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Abstract

Purpose. Antimicrobial susceptibility is slow to determine, taking several days to fully impact treatment. This proof-of-concept 
study assessed the feasibility of using machine-learning techniques for analysis of data produced by the flow cytometer-
assisted antimicrobial susceptibility test (FAST) method we developed.

Methods. We used machine learning to assess the effect of antimicrobial agents on bacteria, comparing FAST results with 
broth microdilution (BMD) antimicrobial susceptibility tests (ASTs). We used Escherichia coli (1), Klebsiella pneumoniae (1) and 
Staphylococcus aureus (2) strains to develop the machine-learning algorithm, an expanded panel including these plus E. coli (2), 
K. pneumoniae (3), Proteus mirabilis (1), Pseudomonas aeruginosa (1), S. aureus (2) and Enterococcus faecalis (1), tested against 
FAST and BMD (Sensititre, Oxoid), then two representative isolates directly from blood cultures.

Results. Our data machines defined an antibiotic-unexposed population (AUP) of bacteria, classified the FAST result by anti-
microbial concentration range, and determined a concentration-dependent antimicrobial effect (CDE) to establish a predicted 
inhibitory concentration (PIC). Reference strains of E. coli, K. pneumoniae and S. aureus tested with different antimicrobial agents 
demonstrated concordance between BMD results and machine-learning analysis (CA, categoric agreement of 91 %; EA, essen-
tial agreement of 100 %). CA was achieved in 35 (83 %) and EA in 28 (67 %) by machine learning on first pass in a challenge 
panel of 27 Gram-negative and 15 Gram-positive ASTs. Same-day AST results were obtained from clinical E. coli (1) and S. 
aureus (1) isolates.

Conclusions. The combination of machine learning with the FAST method generated same-day AST results and has the poten-
tial to aid early antimicrobial treatment decisions, stewardship and detection of resistance.

Introduction
Antimicrobial susceptibility tests (ASTs) are the common 
point of entry to optimized antimicrobial therapy, antimi-
crobial resistance surveillance and new antimicrobial agent 
discovery. ASTs classify the interaction between bacteria and 
antimicrobial agents, most often expressed in a binary form 
as sensitive or resistant. But in some instances, antimicrobial 

susceptibility needs to be expressed as a quantitative meas-
urement known as the MIC. The current international AST 
reference method is the broth microdilution (BMD) version 
of the MIC [1], which takes 18–24 h after primary isolation 
of the causal bacteria from the initial specimen culture. The 
time this takes prevents AST from informing the earliest 
antimicrobial therapy decisions in serious life-threatening 
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infections [2]. Concerns about increasing antimicrobial 
resistance (AMR) have prompted a search for faster methods 
of accurate AST [3].

We previously reported a flow-cytometer method of anti-
microbial susceptibility testing (FAST) that generated sensi-
tive/resistant and MIC results with a combination of high 
speed and accuracy [4]. The data sets generated by the FAST 
method are too complex for efficient analysis by current flow-
cytometer interpretive software originally designed to meet 
the needs of eukaryotic cell biologists. Previous analytical 
methods held back expansion of our FAST repertoire to a 
wider range of antimicrobial/bacterial combinations [5]. 
While flow cytometry had been used previously to study 
antimicrobial susceptibility [6–8], it has not been widely 
adopted for AST. Our flow-cytometry-assisted susceptibility 
test (FAST) method generated an accurate MIC in less than 
3 h [4], but only after manual curation and analysis of data 
output by an experienced cytometrist using commercial 
software. A more efficient data-processing pipeline became 
essential after we modified the FAST sample preparation 
for high throughput analysis of multiple antimicrobial/
bacteria combinations. The improved workflow generated 
larger numbers of opto-electronic events from each AST 
experiment. Moreover, the original description of the FAST 
method used a two-laser, eight-channel acoustic-enhanced 
flow cytometer. The high throughput workflow employs a 
four-laser, 16-channel acoustic cytometer equipped with a 
96-well plate autosampler, highlighting the need for swift, 
objective data processing by a less experienced operator. 
We therefore sought a data-processing solution through 
machine learning. Here we describe the initial development 
of a supervised machine-learning ensemble for visualization, 
classification and analysis of antimicrobial susceptibility, 
and demonstrate its application in accelerated antimicrobial 
susceptibility testing of bacteria isolated from time-critical 
clinical specimens and a broader challenge panel of isolates.

Methods
Software
Data machines were designed, assembled and run using open 
access data-mining software (Orange v3.20, University of 
Ljubljana, Slovenia) [9]; under a Creative Commons license. 
Orange was run under Windows 10 (Microsoft, CA, USA). 
Statistical analysis was conducted in Prism v8 (GraphPad, 
San Diego, CA, USA).

Bacterial strains
Escherichia coli ATCC 25922, E. coli ATCC 35218, E. coli 
−2841 (clinical), Klebsiella pneumoniae ATCC 700603, K. 
pneumoniae ATCC 700603, K. pneumoniae ATCC BAA-1705, 
K. pneumoniae ATCC BAA-1706, K. pneumoniae ATCC 
13883, Proteus mirabilis −9545 (clinical), Pseudomonas aerug-
inosa ATCC 27853, Staphylococcus aureus ATCC 25923, S. 
aureus ATCC 29213, S. aureus ATCC 33592, S. aureus −6885 
(clinical), Enterococcus faecalis ATCC 29212. Clinical isolates: 
E. coli 1A and S. aureus 9B. Curated by Western Australian 

Culture Collection, Department of Microbiology, PathWest 
Laboratory Medicine WA. Source of clinical isolates, Depart-
ment of Microbiology, PathWest Laboratory Medicine WA.

Antimicrobial susceptibility series
We used commercial, custom, pre-dispensed 96-well micro-
titre plates containing dilution series of antimicrobial agents 
for standardized broth microdilution MIC for (a) Entero-
bacterales (SEMPA1, Sensititre, Oxoid, UK) and (b) Gram-
positive cocci (SEMSE3, Sensititre, Oxoid, UK). The plates 
contained the following antibiotic dilution series bracketing 
the European Committee on Antimicrobial Susceptibility 
Testing (EUCAST) break points:

SEMPA1, containing amikacin (0.5–32 µg ml−1), aztre-
onam (1–64 µg ml−1), ciprofloxacin (0.12–8 µg ml−1), 
colistin (0.25–32 µg ml−1), cefepime (1–32 µg ml−1), gen-
tamicin (0.25–16 µg ml−1), imipenem (0.25–32 µg ml−1), 
levofloxacin (0.12–8 µg ml−1), meropenem (0.12–32 
µg ml−1), piperacillin-tazobactam (1/4-64/4 µg ml−1), 
trimethoprim-sulphamethoxazole (0.12/2.38-16/304 
µg ml−1), ceftazidime (0.5–32 µg ml−1) and tobramycin 
(0.25–16 µg ml−1).

SEMSE3, containing amikacin (2–64 µg ml−1), azithro-
mycin (0.5–8 µg ml−1), ciprofloxacin (0.12–8 µg ml−1), 
clarithromycin (0.25–8 µg ml−1), clindamycin (0.12–4 
µg ml−1), cefoxitin (1–16 µg ml−1), gentamicin (0.12–4 µg 
ml−1), levofloxacin (0.12–8 µg ml−1), linezolid (0.5–16 µg 
ml−1), moxifloxacin (0.06–4 µg ml−1), norfloxacin (1–16 
µg ml−1), ofloxacin (0.25–4 µg ml−1), penicillin (0.03–0.5 
µg ml−1), teicoplanin (0.25–16 µg ml−1), tobramycin 
(0.12–4 µg ml−1) and vancomycin (0.5–16 µg ml−1).

Bacterial analysis: a modified version of the original FAST 
method was used [4]. In brief, an acoustic flow cytometer 
(Attune NxT, ThermoFisher Scientific, Eugene, OR, USA) 
was coupled to a 96-well autosampler to generate well-by-
well analysis of SYTO9 nucleic acid intercalating dye (Ther-
moFisher Scientific, Eugene, OR, USA) -stained bacterial cells 
after co-incubation with a series of increasing concentrations 
of the antimicrobial agents listed above. Challenge bacteria 
were processed as follows: two to three single bacterial colo-
nies were picked from blood agar (5 % horse blood agar, Excel 
Laboratory Products, Western Australia) and resuspended 
in Sensititre de-ionized water to achieve a turbidity of 0.5 
McFarland standard, as indicated on the Sensititre nephelom-
eter by its central green bar. Then, 55 µl of this suspension 
was inoculated into a Sensititre dosage tube containing 11 ml 
cation-adjusted Mueller–Hinton broth (ThermoFisher Scien-
tific, Lenexa, KS, USA) at 1:200 dilution to achieve a notional 
suspension density of 5×105 cells ml−1. The dosage tube was 
incubated without shaking for 1 h at 35.5 °C. The dosage tube 
was mixed thoroughly, loaded into the auto-inoculator (AIM, 
Oxoid, UK), and the contents used to inoculate a EUCAST 
pattern Sensititre plate (SEMPA1 Enterobacterales, SEMSE3 
Gram-positives) with an inoculum volume of 100 µl. The 
96-well plate was sealed and incubated without shaking for 1 
h (Enterobacterales), or 3 h (Gram-positives). We then added 
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15 ml of Hank’s balanced salt solution (HBSS, Excel Labora-
tory Products, WA) and 20 µl of 5 mM SYTO9 to an empty 
dosage tube. Using the AIM, 150 µl of the stain and HBSS was 
dispensed into each well of a standard format 96-well plate 
(Nunclon delta surface). Next, 50 µl of bacterial culture from 
each well of the Sensititre plate was added to the respective 
well on the 96-well plate containing stain and HBSS, to a total 
volume of 200 µl per well. The remaining 50 µl in the plate 
was re-sealed, and used as a comparator for FAST. The plate 
with stained contents was incubated at ambient temperature 
in darkness, with 400 r.p.m. shaking, for 8 min. The 96-well 
plate was then inserted into the flow cytometer auto-sampler 
(Attune, ThermoFisher, Eugene, OR, USA) for data acquisi-
tion by the flow cytometer.

Data generation for AST
Data were generated according to the Data File Standard for 
Flow Cytometry, Version 3.1 [10] by a single acoustic flow 
cytometer (Attune NxT, Life Technologies, ThermoFisher 
Scientific, Eugene, OR, USA) equipped with four lasers (405, 
488, 561 and 637 nm) and 16 analysis channels [forward 
scatter, FSC; side scatter, SSC; violet laser (VL) channel 1, 
VL1 – 440/50, VL2 – 512/25, VL3 – 603/48, VL4 – 710/50, 
blue laser (BL) channel 1, BL1 – 530/30; BL2 – 590/40, BL3 
– 694/40; yellow laser (YL) channel 1, YL1 – 585/16, YL2 – 
620/15, YL3 695/40, YL4 – 780/60; red laser (RL) channel 
1, RL1 – 670/14, RL2 – 720/30, RL3 – 780/60] with minor 
adjustment to the FSC detector to improve small particle 
resolution.

Data handling
FAST data sets were obtained as flow-cytometer data files 
and converted into comma-separated variable (CSV) format, 
then transferred without editing to a stand-alone computer 
(Legion, Lenovo) for data analysis with the data machines 
described below (Fig. 1).

Step one
Data machine 1: antimicrobial unexposed population 
determiner
Bacteria. E.coli ATCC 25922; K. pneumoniae ATCC 700603, 
S. aureus ATCC 25923, S. aureus 29 312.

The FAST analysis method we previously reported relies 
on definition of an antimicrobial agent-unexposed bacte-
rial population, called the unexposed cellular morphotype 
(UCM) [4]. These measurements were analysed in a bivariate 
plot of forward scatter, and the 488 nm fluorescence, which 
captured the signal from the optical events corresponding 
to bacterial suspensions stained by adding the intercalating 
nucleic acid dye, SYTO9.

In order to determine the most suitable channels for anal-
ysis, we used a supervised machine-learning approach that 
combined a series of classification and visualization tools 
[9, 10] to understand the flow-cytometer channels that best 
defined an antimicrobial agent-unexposed population (AUP). 
We used data from replicate blank samples (suspension 
medium containing SYTO 9) and antimicrobial-unexposed 
population wells, applied equally weighted data selection 
to both these sources, and concatenated these data sets for 
classification and visualization. We then used information 
rank, principal component analysis and a tree classifier set 
to a depth of three layers to determine the most informative 
data projections. We then used a bivariate scatter map, poly-
nomial classification and a scatter plot to determine the best 
boundaries for the AUP, and displayed this with a frequency-
density histogram. The population of interest was selected 
by manually drawing a rectangular box on the scatter plot to 
set the boundaries of the AUP zone and exclude background 
particulate and electronic noise to distinguish the AUP from 
the contents of the blank well. This blue-coloured event 
population was used consistently throughout all three data 
machines (Figs 2–4) and the ensemble to aid visualization. 

Fig. 1. Analysis of antimicrobial susceptibility flow cytometer data by supervised machine learning relies on a standardised data handling 
workflow, comprising conversion of flow cytometer data into .CSV format, assembly of an orderly collection of cleaned data files, 
which are then linked (concatenated), analytical parameters selected, classified into a hierarchy to optimse information gain, and then 
displayed to present antimicrobial concentration-dependent effects that can be calibrated against a Minimum Inhibitory Concentration.
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Subsequent colour generation in concentration series varied 
due to automated line colour generation.

Data machine 2: ordinal antimicrobial susceptibility 
classifier
After defining the AUP with data machine 1 (Fig.  2), we 
concatenated the unexposed bacterial suspension data with 
the lowest and uppermost antimicrobial-exposed bacterial 
suspension files. The optimal data-capture parameters for the 
ordinal susceptibility classification were selected as before 
[principally by tree classification, after looking at data rank 
and the dimensionality in principal component analysis]. The 
channels used for the scatter plot were those used to deter-
mine the AUP in data machine 1, so that the same zone could 
be selected, and carried across to the frequency distribution 
histogram. These same parameters were used to set the axes 
of the scatter map, and polynomial classification as a check 
on the consistency of the AUP. The distribution histogram 
was used to visualize any a concentration-dependent anti-
microbial effect within the tested antimicrobial concentra-
tion range, but displayed with the optimal combination of 
parameters from the tree classification above. The second 
data machine therefore ordered antimicrobial susceptibility to 
indicate whether the MIC lay below, within or above the range 
of tested antimicrobial concentrations but did not define a 
precise value. To enable delineation of the AUP in the scatter 
plot, the zoom function and low jitter were used to clarify 
the position of the AUP, consistently displayed as the light 
blue population.

Data machine 3: antimicrobial susceptibility classifier 
for predicted inhibitory concentration
After classifying antimicrobial susceptibility into one of three 
broad categories in data machine 2, we built a third data 
machine that included equally weighted data samples at all 
concentrations in the antimicrobial series also used for broth 

microdilution MICs (Fig. 5). Having established that an anti-
microbial concentration-dependent effect was in the tested 
concentration range, the same data-processing sequence was 
used to perform a quantitative version of data machine 2 with 
the same analytical processes to demonstrate and measure 
concentration-dependent effects on data from the optimized 
channel combination determined in data machines 1 and 2. 
Principal component analysis showed that a minimum of five 
data parameters were needed to capture at least 90 % variation 
in these complex bacterial data sets (Fig. 3at). The tree clas-
sification function (Fig. 3b) often identified supplementary 
flow-cytometer channels for determination of a predicted 
inhibitory concentration (PIC; approximation to MIC) in 
addition to the channels used in the original FAST method 
report [4]. These additional channels were used according 
to the priority indicated by the tree classifier to analyse the 
data obtained from the entire antimicrobial concentration 
series and compare it against the AUP. A PIC was determined 
from the antimicrobial–bacterial combination series when a 
>50 % reduction in frequency density from the AUP density 
curve was observed (Fig. 3f). An important exception to the 
analytical process were aminoglycoside class agents where 
this density reduction was only evident when a proportionate 
data sample (e.g. 10%, rather than a fixed event number) was 
used for data input at each antimicrobial concentration due to 
the rapid action of aminoglycosides seen in sensitive bacteria. 
The PIC was then interpreted against the 2019 EUCAST 
susceptibility test standards.

Step two
Expanded challenge panel
Bacteria. Bacteria: E. coli ATCC 25922, E. coli ATCC 35218, E. 
coli −2841 (clinical), K. pneumoniae ATCC 700603, K. pneu-
moniae ATCC 700603, K. pneumoniae ATCC BAA-1705, K. 
pneumoniae ATCC BAA-1706, K. pneumoniae ATCC 13883, 

Fig. 2.  Antimicrobial-unexposed population. Antimicrobial unexposed bacteria (blue) and background particulate noise (red), showing 
(left) E. coli and (right) S. aureus. Differences in unexposed bacterial density are due to balancing the numbers of unstained unexposed 
(blue) and background noise (control, red) events to avoid classification bias.
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Fig. 3. Visualising antimicrobial susceptibility: Gentamicin-exposed E. coli. Top panel: Data Machine 2 (a) Principal Component Analysis, 
Scree diagram showing dimensionality of data, (b) tree classification with reference to the AUP (Blue). right) tree classification 
with reference to the AUP (Blue). Middle panel: (c) scatter map and (d) polynomial classification both with toggle on/off for specific 
concentrations to enable detection of concentration-dependent effect. Bottom panel, falling bacterial population density in AUP 
zone. (e) Data Machine 2. Density histogram of antimicrobial-unexposed population (AUP, blue), and lowest (red) and highest (green) 
Gentamicin-concentration-exposed E. coli ATCC 25922. The loss of events between low and high Gentamicin concentration indicates 
a likely concentration-dependent effect within the tested range of concentrations. (f) Data Machine 3. The corresponding frequency 
distribution histogram featuring all tested concentrations and shows progressive loss of event density in the AUP zone. Predicted 
inhibitory concentration (PIC) = 2 µg ml−1.
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Fig. 4.  Antimicrobial resistant profiles. Left, K.pneumoniae ATCC 700603 exposed to a series of Piperacillin/Tazobactam concentrations 
with a high predicted effective concentration (PIC = ≥64 µg ml−1), indicating resistance. Right, S.aureus ATCC 29213 and penicillin 
concentration series, with an MIC at the breakpoint (breakpoint = 0.12−0.25; PIC > 0.12 µg ml−1). NB the BMD result of0.5 µg ml−1 was 
inaccurate.

Fig. 5.  Data machine 3. Data mining workflow used to assemble flow cytometer data files from K. pneumoniae ATCC 700603 to determine 
Gentamicin PIC, showing data structure, sampling, selection, classification and visualisation (Orange v3.20.1).
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P. mirabilis −9545 (clinical), P. aeruginosa ATCC 27853, S. 
aureus ATCC 25923, S. aureus ATCC 29213, S. aureus ATCC 
33592, S. aureus −6885 (clinical), E. faecalis ATCC 29212.

To explore the breadth of application of this data-analysis 
method, we used data from an expanded panel of nine 
Gram-negative, and five Gram-positive bacterial species 
including the four reference strains previously tested. AST 
was performed in parallel by FAST and Sensititre broth 
microdilution (BMD) methods against three different 
classes of antimicrobial agent. Machine-learning analysis was 
conducted before sighting BMD results in a single pass using 
the two flow-cytometer channels most commonly used in 
the standardized FAST method identified with data machine 
two (above), i.e. FSC-H and BL1-H. No attempt was made to 
correct apparent discrepancies with BMD results by iterative 
machine-learning techniques such as unsupervised machine 
learning.

Step three
Clinical application
The final version of these data machines was then used to 
process FAST data from new blood culture isolates available 
after primary overnight sub-culture from the previous day’s 
autoanalyser positive blood cultures. The first two bacterial 
isolates from different blood culture sets at the start of the 
morning shift were obtained on blood agar plates to give us 
representative Gram-negative and Gram-positive bacteria. 
These were identified to species level by MALDI-TOF mass 
spectrometry (score >2.0; MALDI Biotyper Reference Labo-
ratory, Bruker Daltonics, Bremen, Germany) respectively as 
E. coli and S. aureus (designated 1A and 9B) and processed 
by FAST method consecutively. FAST results were generated 
in real time and the BMD results were read the following 
day, ensuring objectivity of analysis by the machine-learning 
algorithm. As the SEMPA1 and SEMSE3 96-well plates 
contain a much larger range of antimicrobials than regularly 
used in our centre, three antimicrobial agents with the highest 
immediate clinical utility were selected for each isolate: E. 
coli – gentamicin, piperacillin/tazobactam, meropenem, S. 
aureus – penicillin, cefoxitin, vancomycin.

Results
Flow-cytometer data were analysed from nine different 
Gram-negative and five different Gram-positive reference 
strain bacteria, and two clinical isolates; one Gram-negative 
and one Gram-positive. Initial definition of the AUP was 
achieved by analysing each unexposed bacterial population 
using data machine 1 (Fig. 2). This process was subsequently 
incorporated into data machines 2 and 3. From the example 
AUP data sets used here, the most informative cytometer 
channels for beta-lactam antibiotic combinations were usually 
channels BL1-H and FSC-H, shown on the x- and y-axes of 
the AUP scatter plots (Fig. 2).

The density distribution of events inside the border of the high-
lighted AUP zone for the lowest and highest tested antibiotic 

concentration were plotted against the most informative 
channel obtained from a simple tree classifier in data machine 
2 (Fig. 3e; E. coli ATCC 25922 v gentamicin, lowest concen-
tration 0.25 µg ml−1, highest concentration 16 µg ml−1). This 
data set shows a concentration-dependent fall in bacterial cell 
density within the tested antimicrobial concentration range. 
Though the MIC cannot be determined from this visualiza-
tion method, the predicted inhibitory concentration appears 
to lie between the minimum and maximum tested concentra-
tion and is therefore in range, justifying additional analysis by 
data machine 3 to obtain a predicted inhibitory concentration 
or PIC (Fig. 3f; E. coli ATCC 25922 v gentamicin), which 
in this case was 2 µg ml−1 gentamicin. Using a 50 % fall in 
peak event density on the most highly ranked channels, the 
approximate categoric agreement between machine-learning 
analysis of all SEMPA1 and SEMSE3 MICs was 91.07 % when 
compared with proprietary flow-cytometry software (FlowJo) 
and 89.29 % when compared with BMD (Table  1). The 
approximate essential agreement between machine learning 
and proprietary software was 96.43 % and with BMD was 100 
%. Application of the finalized machine-learning algorithm 
to the composite Gram-negative and Gram-positive challenge 
panel, in which each isolate was tested against three different 
classes of antimicrobial agent, produced an overall categoric 
AST agreement with BMD MIC results in 35/42 (83 %) and 
essential agreement in 28/42 (67 %) (Table 2). Gram-negative 
and Gram-positive categoric and essential agreement was 
23/27 (85 %) CA and 16/27 (59 %) EA and 12/15 (80 %) CA 
and 12/15 (80 %) EA, respectively.

Application of the ensemble machine-learning pipeline to 
FAST data generated PIC results on the same working day 
(Table  3). The isolates were received at 08:30 h and both 
analyses were complete by 14:59 h. Total handling time 
was approximately 10 m for the Gram-negative isolate, and 
a further 15 m for the Gram-positive. PIC values matched 
the corresponding MIC for five of six antimicrobials. The 
one discordant result (E. coli, piperacillin/tazobactam) was 
resolved by correcting for stain uptake variation during the 
96-well plate analysis by using the AUP control closest to 
the antimicrobial series, without AUP controls from other 
parts of the plate. The lower stain uptake was evident to an 
experienced user during plate processing, before CSV files 
were ready for machine learning. Definitive BMD results 
were available after completion of pipeline analysis, 24 h after 
inoculation. Manual data transfer, analysis and recording took 
an average of around 90 min per Sensititre plate.

Discussion
Though the rapid generation of AST data by FAST is valu-
able in time-critical bacterial infections such as septicaemia 
and bacterial pneumonia, it needs to be complemented by 
the speed and consistency offered by an automated analytical 
pipeline. Once validated with a sufficiently broad range of 
bacterial species and antimicrobial susceptibilities, the proto-
type supervised machine-learning pipeline we describe here 
could be automated for unsupervised machine learning, so 
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Table 1. Data-machine development and calibration series, antimicrobial susceptibility test results

Species, strain Antimicrobial agent BMDa FAST BPd S-Re corrnf

psb smlc

E. coli Amikacin 2 1 2 8 S

ATCC 25922 Aztreonam 1 1 1 1 S

Ciprofloxacin ≤0.12 ≤0.12 ≤0.12 0.25 S

Colistin 1 ≤0.25 ≤0.25 2 S

Cefepime ≤1 ≤1 ≤1 1 S

Gentamicin 2 0.5 0.5 2 S 2/S

Imipenem ≤0.25 ≤0.25 ≤0.25 2 S

Levofloxacin ≤0.12 ≤0.12 ≤0.12 0.5 S

Meropenem ≤0.12 ≤0.12 ≤0.25 2 S

Piperacillin/tazobactam 4 4 2 8 S

Co-trimoxazole ≤0.12 ≤0.12 0.25 2 S

Ceftazidime ≤0.5 ≤0.5 ≤0.5 1 S

Tobramycin 2 0.5 ≤0.25 2 S 1/S

K. pneumoniae Amikacin 1 1 1 8 S

ATCC 700603 Aztreonam >64 32 >64 1 R

Ciprofloxacin 1 0.5 0.5 0.25 R

Colistin 1 ≤0.25 ≤0.25 2 S

Cefepime 8 ≤1 32 1 R

Gentamicin 8 4 4 2 R

Imipenem 0.5 0.5 2 2 S

Levofloxacin 2 0.5 2 0.5 S

Meropenem ≤0.12 ≤0.12 ≤0.12 2 S

Piperacillin/tazobactam 32 8 >64 8 R

Co-trimoxazole 2 2 4 2 I

Ceftazidime >32 32 >32 1 R

Tobramycin 8 2 4 2 R

S. aureus Amikacin 2 2 2 16 S

ATCC 25923 Azithromycin 1 ≤0.5 1 2 S

Ciprofloxacin 0.5 0.25 0.25 1 S

Clarithromycin 0.25 0.25 0.25 2 S

Clindamycin ≤0.12 ≤0.12 0.25 0.5 S

Cefoxitin 4 2 2 4 S

Gentamicin 0.5 0.25 0.5 1 S

Levofloxacin 0.25 ≤0.12 ≤0.12 1 S

Linezolid 1 1 1 4 S

Moxifloxacin ≤0.06 ≤0.06 ≤0.06 0.25 S

Norfloxacin ≤1 ≤1 ≤1 na

Continued
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that every successive analysis is incorporated into an itera-
tive learning process (glossary of machine-learning terms, 
Table  4). In this proof-of-concept study, errors obtained 
when we applied FAST to critical clinical isolates could be 
rectified in the future by additional recursive analysis. Super-
vised machine learning allows recognition of a signal outlier 
detected during prototype development as here, but might 
in future be handled by an automated pipeline. The clinical 
potential of the FAST method depends in part on its ability 
to deliver valid AST results on the same day that bacterial 
growth is first detected in blood and other critical cultures. 
The prototype machine-learning algorithm we describe here 
shows how data mining could be used to achieve this outcome 
and place AST results closer in time to rapid bacterial identi-
fication by MALDI-TOF in the clinical laboratory workflow.

The classification of bacteria into antimicrobial sensitive 
or antimicrobial resistant is one of the most clinically 
useful determinations made by the hospital microbiology 
laboratory, since it informs treatment choice, infec-
tion control interventions and antimicrobial resistance 
surveillance. Antimicrobial susceptibility is also the entry 
point to screening new candidate antimicrobial drugs. 
Here we report our use of machine-learning methods to 
classify and visualize antimicrobial susceptibility using 
multi-parameter flow-cytometer analysis of bacterial 
populations to determine AST with improved speed and 
accuracy. Currently used AST methods are approximate 
indicators of therapeutic efficacy [11]. These methods 
lack precision, but persist in their current form because 
they are a widely accessible solution to the high demands 

Species, strain Antimicrobial agent BMDa FAST BPd S-Re corrnf

psb smlc

Ofloxacin 0.5 0.25 0.25 1 S

Penicillin ≤0.03 ≤0.03 ≤0.03 0.125 S

Teicoplanin 0.5 ≤0.25 0.5 2 S

Tobramycin 0.25 0.5 0.25 1 S

Vancomycin 2 1 1 2 S

S. aureus Amikacin 4 2 4 16 S

ATCC 29213 Azithromycin 2 1 1 2 S

Ciprofloxacin 0.5 ≤0.12 ≤0.12 1 S

Clarithromycin 0.5 ≤0.25 ≤0.25 2 S

Clindamycin ≤0.12 ≤0.12 ≤0.12 0.5 S

Cefoxitin 4 4 4 4 S

Gentamicin 1 0.25 0.25 1

Levofloxacin 0.25 ≤0.12 0.25 1 S

Linezolid 4 2 2 4 R

Moxifloxacin ≤0.06 ≤0.06 ≤0.06 0.25 S

Norfloxacin 2 ≤1 ≤1 na

Ofloxacin ≤0.25 ≤0.25 ≤0.25 1 S

Penicillin >0.5 0.25 0.5 0.12 R

Teicoplanin 1 ≤0.25 0.5 2 S

Tobramycin 1 0.5 0.25 1 S

Vancomycin ≤1 ≤1 ≤1 2 S

a, BMD, broth microdilution.
b, ps, proprietary software.
c, sml, supervised machine learning.
d, BP, EUCAST susceptible breakpoint (μg ml−1).
e, S-R, sensitive/resistant categorization.
f, corrn, corrected by re-training pipeline.

Table 1.  Continued
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Table 2.  Expanded bacterial challenge set, single-pass antimicrobial susceptibility test results

Species Strain Antimicrobial PIC(cat.)a MIC(cat.)b CAc EAd

K. pneumoniae ATCC 1705 Meropenem 4 (I) 8 (I) Y Y

K. pneumoniae ATCC 1706 Meropenem ≤0.12 (S) 2 (S) Y N

K. pneumoniae ATCC 13883 Meropenem ≤0.12 ≤0.12 Y Y

K. pneumoniae ATCC 700603 Meropenem ≤0.12 (S) ≤1 (S) Y N

E. coli ATCC 25922 Meropenem ≤0.12 (S) ≤0.12 (S) Y Y

E. coli ATCC 35218 Meropenem 0.5 (S) 0.12 (S) Y N

E. coli −2841 Meropenem ≤0.12 (S) ≤0.12 (S) Y Y

P. mirabilis −9545 Meropenem ≤0.12 (S) ≤0.12 (S) Y Y

P. aeruginosa ATCC 27853 Meropenem ≤0.12 (S) 0.5 (S) Y N

K. pneumoniae ATCC 1705 Ceftazidime 4 (I) 8 (I) Y Y

K. pneumoniae ATCC 1706 Ceftazidime ≤0.5 (S) 32 (R) N N

K. pneumoniae ATCC 13883 Ceftazidime ≤0.5 (S) ≤0.5 (S) Y Y

K. pneumoniae ATCC 700603 Ceftazidime 8 (R) 32 (R) Y N

E. coli ATCC 25922 Ceftazidime ≤0.5 (S) ≤0.5 (S) Y Y

E. coli ATCC 35218 Ceftazidime 16 (R) ≤0.5 (S) N N

E. coli −2841 Ceftazidime 0.5 (S) 0.5 (S) Y Y

P. mirabilis −9545 Ceftazidime ≤0.5 (S) ≤0.5 (S) Y Y

P. aeruginosa ATCC 27853 Ceftazidime 1 (S) 4 (I) N N

K. pneumoniae ATCC 1705 Gentamicin 0.5 (S) ≤2 (S) Y N

K. pneumoniae ATCC 1706 Gentamicin 0.25 (S) 1 (S) Y N

K. pneumoniae ATCC 13883 Gentamicin 1 (S) 0.5 (S) Y Y

K. pneumoniae ATCC 700603 Gentamicin 4 (I) 8 (I) Y Y

E. coli ATCC 25922 Gentamicin 1 (S) 2 (S) Y Y

E. coli ATCC 35218 Gentamicin 16 1 N N

E. coli −2841 Gentamicin 0.5 (S) 0.5 (S) Y Y

P. mirabilis −9545 Gentamicin 2 (S) 4 (S) Y Y

P. aeruginosa ATCC 27853 Gentamicin ≤0.25 (S) 0.5 (S) Y Y

Gram negative 23/27 (85 %) 16/27 (59 %)

S. aureus ATCC 25923 Penicillin ≤0.03(S) ≤0.03(S) Y Y

S. aureus ATCC 29213 Penicillin 0.12 (S) >0.5(R) N N

S. aureus ATCC 33592 Penicillin ≥0.5 (R) >0.5 Y Y

S. aureus −6885 Penicillin ≥0.5 (R) >0.5 Y Y

E. faecalis ATCC 29212 Penicillin ≥0.5 (R) >0.5 Y Y

S. aureus ATCC 25923 Cefoxitin ≤1 1 Y Y

S. aureus ATCC 29213 Cefoxitin 2 4 Y Y

S. aureus ATCC 33592 Cefoxitin 2 16(R) N N

S. aureus −6885 Cefoxitin 16 (R) >16 Y Y

E. faecalis ATCC 29212 Cefoxitin ≥16 (R) >16 Y Y

Continued
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on clinical laboratories despite growing pressure for 
earlier selection of effective antimicrobial therapy 
to reduce mortality from severe bacterial infections 
[12, 13]. Though the FAST method addresses this need 
by combining accuracy and speed, the high-end analytic 
flow-cytometry skills it relies on may not be available in 
many clinical microbiology laboratories. The available 
commercial flow data-analysis pipelines lack the capacity 
to analyse the numerous bacterial datasets generated 
by flow cytometers to keep up with clinical demands. 
The proprietary software we use is able to generate PIC 
results in a shorter time frame when operated by an 
expert user, but lacks the capability of machine learning 
unless coded for immediate processing of native flow 
cytometer files, or the adaptive potential of an automated 
machine-learning algorithm. Noting these constraints, 
use of the FAST method for high AST throughput in a 
busy clinical laboratory generates a heavy bioinformatic 

processing burden, and when performed manually 
might cause problems with laboratory accreditation 
standards. The conversion of our manual, tube-based 
FAST method [4] to a high-throughput, semi-automated 
96-well plate format dramatically increased the volume of 
data for analysis, and prompted us to explore alternative 
approaches to data handling and analysis. In the present 
study, we demonstrate that supervised machine learning 
provides a data-processing pipeline that, once calibrated 
against current reference susceptibility test methods, is 
capable of the classification and visualization necessary 
for accurate quantitative AST result prediction. In view 
of the critical role AST plays in selection of antimicro-
bial therapy, our machine-learning ensemble presents 
a prototyping method to meet a current bioinformatics 
shortfall in clinical microbiology. Our reliance on calibra-
tion against the biological endpoints in reference AST 
methods highlights the need for agreed bioinformatic 

Species Strain Antimicrobial PIC(cat.)a MIC(cat.)b CAc EAd

S. aureus ATCC 25923 Vancomycin ≤0.5(S) 2(S) Y Y

S. aureus ATCC 29213 Vancomycin 1 (S) 1(S) Y Y

S. aureus ATCC 33592 Vancomycin 1 (S) 2(S) Y Y

S. aureus −6885 Vancomycin 1 (S) 4(R) N N

E. faecalis ATCC 29212 Vancomycin 2(S) 4(S) Y Y

Gram positive 12/15 (80 %) 12/15 (80 %)

Total 35/42 (83 %) 28/42 (67 %)

a, PIC (cat.); predicted inhibitory concentration (categoric result [S,I,R]).
b, MIC (cat.); broth MIC (cat.); broth microdilution MIC (categoric result [S,I,R]).
c, CA; categoric agreement [yes/no].
d, EA; essential agreement [yes/no].

Table 2.  Continued

Table 3.  Clinical isolates, single-pass antimicrobial susceptibility test results

Species, isolate Antimicrobial agent BMDa

FAST

BPd S-Re corrnfpsb smlc

E. coli Piperacillin/tazobactam 4 2 >64 8 R 4/S

1A Gentamicin 0.5 0.5 0.5 2 S

Meropenem ≤0.12 ≤0.12 ≤0.12 2 S

S. aureus Penicillin >0.5 >0.5 >0.5 0.12 R

5B Cefoxitin >16 16 16 4 R

Vancomycin 1 0.5 1 2 S

a, BMD, broth microdilution.
b, ps, proprietary software.
c, sml, supervised machine learning.
d, BP, EUCAST susceptible breakpoint (μg ml−1).
e, S-R, sensitive/resistant categorization.
f, corrn, corrected by re-training pipeline.
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standards for bacterial flow-cytometry data-analysis 
procedures beyond the standard output file format [10].

FAST assays are based on detection of changes in dye-
staining properties of one or more bacterial sub-populations 
on exposure to an antibacterial agent before, and inde-
pendent of, cell death, rupture and dispersal. The changes in 
bacteria we can measure with a flow cytometer cover a range 
of parameters including size, shape, internal complexity and 
colour within the detectable spectrum [14]. The use of super-
vised machine learning on these data sets provides a new 
approach to gaining insight into antimicrobial resistance 
mechanisms. For example, our approach could be applied to 
investigate hetero-resistance in multidrug-resistant strains 
of bacteria [15, 16]. The supervised machine-learning 
pipeline demonstrated here could be also used to assess 
the utility of alternative dyes for rapid AST, or the efficacy 
of new candidate antimicrobial agents. We emphasize that 
the present study is a proof of concept for application of 
machine-learning techniques to rapid AST. Application of 
these techniques to a bacterial challenge panel exposed AST 
discrepancies when compared with the broth microdilution 
method. These cannot be fully explained by the low accuracy 
of some BMD endpoints. There are machine-learning tech-
niques that could be used to further improve the accuracy 
of FAST data interpretation, such as additional recursive 

analysis by automated (unsupervised) machine learning on 
data sets generated from much larger bacterial strain collec-
tions. Other discrepant results can be analysed in additional 
flow-cytometer channels in a supervised machine-learning 
calibration process.

One of the notable outcomes of our data-machine ensemble 
is the single-cell population-based evidence for antimicro-
bial susceptibility and resistance. This supervised machine-
learning ensemble and its major data machine components 
present a method of visualizing antimicrobial susceptibility as 
a series of antimicrobial concentration-dependent effects in 
one or more measurable characteristics of the antimicrobial-
exposed bacterial population. Antimicrobial resistance corre-
sponds to a loss of these concentration-dependent changes 
in flow-cytometer-based bacterial population analysis at 
single-cell resolution. Exactly what form these changes take 
and their optimal measurement is likely to depend on the 
mechanisms and dynamics of antimicrobial action, and thus, 
the combination of antimicrobial agent and the target micro-
organism. For example, beta lactam antibiotics inhibit cell-
wall formation, interfere with bacterial cell division and rely 
on time of exposure above the MIC [17]. Aminoglycosides, 
by contrast, rely on inhibition of protein synthesis and depend 
on the peak antimicrobial concentration and other indicators 
[18]. These differences in the biology of antimicrobial agent 
action produce different concentration-dependent effects 
visualized in the scatter plots and corresponding frequency 
distribution histogram analyses. Additional systems biology 
tools are needed to explain exactly what these measurable 
parameters signify at a molecular level.

In conclusion, supervised machine learning enabled us to 
determine AST classifications without the high-end analytic 
skills of an expert flow-cytometer user or dedicated flow-
cytometry analytic software. Further steps are now needed 
to incorporate our prototype machine-learning algorithm 
into flow-cytometer operating software to enable prescriptive 
unsupervised machine learning during single-cell bacterial 
population analysis. There is also a need to benchmark these 
tests and their supporting software to fulfil laboratory quality 
system and accreditation requirements. Fully automated 
quantitative bacterial cell analysis has far-ranging implica-
tions for the clinical microbiology laboratory.
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