model. The best recovery schedule of the responder’s disrupted

nodes is found. Although we can make predictions at the primary stage of the recovery time

horizon, as time advances, decision-makers acquire more information about the actions made

by the opponent player. These pieces of information generally describe the interdependent

components that have been recovered. Thus, the responder can simply realize the deviation

between their prediction and actual actions made by the proposer. As this information updates

gradually, the prediction can be renewed and subsequently the responder can more effectively

adapt to the proposer’s decisions whenever they receive new information.

Gathering such new information could differ by the decision-making situation, the level of

cooperation among decision-makers, and the cost of information. In this research, it is

assumed that the responder player predicts the proposer’s behavior at the beginning of the

time horizon and plans the recovery of the network on that prediction. Then, as the responder

pursues the actual recovery plan over time, they will be informed whenever the proposer

recovers an interdependent component necessary for functionality of a node in their network.

Based on this assumption, three different situations may happen. The first is that the prior pre-

diction is identical to the proposer’s actual recovery plan. The second is that an interdependent

component is recovered sooner than expected. The third situation is that an interdependent

component is not recovered by the expected time. Considering these situations, if the predic-

tion is not identical with the actual plan, the proposer needs to consider the new condition,

renew its prediction, and develop a new recovery plan for the rest of the remaining periods.

The strategy updating algorithm (Algorithm 2) shows the strategy update procedure in detail.
Algorithm 2. Strategy updating algorithm.
1. Input: proposer’s and responder’s network relationships and
parameters
2. Setting the actual earliest recovery time set ðT�aÞ for the interde-
pendent components using mtd-INDP model on proposer’s network:
T�a ¼ ft

�
i jt 2 T; i 2 N 0Ig

3. Setting the predicted earliest recovery time ðT0pÞ for interdependent

components: T0p ¼ ftijt 2 T; i 2 N 0Ig
4. Run mtd-INDP model to find the best recovery schedule set for the
responder’s network considering the prediction set T0p
5. While N 0I ! ¼ ; do:
6. Select the minimum ti from the set T0p : Spi ¼ minðT 0pÞ
7. Select the minimum t�i from the set T�a : Sai ¼ minðT�aÞ
8. Set the algorithm time (tp): tp ¼ fminðSpi ; Saj Þji; j 2 N 0Ig
9. If Spi < Saj
10. If component i status is recovered
11. Remove i from N 0I : i N 0I
12. Remove t�i from T�a: t�i T�a
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13. Renew the interdependent component recovery time prediction
set T0p
14. Run mtd-INDP model to find the best recovery schedule set
for the

responder’s network considering the prediction set T0p
15. If Spi > Saj
16. Remove i from N 0I: i N 0I
17. Remove t�i from T�a: t�i T�a
18. Renew the interdependent component recovery time prediction
set T0p
19. Run mtd-INDP model to find the best recovery schedule set
for the

responder’s network considering the prediction set T0p
20. Output: Disrupted components recovery schedule set for the
responder’s network

Note that both proposer and responder are working concurrently to recover the disrupted

nodes in their network. If the responder realizes a fault in the prediction in any period, it has

the chance to revise their plan for only the remaining disrupted nodes that have not recovered

yet. Therefore, although the INAR algorithm’s solution is sub-optimal, renewing the predic-

tions whenever we realize a conflict between the actual and prediction makes the solution stay

close to the optimal as best as possible. Also, the algorithm terminated whenever no disrupted

nodes remained in the disrupted interdependent component list (N 0

I).

Note that the running time of the prediction model is insignificant, as the prediction for the

proposer’s independent components can be acquired almost instantly. Also, as the mtd-INDP

model is the simplified version of the td-INDP model and the interdependency relationships

between the networks are defined using simple constraints, the time required to solve the

model is insignificant. Therefore, running algorithm 2 should not be time consuming at all.

Results and discussion

To adequately explore the capability of the INAR algorithm, we applied this framework to four

different case studies, one related to a realistic testbed and three randomly generated instances

with different topological properties. The first case study is associated with the interdependent

system in Shelby County, TN, USA [19, 69, 70]. To test the performance of our algorithm, as

we have two decision-makers (each responsible for the restoration of a utility network) we

focus our Shelby County case study on its water and power networks. The water and power

networks have 49 and 60 nodes and 71 and 76 links, respectively. Fig 2 illustrate a general over-

view of Shelby County, TN water (a) and power (b) network.

The three remaining case studies correspond to: (i) Barabási-Albert network [71], (ii)

Erdös-Renyi network [72] and (iii) Newman-Watts-Strogatz [73]. These three types were

selected due to their popularity among the random network generation algorithms and for

their varied structural properties. The Barabási-Albert algorithm generates a scale-free net-

work where degree distribution of components follows the power law [71]. The Erdös-Renyi

algorithm, one of the simplest random generation methods, produces networks with a bino-

mial degree distribution [74]. The Newman-Watts-Strogatz network generation algorithm,

derived from the Watts-Strogatz algorithm, produces networks with small-world properties

[75]. The generated networks consisted of 120 nodes for each proposer and responder net-

work, while the number of links varied based on the type of network generation algorithm. To

keep the combinations of proposer and responder networks manageable, the pairs of interde-

pendent proposer/responder networks are both generated by the same algorithm (e.g., a
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Barabási-Albert network paired with another Barabási-Albert network). Also, the interdepen-

dent nodes from both networks are selected and paired randomly. Note that the Barabási-

Albert and Newman-Watts-Strogatz algorithms produce a connected network while the

Erdös-Renyi network can create a disconnected algorithm based on the selected probability

for link creation. To address this issue, the probability of link creation is increased incremen-

tally so that only one connected component is produced. To generate these random networks,

we use the networkx package in Python [76]. The number of links generated using the Bara-

bási-Albert, Erdös-Renyi, and Newman-Watts-Strogatz algorithms are 273, 305, and 173 bidi-

rectional links, respectively. The Shelby County networks, along with the three algorithm-

generated networks, make up the four network types studied subsequently.

For each of the network types, 600 random disruption scenarios were generated, each with

40 disrupted components. Using the data processing algorithm (Algorithm 1), the data

required for learning the random forest model were prepared for all four network types.

Table 2 shows an example of prepared data for learning the random forest model. Columns 2

through 7 represent the rescaled value of the node’s centrality measures. Columns 8 through

10 are the principal components that have been calculated considering the centrality measures

along with the amount of demand or supply for the node. Note that we have only used three

principal components as predictors for learning the random forest model.

We have considered the ideal situation, where the responder is able to observe the propos-

er’s recovery plan beforehand as the comparison baseline. Furthermore, we evaluate the differ-

ence between (i) the solutions from the INAR algorithm with (ii) the ideal condition. As many

works related to the network disruption have analyzed the network vulnerability by removing

the network components based on centrality metrics [77–82], we compared the INAR algo-

rithm solution to a restoration scheduling heuristic based on the ranking of the disrupted com-

ponents according to individual centrality measures, as one might expect a decision-maker to

choose important nodes to recover first.

Subsequently, we discuss the performance and validity of different parts of the INAR algo-

rithm and describe its behavior. First, the performance of the random forest classification

model for individual components in each period is described with different accuracy matrices.

Then, we studied the INAR algorithm performance in predicting the recovery of the entire

Fig 2. Shelby County, TN network topology for the (a) water and (b) power networks (adapted from González et al., (2016)).

https://doi.org/10.1371/journal.pone.0270407.g002
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chain of the disrupted interdependent components in the proposer’s network. Finally, we

investigate how a better prediction can affect the network recovery cost.

Random forest classification performance

After completing the data preparation, we used the under-sampling method to balance the

data by randomly deleting data from the majority class to the extent that the no information

rate is less than roughly 52%, suggesting that the data do not suffer from imbalance issues that

might lead to bias in the application of the machine learning techniques. Afterward, we use

20% of the data as the test data to validate the random forest model and calculate accuracy

metrics. Table 3 shows several evaluation metrics illustrating the performance of the random

forest model in classifying the restoration of each disrupted node in every period. The model

accuracy for the four types of networks used ranges around 82–83% with low variability. As

the no information rate for all different networks is around 51%, the random forest model

operates at least 30% better than the random classification of disrupted component recovery

status. As the training data were balanced with the proportion of each class being roughly 50%,

the log-loss no information rate is roughly 0.69. The random forest model results in an

improved log-loss accuracy ranging from 0.38 to 0.41. Also, kappa statistic of more than 0.60

shows a substantial strength of agreement between the actual and predicted classification [83].

The number of data required to achieve this level of accuracy has been determined using

the elbow graph presented in Fig 3, where the classification model accuracy corresponds to the

size of data used for learning purposes. Thus, we divided the data into batches of 1000

instances each and consider the learning data population to increase by a batch for every time

that we learn the random forest model. The accuracy of the model for every learned model

were recorded and plotted in Fig 3. Although a sharp error reduction can be observed with

fewer than 10000 data records, the model’s lack of accuracy appears at its minimum and

approaching stability at more than 30000 data records.

Furthermore, the behavior and the performance of the INAR algorithm relative to the

structural changes in the network is required to be investigated. The main structural variables

that have been considered in this part of the study are: (i) the network size, (ii) the number of

the interdependency relationships, and (iii) the network type. Table 4 illustrates an experimen-

tal design configuration to explore the effects of these three variables. Note that the Shelby

County network was not considered because its characteristics are fixed.

Performing the full-factorial experiment, according to Table 4, the number of combinations

is found by multiplying the numbers of levels for each factor, 2×2×3 = 12. Considering one

Table 3. Random forest evaluation metrics.

Metrics Network types

Shelby County Barabási-Albert Erdös-Renyi Newman-Watts-Strogatz

Accuracy 0.82 0.83 0.83 0.83

No Information rate 0.51 0.51 0.52 0.51

Log-loss 0.40 0.38 0.39 0.41

Kappa statistic 0.65 0.66 0.66 0.66

Sensitivity 0.80 0.78 0.77 0.80

Specificity 0.85 0.88 0.89 0.86

Precision (Class 0) 0.84 0.86 0.86 0.84

Precision (Class 1) 0.81 0.81 0.81 0.82

F-Score (Class 0) 0.82 0.82 0.81 0.82

F-Score (Class 1) 0.83 0.84 0.84 0.84

https://doi.org/10.1371/journal.pone.0270407.t003
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center point for each network type, the number of combinations increases to 12+3 = 15. As we

replicated each treatment twice, the number of observations analyzed is 30. As such, 30 inter-

dependent networks representing various structures have been generated, and data were

acquired according to data processing algorithm (Algorithm 1). With these experimental data,

the random forest model was learned, and the model’s accuracy was calculated for each repeti-

tion. After an initial full ANOVA, only the main effects were significant. The ANOVA was per-

formed again only with the main effects, with results in Table 5.

The R2 is 0.5448 (adjusted R2 of 0.6330) suggests a relationship between the controllable fac-

tors and the accuracy of the random forest model, although it explains only the 63% of the

response total variance. This experiment’s signal-to-noise ratio, comparing the range of the

predicted values to the average prediction error, is 12.359, which is greater than 4, the rule of

thumb that suggests an adequate signal [84]. Therefore, the experiment analysis confirms the

significance of the main factors and the existence of a linear relationship between factors and

the response. Fig 4 illustrates the effects of variation in the three factors. Although the accuracy

of the model decreases with an increasing number of components and interdependencies in

the network, the degradation of accuracy considering the experiment domain is around just

1%. This suggests that the variation in accuracy does not significantly affect the performance

of the entire algorithm.

Table 4. Experiment design configuration.

Factor Levels

Number of nodes 2: 60/120

Number of interdependencies 2: 15/30

Network type 3: Barabási-Albert/Erdös-Renyi/Newman-Watts-Strogatz

https://doi.org/10.1371/journal.pone.0270407.t004

Fig 3. Random forest model accuracy elbow graph.

https://doi.org/10.1371/journal.pone.0270407.g003
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Recovery time chain prediction

Mentioned previously, in each period, we use the random forest model to predict if each dis-

rupted component is recovered or not in that period. Because the random forest model is not

100% accurate and each node is classified independent from the other components, more than

one component can be predicted as recovered in each period. To rectify this problem, we rank

Table 5. ANOVA table for random forest model accuracy.

Source Sum of squares df Mean square F stat p-value

Model 25.25 4 6.31 13.51 < 0.0001

Number of components 3.45 1 3.45 7.38 0.0118

Number of interdependencies 4.35 1 4.35 9.31 0.0053

Network type 17.45 2 8.73 18.67 < 0.0001

Residual 11.69 25 0.4675

Lack of fit 4.19 10 0.4192 0.8389 0.6015

Pure error 7.50 15 0.4997

https://doi.org/10.1371/journal.pone.0270407.t005

Fig 4. Accuracy versus the (a) number of components, (b) number of interdependencies, (c) network type, as well as

(d) the effect of number of components and number of interdependencies on accuracy considering the average over

factor C.

https://doi.org/10.1371/journal.pone.0270407.g004
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the selected components based on the probability generated by the random forest model and

select the one component with the highest probability as the component predicted to be

restored in a specific period. That is, a short-list of the disrupted components is provided

using the random forest model, and the one with the highest score among them is selected. So,

we expect better accuracy in predicting the whole chain of disrupted interdependent compo-

nents than the random forest model’s independent predictions. The boxplots in Fig 5 show the

accuracy of the prediction made by the INAR algorithm versus those made using rankings

from individual centrality measures. To analyze the performance of the INAR algorithm, it is

currently unrealistic to consider a massive number of disruption scenarios and to enumerate

all possible combinations due to the computational effort required, mainly when dealing with

the large number of disrupted components in an interdependent network. Therefore, we gen-

erated 30 random disruption scenarios, along with 40 disrupted components, including 15

and 10 interdependent components for the proposer’s and responder’s networks. Subse-

quently, we measured how different the predicted restoration and the actual restoration were

in terms of the number of periods and lead the discussion using the mean and standard devia-

tion of the random sample. The distributions of mean absolute error (found from the predic-

tions of 15 disrupted components) are found in Fig 5. According to Fig 5, the INAR algorithm

has the lowest mean absolute error of 3.49 (standard deviation of 0.9) for the Shelby County

network. Similar results were found for the other network types. The performance of the

INAR algorithm is substantially better than restoration decisions based on centrality measures

across the network types. The use of centrality measures was substantially worse (and more

variable) for Erdös-Renyi, which are networks whose connections are generated randomly.

Centrality measures worked a bit better for Barabási-Albert networks, whose degree distribu-

tion follows a power law, suggesting only a small portion of the components has a high degree

distribution. Thus, using centrality measures for decision-making naturally produces better

performance.

Generally, it is easier to predict an incident happening in the near future relative to the dis-

tant future, which may be a function of a chain of uncertain events and decisions. That is, if we

fail to predict the events happen in the near future correctly, the dependent incidents in the

Fig 5. Mean absolute error for the disrupted interdependent component recovery period prediction.

https://doi.org/10.1371/journal.pone.0270407.g005
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distant future are less likely to be predicted correctly. The INAR algorithm reflects this concept

as we are dealing with a finite number of disrupted components that need to be recovered in

time. As the INAR algorithm makes predictions period by period, the prediction made in later

periods depends on the ones in earlier periods. Thus, as the time passes, we expect to lose accu-

racy in predicting restoration time. To address this concern, we consider a continuous repro-

duction process for if the responder realizes a deviation between prediction and the actual

plan of the proposer. Therefore, the responder tries to keep the gap between their assumption

and what actually happens as close as possible, so predictions made in the future are less

important because they will likely be corrected in the algorithm process. In Fig 6, we consid-

ered the ascending order of restoration time for each disruption scenario and calculate the

absolute error of actual and predicted time of recovery. Doing so shows the model prediction

performance corresponding to the proposer’s consecutive order of recovery.

It is evident in Fig 6 that the mean and standard deviation of prediction error generally

increases as the component’s recovery order increases. This indicates that the further in time

an event happens, the less accuracy can be expected from the prediction model. Also, we can

realize that the INAR algorithm has a better performance in predicting the near future with

the mean absolute error of 2.25, 0.93, 2, and 1.13 for Barabási-Albert, Erdös-Renyi, Newman-

Watts-Strogatz, and Shelby County network, respectively. Using a continuous reprediction

mechanism whenever we find deviation between the actual and predicted plan, the INAR algo-

rithm frequently sheds light on the near future and always puts the algorithm in position to

predict the prior component that is recovered by the proposer.

Recovery cost

We have illustrated the performance and behavior of the prediction of the INAR algorithm in

detail. In this section, we address how a lack of accuracy can affect the recovery cost of the

responder’s network. We considered the cost of the perfect condition, when the responder

knows exactly how the opponent would behave, as the baseline for cost comparisons. Then we

calculate the network unmet demand cost considering (i) the prediction made using INAR

Fig 6. Prediction chain performance based on recovery time order.

https://doi.org/10.1371/journal.pone.0270407.g006
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algorithm and (ii) by ranking disrupted component recovery time based on individual central-

ity metrics. To have a realistic point of view, Fig 7 shows the average unmet demand cost con-

sidering 20 different disruption scenarios during the network recovery time horizon for the

Shelby County network.

Illustrated in Fig 7, the recovery cost related to the INAR algorithm is closely aligned with

the perfect recovery condition, suggesting that the network recovery solution provided by the

INAR algorithm can successfully compete with the optimal solution. Furthermore, the same

trend can be seen for other generated networks that represent different network structures in

this study. Considering the perfect situation as the baseline, we calculate the percentage of the

extra cost imposed due to the lack of accuracy in predictions made by utilizing the above-men-

tioned methods for various type of networks. Table 6 illustrates the optimal cumulative recov-

ery cost as the baseline, and the amount of extra cost that imposed due to using different

prediction algorithms. The cost deviation from the baseline optimal cumulative cost consider-

ing the INAR algorithm for generated networks is between 1% to 3%, while this amount for

the Shelby County network is almost 4%. Evident from the Table 6, the INAR algorithm shows

a better cost-performance than the other ranking methods considering the realistic Shelby

County network. Therefore, Table 6 confirm the high performance of the INAR algorithm

Fig 7. Network normalized unmet demand cost during the recovery process.

https://doi.org/10.1371/journal.pone.0270407.g007

Table 6. Cumulative recovery cost of recovery.

Percent of extra cost due to the lack of accuracy

Network type Baseline optimal

cumulative cost

INAR

algorithm

Betweenness centrality

ranking

Closeness centrality

ranking

Page-rank centrality

ranking

Katz centrality

ranking

Shelby County 456,449,810 3.98% 48.24% 39.11% 59.29% 52.60%

Barabási-Albert 349,182,870 1.27% 3.52% 4.21% 5.13% 4.56%

Erdös-Renyi 426,206,130 2.76% 7.80% 8.92% 6.98% 8.47%

Newman-Watts-

Strogatz

80,207,450 1.09% 7.11% 7.42% 6.98% 6.86%

https://doi.org/10.1371/journal.pone.0270407.t006
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compared to the other prediction methods, especially for the Shelby County network, which is

based on a real-world topology of actual interdependent infrastructure networks.

Note from Table 7 that the running time of Algorithm 2 for the prediction and optimization

process was insignificant relative to the time scale of the decision process and also similar

across the selected network types.

Concluding remarks

The INAR algorithm is developed to address the concern of having multiple infrastructure

decision-makers whose decisions affect (i) the performance of other infrastructures and thus

(ii) the decisions of other infrastructure decision-makers. This is especially true when these

decision-makers do not reveal their restoration plans to other players in the system. The INAR

algorithm provides a framework for predicting future decision-maker behavior and devising

an adaptive plan concerning the recovery of the disrupted interdependent infrastructure net-

work. To do so, we have integrated machine learning with an analytical solution approach by

defining a mechanism to include uncertain assumption (i.e., the best guesses of the intentions

of other players) into the analytical model.

The main idea behind the INAR algorithm development objective is to use topological fea-

ture of the proposer’s network, investigating and learning from disruption scenarios before

they occur, so that a good solution can be achieved in a timely manner after a disruption. The

proposed algorithm consists of two parts: (i) data preparation and learning using a random

forest model and (ii) scheduling the recovery process. The prediction model showed good per-

formance when predicting the recovery periods of each individual component in the proposed

case studies, which include the system of interdependent water and power networks from

Shelby County, TN, and three systems with different types of randomly generated networks:

Barabási-Albert, Erdös-Renyi, and Newman-Watts-Strogatz.

Furthermore, we have studied the recovery prediction accuracy of the disrupted interde-

pendent components complete sequence using the mean absolute error between actual and

predicted plan. The results showed a high performance with an average deviation of around 4

periods from actual, while this amount for the near feature was around 2 periods. In this

regard, we observed myopic behavior from the INAR algorithm prediction, which has been

addressed using a continuous prediction loop to renew the predictions whenever a deviation

was detected by the algorithm. Finally, we addressed the reflection of the prediction lack of

accuracy objectively on the cost of the recovery. Using the INAR algorithm, unmet demand

recovery costs approach the optimal solution recovery cost such that we can observe only a 4%

cost deviation from the optimal solution for Shelby County case and less than 3% for the other

generated networks. This implies a high efficiency of the proposed algorithm. The challenge

for the future work is to enhance the overall performance of the algorithm, particularly when

predicting the distant future events in the proposer’s network. Deep learning models can help

achieve better predictions and improving the algorithm overall performance. Furthermore, the

proposed algorithm is suitable for the real cases like hierarchical systems where the responder

player does not have that much leverage over the proposer player in the system. Incorporating

different levels of bargaining power for each player in the system could be other relevant future

avenue of this research.

Table 7. Computation time (seconds) for Algorithm 2 by network type.

Network type Shelby County Barabási-Albert Erdös-Renyi Newman-Watts-Strogatz

Computational time 52 54 47 39

https://doi.org/10.1371/journal.pone.0270407.t007
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