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Abstract

Neural information flow (NIF) provides a novel approach for system identification in neuro-
science. It models the neural computations in multiple brain regions and can be trained end-
to-end via stochastic gradient descent from noninvasive data. NIF models represent neural
information processing via a network of coupled tensors, each encoding the representation
of the sensory input contained in a brain region. The elements of these tensors can be inter-
preted as cortical columns whose activity encodes the presence of a specific feature in a
spatiotemporal location. Each tensor is coupled to the measured data specific to a brain
region via low-rank observation models that can be decomposed into the spatial, temporal
and feature receptive fields of a localized neuronal population. Both these observation mod-
els and the convolutional weights defining the information processing within regions are
learned end-to-end by predicting the neural signal during sensory stimulation. We trained a
NIF model on the activity of early visual areas using a large-scale fMRI dataset recorded in a
single participant. We show that we can recover plausible visual representations and popu-
lation receptive fields that are consistent with empirical findings.

Author summary

We propose a method for data-driven estimation of computational models, representing
neural information processing between different cortical areas. We demonstrate this method
on the largest single-participant naturalistic fMRI dataset recorded to date. By training a
simplified model of the visual system we show that biologically plausible computations
emerge in the training process, yielding a new approach to understanding information pro-
cessing in neural systems. The approach is applicable to other sensory or imaging modalities,
thus providing a general way to computational modeling in cognitive neuroscience.

This is a PLOS Computational Biology Methods paper.
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Introduction

Uncovering the nature of neural computations is a major goal in neuroscience [1]. It may be
argued that true understanding of the brain requires the development of in silico models that
explain the activity of biological neurons in terms of information processing. We refer to this
idea as neural system identification [2, 3]. In cognitive terms, information processing can be
understood as using internal representations of environments with the goal of generating
behaviour.

The predominant approach for uncovering these representations is to use predefined non-
linear features derived from the stimulus as a hypothesis for predicting measured neural
responses [4-6]. Using this approach, in visual and auditory domains the best results so far
have been obtained by using convolutional (or deep) neural networks (DNNs) [6-15]. DNNs
process input through a sequence of layers with linear and nonlinear transformations, and
learn local features and maps of these features through the convolution operation. Each layer
of a DNN encodes increasingly more complex abstractions of the original input. However,
using this approach DNNs have to be trained for solving manually defined tasks such as object
classification on specific data bases. Consequently, the resulting DNN feature representations
are biased towards their specific objective function.

An alternative approach is to directly estimate hierarchical representations from neural
data. This idea has been used to reveal mechanisms of neural information processing in biolog-
ical systems [13, 16-24]. However, most of these ideas have been applied within individual
brain regions (most frequently within V1) and using invasive data. In the area of human visual
perception across multiple areas, the most related approach is Representational Distance Learn-
ing [25, 26], which uses representational dissimilarity matrices estimated within visual areas as
an element of the training objective of a convolutional neural network modeling these areas.
Recent approaches use the prediction of neural measurements directly for learning to separate
the location and features that voxels respond to [13, 17, 18, 24, 27, 28]. This manuscript
expands on this work, proposing a novel approach for neural system identification, referred to
as neural information flow (NIF). NIF generalizes existing approaches, allowing estimating neu-
ral information processing systems from individual cortical areas up to the whole-brain level.

Similar to DNN encoding models, the information processing hierarchy is expressed as a
multi-layer neural network. However, the layers of NIF models have a one-to-one correspon-
dence to biological neural populations (such as V1), and all neural network parameters are
solely trained with the objective function of predicting brain activity measured in response to
input stimuli. Using this method, training is expected to learn spatiotemporal neural represen-
tations of the sensory input inside the corresponding population, and learn to derive the
underlying flow of information processing. In neurobiological terms, DNN nodes can be inter-
preted as the activation of a cortical column responsive to a specific local feature, such as a
Gabor wavelet in V1. The cascade of convolutional layers can be interpreted as the topologi-
cally organized connectivity between brain regions.

Convolutional layer activity is linked to neural measurement units through unit-wise obser-
vation models that are trained jointly with the other network parameters. The choice of mea-
surement unit (e.g. cellular, voxels, behavioural) in the NIF framework is arbitrary, and
measurements can be combined. In case of functional magnetic resonance imaging (fMRI)
from a visual experiment, each voxel learns its spatial receptive field and local peak of the
hemodynamic response; and the preferred convolutional features (channels) of its underlying
information processing units.

In this manuscript we outline the principles and methodology of NIF with a simplified
model of the visual system. Using a large fMRI dataset acquired under stimulation with
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naturalistic video we demonstrate that the model is capable of generating realistic brain mea-
surements, and that the computations learned inside the model are biologically meaningful.
We expect that these ideas will guide the development of a new family of computational mod-
els that allow uncovering the principles of neural computations in biological systems.

Methods
Ethics statement

Data collection was approved by the local ethical review board (CMO regio Arnhem-Nijme-
gen, The Netherlands, CMO code 2014-288 with amendment NL45659.091.14) and was car-
ried out in accordance with the approved guidelines. For each session written formal consent
was obtained from the participant. All specifics of the data set are described in a separate man-
uscript accompanying the data publication [29].

Neural information flow

The purpose of a NIF model is to capture the neural computations that take place within and
between neuronal populations in response to sensory input. The general philosophy of NIF is
outlined in Fig 1. The core of a NIF model is a deep modular neural network architecture
where individual neuronal populations are modeled using neural network modules that trans-
form afferent input into efferent output. The connectivity between populations is captured by
convolutional layers which model the topographically organized information exchange
between neuronal populations. Finally, population activity is used to predict observed mea-
surements through factorized observation models. Model parameters are estimated by fitting
the neural signals measured during sensory stimulation. Specifically, the NIF model receives
the same sensory input that is presented to the participant and predicts the measurements of
all brain regions of interest. Model components are trained end-to-end using stochastic

neural recordings

behaviour

A

sensations

environment

Fig 1. The philosophy underlying neural information flow. NIF models define synthetic brains that model
information processing in real brains. They are specified in terms of mutually interacting neuronal populations (white
discs) that receive sensory input (green) and give rise to measurements of neural activity (blue) and/or behavior (red).
In practice, NIF models may consist of up to hundreds such interacting populations. They can be estimated by fitting
them to neurobehavioral data acquired under these tasks. By analyzing NIF models, we can gain a mechanistic
understanding of neural information processing in real brains and how neural information processing relates to
phenomenology.

https://doi.org/10.1371/journal.pcbi.1008558.g001
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gradient descent to minimize the error in voxel-specific measurement predictions. In the fol-
lowing we describe the NIF components in more detail.

Modeling sensory input and neural representations. Sensory input is modeled using a
four-dimensional tensor N € RN whoge array dimensions represent input channels c,
time ¢ and spatial coordinates (x, y) respectively. For example, the input channels can be the
RGB components of a visual stimulus or the photoreceptor responses of a retinal model. In
our experiments, we model grayscale images using a single luminance channel (N, = 1). We
used temporal windows of 2.1s, resulting in 48 frames (N, = 48). Analogously, the representa-
tions of the sensory input encoded in each brain region are modeled using four-dimensional
tensors. The feature maps N[, :, ;, :] of these neural tensors encode neural processing of spe-
cific sensory stimulus features such as oriented edges or coherent motion. Consequently, a ten-
sor element can be interpreted as the response of one cortical column. Under the same
interpretation, cortical hyper-columns are represented by a sub-tensor N[;, :, x, y] storing the
activations of all the columns that respond to the same spatial location.

Modeling directed connectivity and information flow. We model the directed connec-
tivity between brain regions using spatiotemporal convolutions. The spatial weights model the
topographically organized synaptic connections while the temporal component models synap-
tic delays. Using this setup, we can model how neural populations respond to sensory input as
well as to each other. Note that to enforce causality of the neural responses, the temporal filters
should be causal, meaning that the only non-zero weights correspond to past time points.
However, this assumption can be dropped when the time scale of our observations is much
slower than that of the underlying temporal dynamics (as in BOLD data).

Let N denote the concatenation of afferent inputs N, . . ., N along the feature dimension
and let x denote the convolution operation. We define the activation of the j-th brain area as a
function of its afferent input as follows:

N, =f,(N,,...,Ny) =f(NxW,+B,), (1)

where £ is the element-wise application of a sigmoid activation function followed by downsam-
pling using an average pooling operation, W; is a synaptic weight kernel and B; is a bias term.
Initial testing indicated more stable convergence using sigmoid activation functions compared
to ReLU activation functions.

Modeling observable signals

NIF models are estimated by linking neural tensors to observation models that capture indirect
measurements of brain activity. Observations are represented using tensors Y that store mea-
surable responses. The observation model expresses the predicted measurements as a function
of the activity of the latent tensors:

Y=gN,...,N,)+e, 2)

where € is measurement noise. The exact form of g depends on the kinds of measurements that
are being made. Neuroimaging methods such as fMR], single- and multi-unit recordings, local
field potentials, calcium imaging, EEG, MEG but also motor responses and eye movements are
observable responses to afferent input and can thus be used as a training signal. Note that the
same brain regions can be observed using multiple observation models, conditioning them on
multiple heterogeneous datasets at the same time. This provides a solution for multimodal data
fusion in neuroscience [30]. In this paper, we focus on modeling blood-oxygenation-level
dependent (BOLD) responses obtained for individual voxels using fMRI. In this case, we can
consider the voxel responses separately for each region, such that we have Y; = g;(N;) + ¢ for
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each region i. Let Y, € R**" denote BOLD responses of K voxels acquired over T time points
for the i-th region. Our observation model for the kth voxel in that region is defined as

Y[k t+A]=0b + ZNi[c, 7, %, y|U[¢c, T, x, ¥, k] + €[], (3)

6TXy

where N; contains neural network activations to the stimulus frames presented in preceding
video chunks, relative to time t, by is a voxel-specific bias, €[k] is normally distributed measure-
ment noise and A, is a temporal shift of the BOLD response that is used to take into account a
default offset in the hemodynamic delay (4.9 s in our experiments). Every brain region can be
observed using a function of the form shown in Eq (3).

Factorized observation models. To simplify parameter estimation and facilitate model
interpretability we use a factorized representation of U (also see [17]. That is,

U[C7 t? x’y? k} = Uf[c7 k]Ut[t’ k]Us ['x’ y? k} ) (4)

where k is denotes the voxel index. Here, U_[, k] are the feature loadings that capture the sensi-
tivity of a voxel to specific input features, U,[-, k] is the temporal profile of the observed BOLD
response of a voxel and Uj[, -, k] is the spatial receptive field of a voxel. Hence, the estimated
voxel-specific observation models have a direct biophysical interpretation.

We further facilitate parameter estimation by using a spatial weighted low-rank decomposi-
tion of the spatial receptive field:

R
Us [X, Vs k] ~ Zak:arJ [X, k]Uy,r [y’ k] . (5)
r=1

Here, gy, are rank amplitudes that are constrained to be positive using a softplus transforma-
tion. We used R = 4 in our experiments. The rank limits the complexity of the spatial observa-
tion model. Rank one models can estimate unimodal receptive fields. However, a small number
of voxels have nonclassical receptive fields that respond to multiple parts of the input space, for
which more degrees of freedom are needed. To further stabilize the model and obtain localized
and positive spatiotemporal receptive fields, we apply a softmax nonlinearity to the columns of
U,, U, and U,. That is, the elements u; of each column vector u of these matrices are given by

u, =0, (v) = exp(v) /> exp(v) | ©)

where the v; are learnable parameters.

Model estimation. Once the architecture of the NIF model is defined, synaptic weights
and observation model parameters can be estimated by minimizing a loss using gradient
descent via backpropagation. Let Y: and Y' = g (N,) denote the observed and predicted mea-
surements for the ith region relative to the t measurement (BOLD volume). The loss is given
by the squared error per region summed over regions and across measurements:

L= Z(?; ~- Y. )

Note that, since the model couples neuronal populations, region-specific estimates are con-
strained by one another and consequently make use of all observed data. Our approach was
implemented in the Chainer framework for automatic differentiation [31].
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Experimental validation

To demonstrate the capabilities of the NIF framework, we estimated and tested a simple visual
system model using a unique large-scale functional MRI dataset collected while one participant
was exposed to almost 23 hours of complex naturalistic spatiotemporal stimuli. Specifically, we
presented episodes from the BBC series Doctor Who [32].

Stimulus material. A single human participant (male, age 27.5) watched 30 episodes from
seasons 2 to 4 of the 2005 relaunch of Doctor Who. This comprised the training set which was
used for model estimation. Episodes were split into 12 min chunks (with each last one having
varying length) and presented with a short break after every two runs. The participant addi-
tionally watched repeated presentations of the short movies Pond Life (five movies of 1 min, 26
repetitions) and Space / Time (two movies of 3 min, 22 repetitions), in random permutations
and after most episodes. They were taken from the series’ next iteration to avoid overlap with
the training data. This comprised the test set which was used for model validation.

Data acquisition. We collected 3T whole-brain fMRI data. It was made sure that the
training stimulus material was novel to the participant. Data were collected inside a Siemens
3T MAGNETOM Prisma system using a 32-channel head coil (Siemens, Erlangen, Germany).
A T2*-weighted echo planar imaging pulse sequence was used for rapid data acquisition of
whole-brain volumes (64 transversal slices with a voxel size of 2.4 x 2.4 x 2.4 mm® collected
using a TR of 700 ms). We used a multiband-multi-echo protocol with multiband acceleration
factor of 8, TE of 39 ms and a flip angle of 75 degrees. The video episodes were presented on a
rear-projection screen with the Presentation software package, cropped to 696 x 732 pix-
els squares so that they covered approximately 20 degrees of the vertical and horizontal visual
field. The participant’s head position was stabilized within and across sessions by using a cus-
tom-made MRI-compatible headcast, along with further measures such as extensive scanner
training. The participant had to fixate on a fixation cross in the center of the video. At the
beginning of every break and after every test set video a black screen was shown for 14 s to
record the fadeout of the BOLD signal after video presentation stopped. The black screen sti-
muli of these periods were omitted in the present analysis. In total this leaves us with approxi-
mately 118.000 whole-brain volumes of single-presentation data, forming our training set
(used for model estimation) and 1.032 volumes of resampled data, forming our test set (used
for model evaluation). We decided to use the whole test set, including the second half with the
slight vertical elongation.

Data preprocessing. Minimal BOLD data preprocessing was performed using FSL
v5. 0. Volumes were first aligned within each 12 min run to their center volume (run-specific
reference volume). Next, all run-specific reference volumes were aligned to the center volume
of the first run (global reference volume). The run-specific transformations were applied to all
volumes to align them with the global reference volume. The signal of every voxel used in the
model was linearly detrended, then standardized (demeaning, unit variance) per run. Test set
BOLD data was averaged over repetitions to increase signal to noise ratio, and as a final step
the result was standardized again. A fixed delay of 7 TRs (4.9 s) was used to associate stimulus
video segments with responses and allow the model to learn voxel-specific HRF delays within
U,. With the video segments covering 3 TRs starting from the fixed delay, the BOLD signal
corresponding to a stimulus is thus expected to occur within a time window of 4.9 sto 7.0 s
after the onset of the segment. As there were small differences between frame rates in the train
and test sets we transcoded the stimulus videos to a uniform frame rate of 22.86 Hz (16 frames
per TR) for training the example model. To reduce model complexity we downsampled the
videos to 112 x 112. As the model operates on three consecutive TRs, the training input size
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Fig 2. The described NIF architecture, a simplified feed-forward model of early visual areas. Underneath the tensors resulting from the 3D convolution operations
we state the size of each input space (x x y x f) to the next layer. The number of feature maps in each input space is printed in boldface, with the stimulus (input) space
consisting of a single channel. The input to the network are 3D stimulus video segments consisting of 3 x 16 frames (covering three TRs of 700 ms each), aligned with
the hemodynamic response by applying a fixed delay of 7 TRs. The first convolutional layer is not attached to a region observation model, but is a single-channel linear
spatial convolution layer. It serves as a learnable linear preprocessing step that accounts for retinal and LGN transformations. Convolutional kernel sizes are 7 x 7 x 7
in the second convolutional layer (leading to the V1 tensor), and 3 x 3 x 3 for all other layers. After every convolution operation (except for the linear layer) we apply a
sigmoid nonlinearity and spatio-temporal average pooling with 2 x 2 x 2 kernels. Before entering the U, observation models the temporal dimension is average pooled
so that each point  covers one TR. All weights in this model (colored blue) are learned by backpropagating the mean squared error losses from predicting the BOLD
activity of the observed voxels. The voxel-specific observation models consisting of the spatiotemporal weight vectors U and U, and the feature observation model U,
enable the end-to-end training of the model from observational data.

https://doi.org/10.1371/journal.pchi.1008558.g002

was 112 x 112 x 48. The stimuli were converted to grayscale [33] prior to presenting them to
the model. Otherwise stimuli were left just as they were presented in the experiment.

Model architecture. We implemented a purely feed-forward architecture for modeling
parts of the visual system (V1, V2, V3, FFA and MT). The used architecture is illustrated in
detail in Fig 2. FFA and MT have their own tensors originating from V3 to allow for a simpli-
fied model of the interactions between upstream and downstream areas. We intentionally used
a simplified model to focus on demonstrating the capabilities of the NIF framework. To model
LGN output, we used a linear layer consisting of a single 3 x 3 x 1 spatial convolutional kernel.
The NIF model was trained for 11 epochs with a batch size of 3, using the Adam optimizer
[34] with learning rate & = 5 x 10™*. Weights were initialized with Gaussian distributions
scaled by the number of feature maps in every layer [35].

Results

In this paper we focus on the processing of visual information. In the following, we show that a
NIF model uncovers meaningful characteristics of the visual system.

Accuracy of response predictions

After training the NIF model, we tested its accuracy on the test set. We observed that BOLD
responses in a majority of voxels in each brain region could be predicted by the model (tested
for significance with p < 0.01, Bonferroni-corrected over the total number of gray matter vox-
els). This is illustrated in Fig 3, showing voxel-wise correlations between predicted and
observed test data per region. The results show that the NIF model generates realistic brain
activity in response to unseen input stimuli. The larger correlations in area MT could be
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Fig 3. Voxel-wise correlations. A. Histograms of voxel-wise correlations between predicted and observed BOLD responses on the test set in different observed brain
regions. The vertical line marks the median. The blue area shows the significantly predicted voxels. B. Cortical flatmap of the distribution of all correlations across the
visual system. For the map we applied a Fisher z-transform to facilitate linear visual comparison of correlation magnitudes.

https://doi.org/10.1371/journal.pcbi.1008558.9003

explained by its motion-sensitivity, which can be strongly driven by the employed video stimu-
lus and can be modeled well using a relatively straightforward motion energy model [36].

Visualization of learned representations

In this subsection we examine the features of the external stimulus that are encoded in our
trained model of the visual system. We will begin with an analysis of the first layers, LGN and
V1, whose features can be visualized by plotting the weights of the convolutional kernels. We
will then show visualization of higher order regions using a more sophisticated preferred input
analysis.

Linear feature analysis. For the first layers of the model, before the application of nonlin-
ear transformations, neural network features can be inspected by visualizing the learned
weights. A linear single-channel spatial layer was used to represent the transformation of the
visual input at the retinal/LGN stage, before it enters the visual cortex [37, 38]. Fig 4A shows
the estimated kernel as well as the resulting image transformation when applying this kernel to
the input. As we can see, the linear kernel learns to extract edges at different orientations, as
well as (albeit weaker) luminance. The result is strikingly similar to that of analytical ZCA
whitening, however emphasizes edges further. When learning two linear kernels instead of
one (as in our model), one kernel learns to extract luminance while the other extracts edges.
This is likely to be a reflection of the independence of luminance and contrast information in
natural images and in LGN responses [39]. We can also visualize the feature detectors that
determine the responses of V1. Fig 4B shows the 64 channels learned by the neural tensor con-
nected to V1 voxels. Several well-known feature detection mechanisms of V1 arise, such as
Gabor-like response profiles [40]. As shown in Fig 4C, several of these feature detectors also
show distinct dynamic temporal profiles, reflecting the processing of visual motion [16].

Preferred input analysis. Feature sensitivities in DNNs can only be investigated by
directly plotting the learned weights before non-linearities are applied. For higher order
regions, neural network interpretability methods need to be used. For instance, we can gain
insight into the nature of the representations of higher order regions by visualizing which
stimulus properties best drive simulated neural responses in a particular brain region. To this
end, we estimated the gradient that leads to an increase in activity in individual target voxels,
and used this gradient to modify the input such as to optimally drive the voxel response, start-
ing from a three-dimensional white noise input. The technique is similar to [41], and similar
in spirit to [42-44]. The basic approach was originally proposed in [45].
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Fig 4. Stimulus features derived by the NIF model. A. Learned linear preprocessing showing that the estimated
kernel extracts edges from the original input image. B. The 64 spatial features estimated from neural data for area V1
(frame three out of seven). C. Visualization of seven of these features across the temporal dimension. For visualization,
feature weights were clipped at the extremes and all weights were globally rescaled between zero and one. See S1 Video
for the animated version.

https://doi.org/10.1371/journal.pchi.1008558.9004

Let I, ., denote the pixel intensity for the tth frame at spatial location (x, y). The size of I
matches the input dimension of 48 x 112 x 112 and is initialized with random values in the
same range as the original input.

The analysis was performed only for those voxels for which the correlation between pre-
dicted and observed responses exceeded 0.4 on the test set. Let y = (y1, . . ., ¥x) such thaty
denotes the activity of all voxels in a specific ROI and y, denote the response of the kth target
voxel (the voxel that’s activity should be maximized). The objective is to optimize

oy e
RN SEE ®

and
(YY) =y - )

That is, we modify the input such as to maximize the activity of the kth voxel yy, while sup-
pressing the responses of all other voxels in the same ROI y, using a softmax nonlinearity. This
leads to an high amplitude both in absolute value and relative to the other voxels within a ROI.

We further regularize the input using an ¢; loss on all components (pixel values) of I. The ¢,
leads to the suppression of noise in the image, which otherwise easily occurs in this optimiza-
tion process.

The objective is thus to minimize

—log(a,(y)) = 7(y) + 24, (10)

with A = 1077 for FFA and MT and A = 107 in other ROIs.
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Fig 5. Examples of preferred inputs that maximize simulated voxel responses in different brain regions. Static frames from
preferred inputs for three different voxels in the modeled ROIs. See S2 Video for observing the behaviour of these preferred inputs over
time.

https://doi.org/10.1371/journal.pcbi.1008558.9005

A standard SGD optimizer was used together with an adaptive learning rate (starting value
1 =107, reduction factor 0.8 after 5 iterations with no change) to optimize the stimuli. The iter-
ation was stopped when no pixel changed more than 10> within 50 optimization steps.

As our video stimuli were square one way this optimization structure could exploit the
objective was to cover the whole image with 45° oriented moving bars, as diagonals across the
image would be the optimal way to create most energy within the input. We could work
around this issue by retraining the NIF model with a circular aperture superimposed on the
input videos. During preferred input optimization the aperture region was excluded by setting
its gradients to 0. A similar effect could occur at small frequencies due to standard convolu-
tional filters in current neural networks operating within square receptive fields. This can only
be solved by adopting non-squared convolutional filters.

The results for different areas can be seen in Fig 5. All preferred inputs show superimposed
moving wavelets at different orientations and frequencies. For V1, V2 and V3 they are con-
strained to their receptive fields. MT shows large circular fields of superimposed frequencies.
FFA also shows larger regions of superimposed frequencies with circular dropouts.

The preferred inputs of V1, V2 and V3 are plausible, while the derivations for the higher
order regions are difficult to interpret. Note that our example architecture is not biologically
plausible, so this analysis should be read as a demonstration of the option of deriving preferred
inputs of voxels rather than as a new insight into our cognition.

As stated at the beginning of this section, a different approach for visualizing what has been
learned from the ROI data would be deriving what the higher order convolutional neural net-
work channels represent, rather than observing what individual voxels prefer, i.e. a
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Fig 6. Receptive field maps. A. Various spatial receptive fields in video pixel space Uy learned for different ROIs within our framework. Most estimated spatial
receptive fields are unipolar. B-D. Basic retinotopy that arose in the voxel-specific spatial observation matrix U, within the NIF model. B. Polar angle. C. Eccentricity.
D. Receptive field size.

https:/doi.org/10.1371/journal.pcbi.1008558.9006

visualization of channels akin to Fig 4, but for higher order regions. This would avoid the
superimposing nature of the voxelwise preferred images. This is a topic of research currently
investigated by convolutional neural network interpretability, and not satisfactorily solved yet
[46, 47].

Receptive field mapping

We examined whether the retinotopic organization of the visual cortex can be recovered from
the spatial observation models [48]. Here, U represents spatial receptive field estimates for
every voxel. Some of these voxel-specific receptive fields are shown in Fig 6A. The model has
primarily learned classical local unimodal population receptive fields, but also more complex
non-classical response profiles. This matches the expectation that population responses as
inferred from neuroimaging data are not necessarily restricted to unipolar receptive fields. The
model can be further constrained in case unipolar responses are expected (see [43] for a possi-
ble approach).

To check that the NIF model has indeed captured sensible retinotopic properties, we deter-
mined the center of mass of the spatial receptive fields and transformed these centers to polar
coordinates using the central fixation point as origin. Sizes of the receptive fields were esti-
mated as the standard deviation across Uy, using the centers of mass as mean. Due to the pool-
ing operations and convolutional processing, the U; for each voxel had to be rescaled to the
original input size to perform this operation. Voxels whose responses could not be significantly
predicted were excluded from this analysis. Fig 6 shows polar angle (B), eccentricity (C) and
receptive field size (D) for early visual system areas observed by our model. Maps were gener-
ated with pycortex [49]. Note that the boundaries between visual areas V1, V2 and V3 have
been estimated with data from a classical wedge and ring retinotopy session. As can be seen,
reversal boundaries align well with the traditionally estimated ROI boundaries. The larger
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Fig 7. Differences in hemodynamic delay extracted from U,. For every voxel k we see the delay encoded in U,[t, k]
that has the maximal weight.

https://doi.org/10.1371/journal.pcbi.1008558.9007

eccentricity and increase in receptive field size (C) matches the expected fovea-periphery orga-
nization as well. Our results thus indicate that the NIF framework allows the estimation of
accurate retinotopic maps from naturalistic videos.

Further properties of observational models

Recall that our model aims to predict the observed BOLD response from a spatiotemporal
stimulus. We can obtain a rough estimate of the peak of the BOLD response by determining
for each voxel the delay t that has the maximal weight U,[t, k] assigned. Fig 7 shows the distri-
bution of these delays across cortex, providing an insight into spatial differences in the hemo-
dynamic response function. Results show a consistent slowing of the HRF for downstream
areas [50].

Finally, we can investigate how stimulus features are encoded by investigating U.. In Fig 8
we show the feature weights for three different features in V1. We observe that different areas
of early visual cortex show inhibition or excitation for the selected features. This provides
insight into how stimulus features are represented across cortex.

It is of interest to examine whether these U, weight distributions remain stable under differ-
ent runs. We have run the same model five times, collecting the spatiotemporal channel
weights and their associated U, maps. Pairwise min-max-normalized mean-squared errors
(MSE) were computed between these 5 x 64 channels to identify similar ones (low MSE
implies similar channels, see Fig 9B for examples). The temporal dimension of the channels
has been omitted by averaging over it as features appearing a few frames apart would have a

Fig 8. Projected U, weight values for three different features in V1. Weight values were normalized between -1 and 1 by dividing them by the absolute maximum. The
figure shows that the features are not evenly distributed across different cortical locations. The U, matrix makes their analysis accessible.

https://doi.org/10.1371/journal.pcbi.1008558.9008
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Fig 9. Relation between channel similarity and U, map similarity. A. Relation between channel similarity and Uc map similarity in V1. Correlations are corrected
with a fisher z-transform, and correlation signs are omitted. Highly similar Uc maps (high correlations) only occur for highly similar (small MSE) channels. However
channels similar under MSE do not imply a highly similar Uc map. B. Examples of mean-squared error as a channel similarity measure.

https://doi.org/10.1371/journal.pcbi.1008558.9009

large influence on the MSE, but little influence on Uc due to temporal pooling to TR. Likewise,
we took pairwise Pearson correlations between the Uc weight maps (only significantly predict-
able voxels) for each channel, leading to 5 x 64 comparisons between approximately 1000
voxel-wise weights in V1. Signs of correlations were omitted as negative correlations between
maps point at inverted weight maps which may occur as U, is not constrained to be positive.
Fig 9A shows the relation between both measures. While we do see that highly similar Uc
maps only occur for highly similar channels, highly similar channels do not necessarily have
highly correlated Uc maps. This analysis has been restricted to V1 as similar image-based com-
parison of higher order convolutional features is not possible.

Processing of high-level semantic properties

So far, we have investigated characteristics of the NIF model that pertain to neural computa-
tions and representations and how these drive voxel responses. In this final analysis we investi-
gate to what extent different neural populations are able to uncover high-level semantic
content from the input stimulus. We focus on face detection since the processing of visual fea-
tures pertaining to the discrimination of human faces is extremely well studied in the cognitive
neuroscience literature [51]. In particular, FFA is known to play a central role in the visual pro-
cessing of human faces [52]. Consequently, we expect that the representations learned by the
FFA component of our model are related to human face processing.

We test this hypothesis using an in silico experiment closely resembling standard fMRI
experimental procedures in cognitive neuroscience. We passed 90 video segments of the regu-
lar input length of 3 TR, taken from the test set, through the trained NIF model. These videos
were divided into two classes, one containing frontal views of human faces and the other not
containing faces (45 videos per class). We analyzed the predicted BOLD responses of the mod-
els in the two experimental conditions using a mass univariate approach. For each voxel, we
computed the t-statistic of the face minus no-face contrast and the associated p-values. We
corrected for multiple comparisons using the false discovery rate (FDR) with alpha equal to
10~% The left panel of Fig 10A shows the fraction of significant voxels in each brain region.
The results show that FFA is the only region that is significantly activated by the contrast. The
right panel shows that the voxels which are significantly activated also tend to be significantly
predicted by the model. Fig 10B shows the significant (absolute) t-scores on the cortex.

We complemented these results with a multivariate decoding analysis [53]. We trained a
logistic regression model on the predicted voxel responses of each ROI in order to predict if
the input contained faces. We also performed this logistic regression analysis directly on the
channel responses of the model (max-pooled across the spatio-temporal feature map). In the
analysis we also included direct predictions from the pixel values of the input images. We
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Fig 10. Results of an in-silico experiment. The trained network was presented with video segments from the test set showing either faces or
no faces. A., B. Univariate analysis. A. Significant voxels in each ROI. Correlations between predicted and observed voxel responses on the
test set. B. Cortical map of the t-statistic for univariate analysis. C., D. Multivariate logistic regression. C. Decoding from ROI-wise tensor
activations (channel responses max-pooled across the whole feature map) or raw input values (pixels, LGN). D. Decoding from predicted
voxel responses. Overall, we see that FFA is the most discriminative area for the face recognition experiment.

https://doi.org/10.1371/journal.pcbi.1008558.g010

estimated the mean accuracy and its standard error by repeating the training 50 times with
random splits into 35 training and 10 test examples respectively. As shown in Fig 10, the high-
est classification performance is achieved for FFA, both at the channel level and at the voxel
level. This confirms our expectation that the model FFA has learned higher-order semantic
properties that match its functional role in the brain. Furthermore, we see that multivariate
data from increasingly downstream regions are more suitable to dissociate faces from non-
faces. This indicates the prospect of studying in silico what behavioural goals higher-order sen-
sory areas are optimized for. This also hints at the possibility of using neural information pro-
cessing systems estimated from brain data to support the solution of pattern recognition tasks.

Data requirements

The training of modern convolutional neural networks is known to require large amounts of
data. The modeling framework described here likewise has data requirements that are not ful-
filled by the large majority of current neuroscientific experiments. The required amount of
data for a saturating model is unclear however. Fig 11 describes the data requirements for the
specific experiment presented here. The example model we present saturates around the 12
hour mark. As several factors influence the required amount of training data this should nei-
ther be understood as a lower nor a higher bound on the amount of data required for applying
this method. In general, we recommend to record single runs until test performance saturates.

The upper bars show the ROI-wise median of the voxel-wise noise ceiling of the correlation.
It is an estimate of the upper limit on any model’s predictability attainable on the repeated test
data set, given the noise in the data. An early description of the idea behind the noise ceiling
can be found in [54]. We have used the Monte Carlo noise ceiling (MCnc) method mentioned
in [55] and [56], and described in more detail in [57]. We have used Kendrick Kay’s public
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Fig 11. Test set performance over different amounts of training data. The example model was trained with increasing amounts of data, starting from the initial
session. Voxel-wise correlations were determined on the test set for different areas, their distributions shown here. The performance of the example model saturates
around the 12 hour mark. This result is likely specific for the stimulus modality, recording parameters, the model architecture and our particular participant.

https://doi.org/10.1371/journal.pcbi.1008558.9011

implementation. In the MCnc method, for every individual voxel, median correlations
between simulated measurements and signals are estimated in a Monte Carlo simulation set-
ting. Here a measurement is the sum between a signal and a noise component. Signal and noise
are assumed to follow Gaussian distributions, for which mean and variance parameters are
estimated from the z-scored data. The signal mean is the mean across the averaged test data
time course. The noise mean is assumed to be 0. The noise variance is estimated across all test
data repetitions. The signal variance is the rectified (non-negative) difference between the vari-
ance across the averaged test data time course and the noise variance. Using these parameters
we have performed 500 signal simulations with 22 measurements (same signal, different noise)
each. The figure shows the median of the voxel-wise noise ceilings within individual ROIs.

Comparing to the task-driven approach

The currently most used technique for describing visual and auditory hierarchies is task-driven
modeling with convolutional neural networks. A hypothesized convolutional neural network
architecture is trained on a dataset with a specific objective function. Then experimental sti-
muli are passed through this pretrained architecture to obtain layer-wise activities in response
to these stimuli, and the activity tensors are compared to brain activity under the same stimuli
with encoding models or RSA. With these methods, layer distributions are identified across
cortex. Many correspondences between modern convolutional neural networks and the visual
system could be uncovered using the task-driven method.

Our aim with this paper is not to rival the currently best models in this area of visual model-
ing, but to propose a new approach to computational modeling of neural processing systems
with a simplified visual system architecture as an example. Nevertheless we would like to
attempt comparing quantitative performance between the task-driven and a data-driven
approach using greedy readout models in the human visual information processing system.
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Fig 12. Comparison between task-driven and data-driven approach on our dataset. A. Correlations for early visual system and higher order areas. B. Correlations
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For video stimuli experiments it is common to use convolutional neural networks trained on
video action classification [10]. We chose the R (2+1) D architecture [58], a well-performing
network developed for action recognition on the Kinetics data set [59], based on ResNet [60].
It is a modern neural network architecture, including typical modern model choices like skip
connections, batch normalization, ReLU units; and utilizing complex convolutional blocks
with separated temporal and spatial convolutions. The network, originally trained on 15 Hz
Kinetics data was fine-tuned on converted 22.86 Hz Kinetics data to align the learned temporal
dynamics with our own data. The original model classified on cropped spatial windows inside
the 112 x 112 x 16 data, which we omitted during fine-tuning to keep the input fixated around
the fovea as in our NIF example model. The other training settings were kept identical to the
description in the original paper and in the code, with the pretrained model published in
pytorch torchvision [61].

Approximately 15.000 voxels with highest variance during the test set recordings were
selected for this analysis, a number chosen in order to cover most of the visual system (see Fig
12C). We compared the task-driven case, using features pretrained on Kinetics; and the purely
data-driven case, training all network parameters (convolutional features) on the objective
function of predicting brain activity as in the NIF framework (thus denoted NIF in the figure).
In both cases activity of all voxels was predicted based on the activity tensors conv1 to
conv5 separately and in the same model. In the task-driven case, U, and U, readout parame-
ters were learned for every voxel and layer, while the fixed pretrained features acted as a basis.
In the data-driven case, both readout parameters and all convolutional block features were
learned. RGB input was used, and the z-standardisation normalization used during pretraining
was applied in the task-driven case as otherwise its performance would have been lower. The
temporal dimension was omitted as R (2+1) D expects 16 frames. At 22.86 Hz this matched
the number of frames shown in 1 TR of our data, so this merely restricted the model to predict-
ing voxel-wise activity from video covering 1 TR instead of 3 TR, and not learning U, parame-
ters. To obtain voxel-wise correlations to estimate model performance, after model training
for every voxel we chose the top-performing layer on the test set.

Results are shown in Fig 12. The task-driven and the data-driven approach are similar in
performance, but the data-driven NIF-based approach outperforms the task-driven one using
pretrained features especially in the early visual system and in higher order ROIs.

As the correlations achieved by the task-driven model are still relatively high and similar to
the purely data-driven model our result only slightly contradicts the result of [13], where the
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predictive power of the pretrained features performed slightly better in V1. Potential explana-
tions for these differences include that the R (2+1) D convolutional neural network does not
match brain hierarchies well, however we do see a visible improvement in the data-driven
case. Another explanation for these differences is that the cranial window in [13] has been on
an area where pretrained DNN features indeed match V1 feature detectors well. Another dif-
ferent explanation is that the higher resolution of electrophysiological recordings leads to
more accurate results than our functional MRI data.

This model comparison will not rule out the possibility that the pretrained features can be
improved upon by using newer model developments from the machine learning community,
or a more brain-like task. This numerical performance comparison should not distract the
reader from recognizing the fundamental difference between the task-driven and our sug-
gested data-driven modeling approach. By imposing an architecture of ROIs instead of taking
the greedy approach, implemented as separate convolutional layers; we expect to learn the
information processing between ROIs. A numerical performance comparison for this idea of
training end-to-end models representing visual system architectures does not exist yet. Also,
for sensory systems we believe it is worth exploring whether the data-driven approach leads to
more accurate ROI representations, especially in higher order areas which divide into special-
ized areas solving different tasks important for human cognition—not all of which are known,
and some of which may not be describable by neural network objective functions.

Discussion

This paper proposes neural information flow for neural system identification. The approach
relies on neural architectures described in terms of interacting brain regions, each performing
nonlinear computations on their input. By coupling each brain region with associated mea-
surements of neural activity, we can estimate neural information processing systems end-to-
end. Using fMRI data collected during prolonged naturalistic stimulation we showed that we
can successfully predict BOLD responses across different brain regions. Furthermore, mean-
ingful spatial, temporal and feature receptive fields emerged after model estimation. The
learned receptive fields are specific to each brain region but collectively explain all of the
observed measurements. To the best of our knowledge, these results demonstrate for the first
time that biologically interpretable information processing systems consisting of multiple
interconnected brain regions can be directly estimated end-to-end from neural data.

As explained in the introduction, NIF generalizes current encoding models. For example,
basic population receptive field models [62] and more advanced neural network models [5]
are special cases of NIF that assume no interactions between brain regions and make specific
choices for the nonlinear transformations that capture neuronal processing.

The researcher can specify alternative NIF models and then use explained variance as a
model selection criterion. This is similar in spirit to dynamic causal modeling (DCM) [63].
However, NIF models can identify changes in neural computation that are not detectable in
approaches that only focus on estimating effective connectivity. For example, they can be used
to investigate in detail the changes in neural information processing under different
conditions.

NIF can be naturally extended in several directions. The employed convolutional layer to
model neural computation can be replaced by neural networks that have a more complex
architecture. For example, recurrent neural networks can be trained in the same way as the
feed-forward architecture presented here. Furthermore, lateral and feedback processing is eas-
ily included by adding additional links between brain regions and unrolling the backpropaga-
tion procedure over time. NIF models can also be extended to handle other data modalities.
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Alternative observation models can be formulated that allow inferring neural computations
from other measures of neural activity (e.g., single- and multi-unit recordings, local field
potentials, calcium imaging, EEG, MEG). Moreover, NIF models can be trained on multiple
heterogeneous datasets at the same time, providing a solution for multimodal data fusion. The
framework can also be applied to other sensory inputs. For example, auditory areas can be
trained on auditory input (see e.g. [64]). If this is combined with visual input then we may be
able to uncover new properties of multimodal integration [65].

Note that we are not restricted to using neural data as the sole source of training signal. We
may instead (or additionally) condition these models on behavioral data, such as motor
responses or eye movements [23]. The resulting models should then show the same behavioral
responses as the system under study. We can also teach NIF models to perceive and act upon
the task at hand directly using reinforcement neural network training [66]. In this way, NIF
models provide a starting point for creating brain-inspired Al systems that more closely model
how real brains solve cognitive tasks.

Finally, we can use NIF models as in silico models to examine changes in neural computa-
tion. For example, we can examine how neural representations change during learning or as a
consequence of virtual lesions in the network [67]. This can provide insights into cognitive
development and decline. We can also test what happens to neural computations when we
directly drive individual brain regions with external input. This provides new ways for under-
standing how brain stimulation modulates neural information processing, guiding the devel-
opment of future neurotechnology [68].

Summarizing, we view NIF as a way to construct biologically-inspired computational mod-
els that capture neural information processing in biological systems. As such, it provides a
blend of computational and experimental neuroscience [69]. This gives us a principled
approach to make sense of the high-resolution datasets produced by continuing advances in
neurotechnology [70]. We expect that NIF models will deliver exciting new insights into the
principles and mechanisms that determine neural information processing in biological
systems.

Code accessibility

A basic implementation of the NIF method on a smaller data set [71, 72] can be found at
github.com/kateiyas/basicNIF.

Supporting information

S1 Video. Features (weights) learned inside the neural network layer for V1.
(GIF)

$2 Video. Animated preferred inputs for voxels in specific ROIs.
(GIF)
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