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Chromosome replication in Escherichia coli is initiated from a single origin, oriC. Initiation

involves a number of DNA binding proteins, but only DnaA is essential and specific for the

initiation process. DnaA is an AAA+ protein that binds both ATP and ADPwith similar high

affinities. DnaA associated with either ATP or ADP binds to a set of strong DnaA binding

sites in oriC, whereas only DnaAATP is capable of binding additional and weaker sites

to promote initiation. Additional DNA binding proteins act to ensure that initiation occurs

timely by affecting either the cellular mass at which DNA replication is initiated, or the time

window in which all origins present in a single cell are initiated, i.e. initiation synchrony, or

both. Overall, these DNA binding proteins modulate the initiation frequency from oriC by:

(i) binding directly to oriC to affect DnaA binding, (ii) altering the DNA topology in or around

oriC, (iii) altering the nucleotide bound status of DnaA by interacting with non-coding

chromosomal sequences, distant from oriC, that are important for DnaA activity. Thus,

although DnaA is the key protein for initiation of replication, other DNA-binding proteins

act not only on oriC for modulation of its activity but also at additional regulatory sites

to control the nucleotide bound status of DnaA. Here we review the contribution of key

DNA binding proteins to the tight regulation of chromosome replication in E. coli cells.

Keywords: E. coli, chromosome replication, DNA binding proteins, cell mass, initiation synchrony

TIMING OF INITIATION OF CHROMOSOME REPLICATION IN
E. COLI

Chromosome replication in Escherichia coli is initiated from a single replication origin, oriC. The
oriC-encoded structural and functional instructions for initiation are well-described (Leonard
and Mechali, 2013; Skarstad and Katayama, 2013). In brief, the minimal oriC contains two
functional regions: the Duplex Unwinding Element (DUE), which comprises three AT-rich repeat
sequences of each 13 bp, and the flanking DnaA Assembly Region (DAR) (Figure 1; Mott and
Berger, 2007; Ozaki and Katayama, 2012). DnaA is the initiator protein responsible for DUE
opening and for the recruitment of replisome components and is the only protein that is both
essential and specific for the initiation process (Kaguni, 2011; Leonard and Grimwade, 2011).
DnaA belongs to the AAA+ proteins (ATPases Associated with diverse Activities) and can bind
both ATP and ADP with similar high affinities (Sekimizu et al., 1987). The DAR region contains
high affinity DnaA Boxes (R1, R4, and R2) that bind both DnaAATP and DnaAADP, along with
multiple low affinity sites (R3, R5/M, I1, I2, I3, C1, C2, C3, τ1, and τ2) that bind DnaAATP
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(McGarry et al., 2004; Kawakami et al., 2005; Rozgaja et al.,
2011). The DAR region also contains recognition sequences for
two additional DNA binding proteins; IHF and Fis (Figure 1;
Polaczek, 1990; Gille et al., 1991).

Throughout most of the cell cycle oriC is bound by DnaA
located at R1, R2, and R4. This origin recognition complex (ORC)
serves dual purposes in setting the stage for proper orisome
assembly and preventing premature DNA unwinding. The ratio
of DnaAATP to DnaAADP varies through the cell cycle and
the peak at about 70–80% DnaAATP coincides with replication
initiation (Kurokawa et al., 1999). In the current model for
orisome formation, two converging DnaAATP filaments are
formed (Rozgaja et al., 2011). One filament originates from
R4 and grows leftward. This R4-filament displaces Fis from
its binding site next to R2, which allows IHF to bind its
recognition sequence next to R1. IHF bends the DNA 180◦

thereby bringing R1 in proximity of R5 and allows for the
formation of the rightward filament responsible for duplex
opening at the DUE, DnaC assisted helicase loading and assembly
of the replisome (Leonard and Grimwade, 2011, 2015; Ozaki
et al., 2012). Following initiation, DnaAATP is converted to
DnaAADP primarily by a process called regulatory inactivation of
DnaA (RIDA), which is dependent on the Hda protein bound
to ADP and the DNA-loaded β-clamp of the polymerase III
holoenzyme (Kato and Katayama, 2001), and by the less efficient
datA-dependent DnaAATP hydrolysis (DDAH). DDAH takes
place at datA and is dependent on IHF (Figure 1; Kasho and
Katayama, 2013).

Coordination of Initiations with Cell Mass
Increase
A long standing observation is that initiation of chromosome
replication occurs when a certain cellular mass per origin, the
initiation mass, is reached (Donachie, 1968; Hill et al., 2012).
This coupling of replication initiation to cell growth depends on
the DnaA protein. Earlier studies indicate that accumulation of
DnaA protein sets the time of initiation in the cell cycle especially
around or below wild-type level (Løbner-Olesen et al., 1989).
On the other hand, a coordinated increase in DnaAATP and
DnaAADP does not significantly increase initiation (Kurokawa
et al., 1999; Flatten et al., 2015), suggesting that accumulation
of DnaAATP is insufficient to trigger initiation. However, in the
absence of RIDA, where DnaA is mainly ATP bound, a modest
increase in DnaAATP level leads to excessive initiations from oriC
(Riber et al., 2006; Fujimitsu et al., 2008), as does expression
of a DnaA mutant protein insensitive to RIDA (Simmons
et al., 2004). Together, this indeed suggests that accumulation of
DnaAATP triggers initiation, whereas this effect can be offset by a
similar increase in DnaAADP (Donachie and Blakely, 2003). The
participation of DnaAADP in orisome formation remains unclear
(Leonard and Grimwade, 2015), but the above observations
suggest that it affects initiation negatively. Overall, accumulation
of DnaA protein during steady-state growth, along with the
cell cycle specific peak in DnaAATP/DnaAADPratio, determines
the onset of initiation with little variation between individual
cells.

Coordination of initiations within a Single
Cell
In individual cells, initiation at all origins occurs within
approximately 1/10 of the doubling time (Initiation period, IP;
Figure 2A). Rapidly growing cells with overlapping replication
cycles therefore predominantly contain 2n (n = 1, 2, 3)
copies of oriC, referred to as initiation synchrony (Skarstad
et al., 1986). Initiation synchrony depends on the immediate
inactivation of newly replicated origins by sequestration. oriC
contain 11 copies of the sequence GATC that are methylated
by Dam methyltransferase and bound, i.e., sequestered, by
SeqA when hemimethylated. Sequestration prevents DnaA
binding to its weak sites in oriC (Nievera et al., 2006)
for approximately 1/3 generation (Sequestration period, SP;
Figure 2A) and serves to keep track of which origins have
been initiated (Boye and Løbner-Olesen, 1990; Campbell and
Kleckner, 1990; Lu et al., 1994). The ability to initiate all
origins in synchrony could result from maintaining a high
DnaAATP level throughout IP. Alternatively the first origin
initiated may release its DnaAATP to assist in triggering
successive initiations at remaining origins in a cascade-like
manner to ensure that free DnaAATP increases through IP

and enforces synchrony (Løbner-Olesen et al., 1994). These
models predict different outcomes for sequestration deficient
cells. A high DnaAATP level throughout IP would result in
re-initiation(s) within IP, asynchrony and overinitiation. The
cascade model predicts a delay between successive initiations
due to newly initiated origins competing with old origins for a
limited amount of DnaAATP. The initiation frequency would be
directly proportional with accumulation of DnaAATP resulting
in asynchrony but an unchanged overall initiation frequency,
which is in accordance with experimental observations for Dam
deficient cells (Boye and Løbner-Olesen, 1990; Løbner-Olesen
et al., 1994).

Synchrony is only observed when IP < SP (Figure 2A). In
cells with aberrant timing of initiation, the IP and SP periods
change, i.e., either start earlier in the cell cycle at a decreased
initiation mass, i.e., overinitiation, or are delayed with an
increased initiation mass, i.e., underinitiation. Alternatively, the
duration of IP and SP may change relative to each other, and when
IP > SP, newly initiated origins, released from sequestration,
compete with origins not yet initiated. Consequently, some
origins are re-initiated while others are not initiated at all, leading
to loss of synchrony (Olsson et al., 2003; Skarstad and Løbner-
Olesen, 2003). This is exemplified by dam mutants without
a sequestration period that initiate throughout the cell cycle
(Figure 2B; Boye and Løbner-Olesen, 1990; Lu et al., 1994).
seqA mutants are also asynchronous but have a higher origin
concentration, possibly because DnaA is increased, relative to
dam mutants (Figure 2C; Campbell and Kleckner, 1990; von
Freiesleben et al., 1994). Increased levels of Damwill, due to faster
re-methylation rates, reduce SP and when this becomes shorter
than IP, asynchrony follows (Figure 2C; Boye and Løbner-
Olesen, 1990; von Freiesleben et al., 2000a). Excess SeqA protein
delays initiation, prolongs the sequestration period but does
not affect synchrony (Figure 2D; Bach et al., 2003; Charbon
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FIGURE 1 | The chromosome replication cycle. Dynamic binding of activators (green) and inhibitors (red) to oriC and distal regulatory sequences during the

replication cycle. For details see text.

et al., 2011). During sequestration the activity of DnaA is
lowered by RIDA and DDAH. RIDA is presumably accelerated
by generation of new replication forks at initiation and hence
more DNA loaded β-clamps (Moolman et al., 2014). Similarly,
DDAH is increased shortly after initiation when the datA locus
is duplicated and together they ensure a post-initiation decrease
in the DnaAATP/DnaAADP ratio (Figure 1). RIDA (1hda) and
to a lesser degree DDAH (1datA) deficient cells fail to lower
the ratio of DnaAATP/DnaAADP to prevent re-initiation following

sequestration. This results in asynchrony and early initiation at
a reduced cell mass (Figure 2E; Kitagawa et al., 1998; Fujimitsu
et al., 2008; Kasho and Katayama, 2013). On the other hand,
the dnaNG157C mutant, which is more active in RIDA (dnaN
encodes the β-clamp), or extra copies of datA, results in delayed
initiation and, for dnaNG157C cells, also produces asynchrony
(Figures 2F,G; Morigen et al., 2001; Gon et al., 2006; Charbon
et al., 2011; Johnsen et al., 2011). During sequestration, the overall
level of free DnaA is reduced by titration (Hansen et al., 1991;
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FIGURE 2 | Timing of replication initiation. Examples of mutants/plasmids with altered initiation (IP; green) and sequestration (SP; blue) periods. The horizontal line

represents one doubling time, whereas the vertical (hyphenated) line illustrates the time of initiation of the first origin in wild-type cells. Note that the start of SP always

coincides with the first origin initiated, i.e., start of IP. In the graphical representation of initiation synchrony, the number of origins per cell are on the X-axis, whereas

the cell number is on the Y-axis of each histogram. When more than one mutation/plasmid is listed for a specific example (e.g., in C,E–G,I), the histograms are

representative of the initiation phenotype of each individual mutation/plasmid.
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Kitagawa et al., 1996, 1998; Ogawa et al., 2002) and by arrest of de
novo DnaA synthesis (Campbell and Kleckner, 1990).

MODULATION OF TIMING OF
REPLICATION INITIATION BY DNA
BINDING PROTEINS

Several DNA binding proteins affect either the cell mass at
initiation, the initiation synchrony, or both. These proteins either
bind specifically to oriC to affect DnaA binding, non-specifically
to DNA to alter oriC topology, or they bind sequences important
for the nucleotide bound status of DnaA.

Proteins That Specifically Interact with
oriC Prior to Initiation
The most important protein to interact with oriC prior to
initiation is DnaA. Mutations in DnaA that affect nucleotide
binding, such as dnaA46, are presumably somewhat deficient in
formation of DnaA multimers on oriC, which results in delayed
initiation and a prolonged initiation period (Skarstad et al., 1988;
Boye et al., 1996). As sequestration remains unchanged (IP > SP),
dnaA46 cells are asynchronous (Figure 2F; Skarstad and Løbner-
Olesen, 2003). Mutations in DnaA that affect DNA binding,
but not nucleotide binding (e.g., dnaA204), lead to late but
synchronous initiation (Figure 2G; Skarstad et al., 1988; Torheim
et al., 2000). The ability to form DnaAATP filaments on oriC
therefore seems of greater importance for initiation synchrony
than a tight anchoring to DnaA binding sites.

Conflicting data exist on the role of Fis for timing of initiation.
Binding Fis to oriC in vitro is reported to either inhibit initiation
of replication by inducing conformational changes at oriC that
prevent orisome formation (Wold et al., 1996; Ryan et al.,
2002, 2004), or have no effect on initiation (Margulies and
Kaguni, 1998). Cells with a mutated primary Fis binding in
oriC (oriC131) have an origin concentration similar to wild-type
(Figure 2H; Weigel et al., 2001; Riber et al., 2009; Flatten and
Skarstad, 2013). Fis-deficient cells, on the other hand, have a
lowered origin concentration (Flatten and Skarstad, 2013; Kasho
et al., 2014), suggesting that initiation is delayed (Figure 2F).
However, because Fis affects multiple cellular processes due to
its involvement in DNA organization one should be careful in
assessing its role in initiation solely based on the behavior of
Fis-deficient cells. Both Fis deficiency or loss of its primary
oriC binding site result in initiation asynchrony (Figures 2F,H;
Riber et al., 2009; Flatten and Skarstad, 2013), indicating that
these cells are deficient for proper orisome assembly and/or
for preventing premature DNA unwinding. The role of IHF in
replication timing is less controversial. An oriC mutant with a
disrupted IHF binding site (oriC132) is somewhat deficient in
orisome formation and has delayed but synchronous initiation
(Figure 2G; Weigel et al., 2001; Skarstad and Løbner-Olesen,
2003; Riber et al., 2009). ihf mutant cells also initiate replication
at an increased mass per origin consistent with a stimulatory
role of IHF on initiation. Cells deficient in IHF are on the other
hand asynchronous (Figure 2F; von Freiesleben et al., 2000b).

This is in agreement with an additional role of IHF for DnaAATP

generation at DARS2 (see below).
A number of proteins negatively regulate initiation of

replication in vitro. These include ArcA that binds to 13 mer
AT rich repeats, to DnaA box R1 and to the IHF binding
site in oriC, and IciA that binds to 13-mer AT-rich repeats in
oriC (Hwang and Kornberg, 1990; Lee et al., 2001). The impact
of ArcA and IciA on replication initiation in vivo is modest
(Nystrom et al., 1996) or not known, respectively. The stationary-
phase induced CspD protein binds ssDNA to inhibit replication
initiation and elongation in vitro, whereas no in vivo data are
available (Yamanaka et al., 2001). Upon association with Cnu
and/orHha, H-NS (see below) binds to a specific sequence in oriC
that overlaps DnaA box R5 (Kim et al., 2005; Yun et al., 2012).
Cells deficient in Cnu and/or Hha are, however, similar to wild-
type (Kim et al., 2005). Finally, the protein Rob binds to a single
site in oriC in vitro, but does not affect initiation in vivo (Skarstad
et al., 1993).

DNA Binding Proteins That Affect Topology
of oriC
In E. coli the genomic DNA is mostly negatively supercoiled
(Wang et al., 2013). Unconstrained supercoiling of oriC
contributes to the ease of duplex opening and is determined
by transcription (not covered here; for review see Magnan and
Bates, 2015) along with the actions of topoisomerase I and DNA
gyrase enzymes (Wu et al., 1988). Mutations in topoisomerase
I, which removes negative supercoils, result in initiation at a
slightly reduced mass while synchrony is maintained (Figure 2I;
von Freiesleben and Rasmussen, 1992; Olsson et al., 2003).
Conversely, temperature sensitive gyrB mutant cells, with
moderately reduced negative superhelicity of the chromosome,
enhance the temperature sensitivity of a dnaA46 mutant
(Filutowicz, 1980) and show delayed synchronous initiations
(Figure 2G; von Freiesleben and Rasmussen, 1991; Usongo et al.,
2013). This suggests that initiation is facilitated by an increase
in negative superhelicity of the chromosome. However, topA-gyr
mutations influence chromosome segregation, R-loop formation
and possibly induce stable DNA replication independent of oriC
(Usongo et al., 2013, 2016) making it difficult to assess the
effect of large changes in overall supercoiling on replication
initiation. In vivo, nucleoid-associated proteins (NAPs; Dillon
and Dorman, 2010), such as IHF, Fis, H-NS, HU, and MukFEB
constrain negative supercoils to condense the chromosome
and could therefore affect initiation of chromosome replication
(Badrinarayanan et al., 2015; Lal et al., 2016). H-NS deficient
cells have an increased negative superhelicity of the genome
(Mojica and Higgins, 1997; Hardy and Cozzarelli, 2005). Yet,
genetic evidence suggests that loss of H-NS hampers initiation
(Katayama et al., 1996), and H-NS deficient cells initiate
replication in synchrony at an increased cell mass (Figure 2G;
Kaidow et al., 1995; Atlung and Hansen, 2002). The HU protein
can substitute for IHF in DnaA-mediated unwinding of oriC in
vitro (Hwang and Kornberg, 1992) although their mechanisms of
action differ (Ryan et al., 2002). In vivo, genetic evidence suggests
that loss of HU stimulates initiation despite decreased negative
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supercoiling (Louarn et al., 1984). Loss of MukB, involved in
condensation of the bacterial chromosome (Hiraga et al., 1989;
Cui et al., 2008), results in reduced negative supercoiling (Weitao
et al., 2000), but initiations remain synchronous (Weitao et al.,
1999). It is not known whether MukB affects the initiation mass.
Finally, the starvation-induced NAP, Dps, binds non-specifically
to oriC, and interacts with the N-terminus of DnaA, inhibiting
DNA unwinding in vitro. Loss of Dps does not result in loss of
synchrony, but increases the cellular origin content somewhat
(Chodavarapu et al., 2008). In summary, it seems that NAPs
modulate replication initiation but that the effect is not solely
mediated through an effect on DNA supercoiling.

GETTING READY FOR THE NEXT ROUND
OF REPLICATION

At later cell cycle stages DnaAATP is regenerated for the next
initiation to take place (Figure 1). E. coli can rejuvenate
DnaAADP to DnaAATP in a process assisted by acidic
phospholipids (Saxena et al., 2013) or at two non-coding
chromosomal sites called DARS1 and DARS2 (Fujimitsu et al.,
2009). DARS1 and DARS2 are located in each replichore halfway
between oriC and terC, and are duplicated after the end of
sequestration. Multiple DnaAADP molecules form complexes
with DARS to facilitate release of ADP resulting in apo-DnaA,
which will primarily rebind ATP as this is more abundant than
ADP within the cell (Petersen and Møller, 2000).

DARS1 is not known to be regulated by any proteins, whereas
rejuvenation at the more efficient DARS2 locus is dependent
on binding of both IHF and Fis (Kasho et al., 2014). While
Fis binds DARS2 throughout the cell cycle, IHF provides cell
cycle specificity to DARS2 activity by only binding and activating
DARS2 immediately prior to initiation to ensure an increase in
DnaAATP level (Fujimitsu et al., 2009; Kasho et al., 2014). Extra
copies of DARS1 or DARS2 will increase the overall DnaAATP

level, which results in early initiation (Figures 2E,I) and for
DARS2 also extends IP, thereby resembling RIDA deficiency
(Figure 2E; Fujimitsu et al., 2009; Charbon et al., 2011). Deletion
of DARS1, DARS2, or both reduces the ability to reactivate DnaA
for new initiations in the following cell cycle and results in
delayed initiation (Figures 2F,G; Fujimitsu et al., 2009; Kasho
et al., 2014; Frimodt-Moller et al., 2015). Loss of DARS2 also
increases the relative duration of the initiation period, leading
to initiation asynchrony (Figure 2F; Fujimitsu et al., 2009;
Frimodt-Moller et al., 2015). This suggests that both DARS1
and DARS2 are important for coupling initiation to cell mass
increase, whereas only the cell-cycle regulated DARS2 is crucial
for maintaining initiation synchrony.

CONCLUDING REMARKS

Overall, timing of chromosome replication in E. coli takes
place at least at two levels. First, initiation of replication is
tightly coupled to cell mass increase through accumulation of
DnaAATP. Second, synchrony of initiations within the single
cell is not necessarily connected to initiation mass but results
from each origin being simultaneously initiated only once per
generation, with asynchrony originating from failure to obey
this once-and-only-once rule. DnaA remains the only replication
protein solely required for initiation at oriC, but additional
proteins act on oriC and elsewhere to assist in coupling of
replication to cell growth and synchrony. In particular IHF
and Fis display complex functions, targeting several regulatory
sites. IHF has a dual role on replication initiation, acting both
positively (i.e., binding to DARS2 and oriC) and negatively (i.e.,
binding to datA). Also, IHF binds oriC at the pre-initiation
stage and interacts with datA and DARS2 following initiation.
Binding of IHF to these regions is suggested to be temporally
regulated so that IHF binds to oriC, to datA and to DARS2
in a successive manner during cell cycle progression (Kasho
and Katayama, 2013; Kasho et al., 2014). In vivo, ihf mutants
display an initiation-compromised phenotype, indicating that
the overall role of IHF on initiation of replication appears
positive.

For a long time, the contribution of Fis in initiation
regulation has been questioned. Recent studies do, however,
suggest an overall positive role of Fis in replication initiation
(Flatten and Skarstad, 2013; Kasho et al., 2014), which likely
results from ensuring ordered orisome formation by preventing
premature IHF binding and DNA unwinding (Leonard and
Grimwade, 2015) and from stimulating DnaAATP rejuvenation
at DARS2. As the cellular Fis level depends on both growth-
rate and phase, it could adjust chromosome replication to
the bacterial growth rate through its activity on DARS2
(Kasho et al., 2014).
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