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We study the vulnerability of dominating sets against random and targeted node removals in complex
networks. While small, cost-efficient dominating sets play a significant role in controllability and
observability of these networks, a fixed and intact network structure is always implicitly assumed. We find
that cost-efficiency of dominating sets optimized for small size alone comes at a price of being vulnerable to
damage; domination in the remaining network can be severely disrupted, even if a small fraction of
dominator nodes are lost. We develop two new methods for finding flexible dominating sets, allowing either
adjustable overall resilience, or dominating set size, while maximizing the dominated fraction of the
remaining network after the attack. We analyze the efficiency of each method on synthetic scale-free
networks, as well as real complex networks.

D
ominating sets play a critical role in complex networked systems by providing efficient sources of influence
and information dispersal, or hubs of surveillance1–4, and are applied in social, infrastructure, and com-
munication networks5–7. Most recently, dominating sets were employed to controllability in complex

networks8–11, observability of the power-grid12, and to finding high-impact optimal subsets in protein interaction
networks13. While finding the smallest, most efficient dominating set has gained significant interest, it is also
important to understand how robust these dominating sets are against various forms of network damage14.

By definition, a dominating set is a subset of nodes in a network, such that every node not in the dominating set
is adjacent to at least one node in this set; in other words, every node has at least one neighbor (or itself) in the
dominating set. The smallest cardinality dominating set is the minimum dominating set (MDS), which is of
particular interest, because it provides the most cost-efficient solution for network control, assuming a constant
per-node cost of implementing control, in fixed or slowly evolving networks. Research has been focused on
finding bounds for the size of MDS1,15, finding approximations to the MDS16,17, understanding its expected scaling
behavior in complex networks3,4, and studying the impact of assortativity36,37 on network domination2,18.

Attacks on complex networks, fault tolerance, and defense strategies against damage of nodes and edges have
also gained significant interest in network science19–22. Networks with scale-free topologies have been found to be
resilient against random node damage, but vulnerable to targeted removal of high degree nodes23–25. Research has
also focused on improving the robustness of these networks against various combinations of attacks26–28, and on
studying the dynamically progressing effects of an initial damage, such as cascading failures29,30.

The connectivity of the surviving network structures and the fraction of the remaining set of nodes still
dominated following failures or attacks are both essential for sustainable network operations and carrying out
network functions. While the former (structural integrity) has been studied in great detail over the past two
decades19–25, the latter (domination stability) has not received any attention.

We assume that the network damage is relatively small, and although the network may become fragmented due
to the loss of nodes, we assume it remains functional. In such cases efficient domination over the network is still
important and desirable, just as it is in undamaged networks. However, considering that most dominating set
search methods aim for the smallest possible set size (and corresponding cost) in a fixed topology network, even a
small damage could severely disrupt the complete domination ‘‘coverage’’. Our goal is to understand how fragile
dominating sets are, how to improve them, and ultimately to provide new methods for selecting dominating sets
with adjustable balance between resilience and cost.
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The resilience of a dominating set against network damage is
measured by domination stability, which we define as the fraction
of the network still dominated after some nodes (which may include
nodes from the dominating set) are removed from the network:

s fð Þ : ~
|j[DSNz jð Þ
�� ��

N 1{fð Þ , ð1Þ

where DS is the subset of the original network’s dominating set that
remains after network damage, f is the fraction of nodes removed
from the network, and N1(j) is the surviving closed neighborhood of
node j following network damage. In order to measure stability, we
need to simulate network damage by actually removing nodes from
the network and calculating the remaining dominated fraction.

Domination stability depends not only on the fraction of removed
nodes, but also on the order in which nodes have been removed from
the network. Similarly to many studies in the literature, we consider
two damage scenarios: random and targeted node removals. The
random node removal strategy models network damage produced
by natural causes or errors, while the targeted node removal method
reflects the impact of intentional, targeted attacks on a network. In
the random damage scenario nodes are removed with equal prob-
ability, in random order. In case of targeted attacks, the nodes are
removed in degree-ranked order, with highest degrees being
removed first. We indicate which strategy we consider in the sub-
script of stability: srand denotes the stability against random damage,
and sdeg corresponds to the stability against targeted attack (inter-
changeably denoted as degree-ranked removal).

Results
Stability of Various Fixed Dominating Sets. We start our analysis by
measuring the stability of three different dominating sets, that we use for
baseline comparison with our new methods. These are the following:

. greedy minimum dominating set (MDS)1,4,31, where nodes are
selected by a sequential greedy search algorithm in order to
approximate the actual (NP-hard) smallest dominating set,

. ‘‘cutoff’’ dominating set (CDS)18, where all nodes above a degree
threshold are selected into set X, and the nodes not dominated by
any nodes in set X are selected into set Y. The dominating set is
then given by X < Y. The degree threshold is selected such that it
minimizes the size of the resulting dominating set,

. degree-ranked dominating set (DDS), where we select all nodes in
decreasing order of degree (with random tie-breaking) as dom-
inators until the selected set dominates the entire network.

Our first choice is MDS, due to its importance in cost-efficient
control of complex networks, and because it provides a high-quality
approximation to the actual smallest dominating set. The other
methods we have chosen are potentially useful when finding the
greedy MDS or solving the binary integer programming equivalent
is impractical, e.g., when the adjacency information of the network is
incomplete, or the network is too large to run these algorithms in a
reasonable amount of time. In these cases heuristic algorithms, such
as CDS or DDS can find suboptimal (not the smallest possible), yet
small enough dominating sets that are still useful for practical appli-
cations. In particular, the excess nodes selected by these methods
may help to increase domination stability.

Figure 1 shows the stability against the fraction of removed nodes
for MDS, CDS and DDS in the entire remaining network [Fig. 1(a),
(b)] and in the remaining giant component [Fig. 1(c), (d)]. It is clear
that the degree-ranked node removal reduces the dominated fraction
much faster than the random node removal, because high-degree
nodes are more likely to be dominator nodes than low degree nodes.
The giant component itself also breaks down much faster, as shown
in the insets of Fig. 1(c) and (d). However, as long as a giant com-

ponent exists, it has higher domination stability than the entire net-
work, in both scenarios. The slight increase of stability at high
damage rates is a side effect caused by removal of nodes that had
lost domination by earlier removals. When the network damage is
high, it becomes more likely that these nodes are deleted, causing the
dominated fraction of the remaining network to increase. At this
point, however, the network is almost completely destroyed and
domination stability becomes meaningless.

The stability curves show much more disturbed shapes in degree-
ranked removal than random removal, due to the differences in the
degree structure of each dominating set. In MDS, there is no preference
toward any particular node degree during selection of dominators
(besides the natural effect of the greedy selection, where the high-
degree nodes provide a larger increase in the number of dominated
nodes, hence they are more likely to be selected), which means that
removal of high-degree nodes has a smooth (albeit strong) impact on
stability. In CDS, we can see a fast initial drop as we remove the very
high degree nodes that were specifically selected for dominators (in set
X), then continuing at a more gentle slope as the dominators from the
Y set are removed, since any node that was not dominated by X,
regardless of degree, may be in set Y. Although the Y set may seem
wasteful in CDS construction, with the right degree threshold the size
of the CDS is actually very close to the MDS18, and the excess nodes
provide a fair increase in stability. DDS is the simplest but most inef-
ficient method for finding a dominating set because it selects all nodes
starting from the highest degrees until all nodes are dominated.
However, the resulting redundancy of dominators in the network is
providing the highest stability of all three methods.

We can also observe the general tendency that a larger dominating
set provides higher stability. At any given fraction of removed nodes,
there is a positive correlation between stability and the size of the
original dominating set, in both random [Fig. 1(a)] and degree-ranked
[Fig. 1(b)] node removals. We clearly illustrate this correlation in
Fig. 1(e) and (f), where we show stability as a function of the dom-
inating set size, at various damage levels. This means that the MDS,
which is the smallest (most cost-efficient) dominating set, is also the
most vulnerable, to both random damage and targeted attacks.

Note, that Fig. 1 only shows the stability for networks with
a certain degree exponent that are uncorrelated (i.e., with
Spearman’s38–40 r 5 0). Stabilities at different values of these para-
meters are presented in Supplementary Figures S1–S5.

We have also included supplementary videos to illustrate the
evolution of domination stability as the network disintegrates, during
random node removal (Supplementary Movie 1) and degree-ranked
node removal (Supplementary Movie 2).

The main conclusion we can draw is that the larger number of
dominating nodes selected by heuristic methods CDS and DDS,
compared to the smaller and more optimal MDS, can effectively
increase the stability of domination. However, all three methods
are ‘‘fixed’’ in the sense that they give only a single possible dominat-
ing set size (and corresponding stability) for a given network.

Flexible-Redundancy Dominating Set (frDS). In order to overcome
the limitations of fixed methods, we must analyze in detail how
domination is lost when the network is damaged. First, we realize
that loss of domination occurs locally at each node: those nodes that
lose all dominators will reduce the domination stability of the network.
Therefore, stability can be expressed locally, as the domination
redundancy of each node. This quantity simply counts how many
dominating nodes are within the closed neighborhood of a given
node. A large dominating set can successfully increase domination
stability, if the extra nodes are distributed in a way that they increase
domination redundancy on many nodes. This seems to occur naturally
for CDS and DDS, however we cannot guarantee that redundancy was
increased in the most optimal way (relative to MDS), nor can we control
the number of selected nodes.

www.nature.com/scientificreports
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We introduce the flexible-redundancy dominating set (frDS) to
solve these problems. We explicitly set an average domination
redundancy in the network, denoted by r, that must be guaranteed
by frDS, while aiming for minimum set size. Note, that r 5 1 is
equivalent to the minimum dominating set (MDS), and when r is
an integer, the frDS is identical to the h-dominating set (with h 5 r)
studied by Cooper, et al.41. Finding an frDS is most likely NP-hard,

since it is also NP-hard to find an MDS42 or an h-dominating set43,
but we can use a modified greedy algorithm to find an approximation.

The steps of finding an frDS are as follows. First, we assign a
domination redundancy requirement, r(i) for each node i as an inte-
ger value indicating at least how many dominators node i must have
in the dominating set. Given the desired average (non-integer) r
value for the entire network, we assign the nearest integer values

Figure 1 | Stability of various dominating sets against random and degree-ranked node removal. Subfigures (a), (c), and (e) show random node

removal, (b), (d), and (f) show degree ranked node removal. Subfigures (a) and (b) show stability in the entire network, while (c) and (d) show stability

within the remaining giant component. The inset in (a) shows the corresponding sizes of dominating sets, and insets in (c) and (d) show the size of the

corresponding giant component. Subfigures (e) and (f) show a correlation between set size and stability, at c 5 2.5. All plots show synthetic scale-free

networks, N 5 5000, Ækæ 5 8, averaged over 200 network samples.
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trs and qrr to each node randomly, such that the network average
will be r (the probability of assigning qrr is r 2 trs, which is analog-
ous to a biased coin toss). For the greedy selection we define a dom-
inating potential p(i) as the number of nodes in the closed
neighborhood of i that have not yet reached their domination
requirement, and therefore selecting node i can help them advance
toward their goal. (Note, by definition, the potential of an already
selected node is zero.) At each greedy step we select one node with
maximum dominating potential (with random tie-breaking), until
the requirements of all nodes have been fulfilled. Note, that since
dominating potential is an integer number between 0 and N, nodes
can be sorted according to their potential in O(N) steps, and it is
possible to maintain sortedness after changing the potential of a node
in O(1) step (see Supplementary Note 1 for further details and pseu-
docode). This results in the same computational time complexity as
for the greedy MDS approximation, O(E). Also note, that if r . N,
then the node requirements can never be satisfied, in which case the
greedy selection naturally falls back to selecting nodes in degree-
ranked order, because at every step every neighbor of a node may
be advanced toward its goal.

Flexible-Cost Dominating Set (fcDS). When we aim for a desired
dominating set size (cost level, i.e., having a limited budget), we can, in
principle, aim for the necessary redundancy level in frDS to achieve that
desired cost. However, we can further improve stability by considering
the expected attack pattern on the network (if the information is
available), and optimize the selected dominating set accordingly. For
example, if the attack is expected at high-degree nodes, we should avoid
selecting many of those nodes as dominators, despite their ability to
cover large fractions of the network.

We can optimize our choice of dominators by including the prob-
ability of losing each node into the calculation of local stability, which
we aim to maximize. First, we assign a strength value s(i) g (0, 1) to
each node i, which represents the a-priori estimated probability for
not losing that node after the attack (i.e., the anticipated attack pat-
tern). Then, we calculate the current domination stability of node i as
follows:

stability DS,ið Þ~
0 if DS\Nz ið Þ~1

1{Pj[DS\Nz ið Þ 1{s jð Þð Þotherwise,

(
ð2Þ

which is the probability that node i will remain dominated (not lose
all dominators), assuming nodes will be deleted independently; DS

denotes the currently selected dominating set. For selecting the next
dominator, we choose one that increases the total stability of the
network maximally. The total potential increase of stability can be
calculated for each node as follows:

potential ið Þ~
X

j[Nz ið Þ
stability DS| if g, jð Þ{stability DS, jð Þ ð3Þ

~
X

j[Nz ið Þ
1{stability DS, ið Þð Þ:s ið Þ: ð4Þ

Therefore, we always select a node with maximum potential (with
random tie-breaking). Note, that unlike in frDS, the potential here is
a non-integer value, thus we can only use comparative sorting to
order nodes by potential, which needs O(N log N) steps. In addition,
after selecting each dominator, the stability values have to be recom-
puted in the selected node’s closed neighborhood, and the potentials
for nodes with distance up to two from this node. This involves O(d2)
nodes, where d is the average degree. Thus, maintaining sortedness of
nodes by their potential requires O(d2 log N) steps after selecting each
dominator.

In order to compare stability of fcDS with frDS and other dom-
inating sets, we calculate the ‘‘a-priori’’ node strength values as fol-
lows: s(i) 5 0.5 for random node removal, and s(i) 5 1 2 d(i)/N for
degree-ranked node removal. Here, we assume the size of the antici-
pated damage is unknown, thus strength values are expressing rela-
tive probabilities only. The strength value for a random damage is
arbitrary, as long as it is uniform among the nodes, and it is inversely
proportional to node degree in a degree-ranked attack. Further
details of fcDS and pseudocode are included in Supplementary
Note 2.

Stability Comparison of Dominating Sets. We seek to answer two
main questions in our analysis. First, we want to see how much
stability we can achieve by selecting various sizes of dominating
sets (in other words, how does the stability scale with larger
invested cost of domination). Second, we want to know how much
more efficient our methods are compared to the fixed dominating
sets, that is, given the same size of dominating set as MDS, CDS, or
DDS, how much higher stability can our methods provide.

Figures 2 and 3 show domination stability achieved by frDS and
fcDS as a function of redundancy and dominating set size, respect-
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Figure 2 | Domination stability in frDS and fcDS as a function of domination redundancy. (a) shows random node removal, (b) shows degree-ranked

node removal. The inset shows the sizes of the corresponding dominating sets. The size of fcDS is set to match frDS at any given r value. Synthetic scale-free

networks, N 5 5000, Ækæ 5 8, c 5 2.5, f 5 0.3, averaged over 200 network samples.
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ively. Stability achieved by the fixed methods (MDS, CDS, DDS) are
also shown at their corresponding cost values for comparison. The
general shape of the curves in both figures are similar, since the
dominating set size is roughly proportional to redundancy (see
Fig. 2 inset and Supplementary Fig. S6). In case of random damage,
the stability rapidly increases with cost, until the size of MDS is
reached, then the curve saturates. There is little advantage in selecting
a dominating set larger than approximately twice the size of MDS,
because stability is already very close to 1, even at large damage
values. However, in case of degree-ranked damage, there is a steady
increase in stability as more nodes are selected as dominators. In both
cases, fcDS provides somewhat higher stability than frDS at mod-
erate damage levels, but frDS is more stable at small damage levels.
These observations hold across a wide range of network parameters,
see Supplementary Figs. S7 and S8. It is also clear that both frDS and
fcDS can provide great flexibility in adjusting the size of the dom-
inating set and stability.

The stability of frDS and fcDS at cost levels identical to MDS, CDS,
and DDS are presented in Fig. 4. Our results show that frDS provides
stability values very similar to the fixed methods (in case of MDS, it is
identical by definition, thus it is not shown), while fcDS shows a
minor improvement in stability. On the other hand, both frDS and
fcDS show significant improvement over the fixed methods against
degree-ranked attacks, at low network damage fractions. MDS and
CDS show a tipping point in damage, where these methods become

slightly more effective than frDS or fcDS, but the difference is
minimal, and it occurs only at moderate to high network damage
(f > 0.3).

Stability in Real Networks. We analyze stability of frDS and fcDS, as
well as other dominating sets, in several real complex networks, listed
in Table 1. These include an internet peer-to-peer network (p2p-
Gnutella08)44, the power transmission network of continental Europe
(ENTSO-E power-grid)45,46, and one brain graph extracted from MRI
data (KKI21-KKI2009-19)47,48. Note, that we only use the giant
component of these networks. A brief analysis of the degree
distribution of Gnutella08 is provided in Supplementary Figs. S17–S19;
degree distribution of the powergrid is provided in Supplementary Figs.
S20–S23.

The brain graph we analyze here (KKI-21-KKI2009-19) is one of
200 graphs available from47. These graphs have peculiar structural
properties, and are very similar to each other. In particular, all brain
graphs are very dense: Ækæ < 150 (Supplementary Fig. S23); they are
all very assortative36,37: r < 0.6 (Supplementary Fig. S24); and they
have very similar degree distributions (see Supplementary Figs. S25–
S27). It is also interesting that the size of MDS is very small, only 3–
4% network size, while the size of CDS and DDS is very large, around
60% and 100% of network size, respectively (Supplementary Fig.
S28). We attempt to separate the effects of density and assortativity
in order to identify their impact on domination stability.

Figure 3 | Stability of frDS and fcDS as a function of dominating set size (cost) for various network damage fractions. Stabilities of MDS, CDS, and DDS

are presented at their corresponding cost values. Subfigure (a) shows random node removal, (b) shows degree-ranked node removal, for synthetic scale-

free networks, N 5 5000, Ækæ 5 8, c 5 2.5, averaged over 200 network samples.

Figure 4 | Comparison of domination stability at fixed cost levels, as a function of network damage fraction. Stability of frDS and fcDS are plotted at cost

values identical to MDS, CDS and DDS. Subfigure (a) shows random node removal, (b) shows degree-ranked node removal, for synthetic scale-free

networks, N 5 5000, Ækæ 5 8, c 5 2.5, averaged over 200 network samples.
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Figure 5 shows domination stability as a function of dominating
set size for the real network samples. In general, we see that stability
of frDS and fcDS matches the stability of MDS, and exceeds the
stability of CDS and DDS, at identical set sizes. In case of

Gnutella08 and the powergrid, the stability curves saturate slowly,
and the curve shapes are not as smooth as for synthetic scale-free
networks, due to having more disturbed (non-scale-free) degree dis-
tributions. However, the brain graph shows very high domination

Table 1 | Parameters of real networks used in our analysis. The data refers exclusively to the giant component

Name Source N kmin kmax Ækæ Spearman’s r38–40

Gnutella08 [44] 6299 1 97 6.60 0.03
powergrid [45, 46] 1494 1 13 2.89 20.18
KKI-21-KKI2009-19 [47, 48] 712098 1 6505 138.2 0.62

Figure 5 | Stability of frDS, fcDS and other dominating sets in real networks against random and degree-ranked attacks, for various damage fractions:
(a,b) Gnutella peer-to-peer network; (c,d) ENTSO-E powergrid; (e,f) Brain (MRI) network. Data is averaged over 20 independent runs of node removal.

See Table 1 for network parameters.
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stability against both random and targeted attacks. In all cases, the
relative advantage of frDS and fcDS over CDS and DDS (i.e., cost-
efficiency) remains as high as in synthetic scale-free networks.

We can observe the effects of assortativity separately from other
structural properties by artificially changing the network’s assortativ-
ity, using a biased edge-mixing method (see in Ref. 18 and
Supplementary Note 3), which rewires the edges in the graph, while
keeping the degree sequence unchanged. Using this method we pre-
sent a brief analysis of dominating set size vs. assortativity in
Supplementary Figs. S29–S31. In general, we see the expected beha-
vior that dominating sets tend to become larger in more assortative

networks18. Note, that the size of DDS in the brain graph
(Supplementary Fig. S31) being 100% of nodes regardless of assorta-
tivity is the result of a particular topological feature; there are a small
number of leaves (degree 1 nodes) connected to degree 2 nodes, thus
DDS has to select al nodes down to degree 2 (essentially all nodes) to
dominate these off-hanging leaves — a feature left unchanged by
edge-mixing.

Figure 6 presents the effects of assortativity on domination
stability. We see an unexpected behavior: as assortativity increases,
domination stability decreases against random damage, but increases
against an attack on high-degree nodes. We can understand this
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Figure 6 | Stability of frDS and fcDS in edge-mixed real networks against random and degree-ranked attacks, for various assortativity levels: (a,b)
Gnutella peer-to-peer network; (c,d) ENTSO-E powergrid; (e,f) Brain (MRI) network. Network damage fraction f 5 0.3. For (a-d) data is averaged over

50 independent runs edge mixing and node removal; (e,f) is from a single run. See Table 1 for parameters of the original networks.
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behavior by considering the effects of assortativity on dominator
node degrees. In disassortative networks dominators are mostly
high-degree hubs, while in assortative networks dominators have a
full range of degrees. Thus, when the network is disassortative and
the damage is random, it is less likely to remove high-degree hubs
and more likely to remove low degree nodes, the latter rarely being a
dominator, leading to increased stability. On the other hand, the
result is reversed when high-degree nodes are targeted, in which case
we are more likely removing dominators, leading to decreased stability.

Finally, we can conjecture that the outstandingly high domination
stability in brain graphs can be attributed to both their high average
degree and high assortativity. High average degree results in a highly
redundant dominating set (regardless of method) which resists ran-
dom damage successfully, while high assortativity guarantees that an
attack targeted at high degrees leaves the network with plenty of
lower-degree dominators.

Partial Flexible-Redundancy Dominating Sets. There are two
possible ways to achieve a certain desired cost (dominating set size)
with frDS. Either we aim for the lowest r value that provides the
desired cost, or we may choose a larger r value, and use only a
fraction of the larger dominating set it provides. In the latter case
we would select nodes in the same order as the greedy algorithm
picked them. In other words, we can either select a full frDS with
small r or a partial frDS with the same size but larger r. Figure 7 shows
the comparison of these two cases (see Supplementary Figures S11–
S16 for analysis over a wide range of network parameters). The
contour curves of fixed stability values are monotonically increasing
for larger r values, indicating that the cost for a certain stability level
increases if we use partial frDS with higher r values. This also means
that using full frDS with the smallest possible r value provides the
highest possible stability.

In order to find the needed r value for a desired cost we must look
at the relationship between r and the size of the resulting dominating
set (see Fig. 2(a) inset, and Supplementary Figure S6). The frDS size
curve has a complex shape, but it is always monotonically increasing.
Therefore, we can use a bisection method for finding the desired r
value. Without any assumptions (other than monotonicity) about
the size of frDS we must calculate the full frDS for every tested r, each
taking O(E) time, leading to O(E log N) time complexity for the entire
procedure.

It is also interesting to note that the cost of stability increases slightly
for smaller r values when r , 1, in case of a random damage [in
Fig. 7(a)]. In this case even the full frDS is providing only a partial
dominating set (dominating only a fraction of nodes in the undamaged

network). This indicates that r should never be smaller than 1; if a
smaller cost is needed than the one provided by frDS with r 5 1 (which
is the MDS by definition), then a partial MDS (given by the greedy
MDS algorithm) is a more optimal solution.

Effects of Incorrectly Estimated Damage in fcDS. For practical
applications of fcDS, it is necessary to understand how stability is
affected, when the network damage is estimated incorrectly. We can
check this effect for a degree-ranked attack by using the following
sigmoid strength function for a node with degree k:

s kð Þ~ 1

1zea k{k a,fð Þð Þ : ð5Þ

There are two control parameters for the anticipation. The slope
parameter a g (2‘, ‘) describes the attack distribution: it
expresses whether low degrees (a , 0) or high degrees (a . 0) are
targeted, and how sharp the difference is between targeted and non-
targeted node strengths; parameter f is the anticipated damage
fraction. The k(a, f) function gives the threshold for the sigmoid,
such that the expected number of lost nodes equals the anticipated
damage,

X
k

1{s kð Þð Þp kð Þ~f (where p(k) is the degree distribution).
Note, that a 5 ‘ gives a sharp cutoff selecting all nodes above k,
corresponding to the actual attack; 0va = 5 corresponds to an
uncertain transition point but correct anticipation; a < 0 cor-
responds to a random guess; 25 = av0 corresponds to an
incorrect anticipation (i.e., anticipating attack on low degree
nodes, when the attack occurs at high-degree nodes); and a = 25
is the complete opposite of the actual attack.

Figure 8 shows the landscape of stability as a function of the
control parameters. As expected, we obtain the highest stability when
the attacked degrees and the size of the attack are correctly estimated.
For small damage fractions (f 5 0.1) we lose stability mostly for
overestimating the size of the attack, while for moderate (f 5 0.3)
and large (f 5 0.5) damages we lose stability for incorrectly anticip-
ating which degrees are targeted.

Discussion
Our study of domination stability on real networks reveals the
importance of average degree and assortativity in network domina-
tion. While the effect of the average degree alone is difficult to
observe in real networks with unique topologies, experiments with
synthetic scale free networks (Supplementary Figs. S9 and S10) show
that increasing the average degree results in higher stability, simply
because a node, on average, dominates more neighbors. Assortativity

(a) (b)

Figure 7 | Domination stability of partial frDS as a function of domination redundancy and dominating set size. The plotted area is bounded by the size

of the full frDS at any given r. Subfigure (a) shows random node removal, (b) shows degree-ranked node removal, for synthetic scale-free networks, N 5

5000, Ækæ 5 8, c 5 2.5, f 5 0.3, averaged over 50 network samples.
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has similar effects in real and in synthetic networks (increasing assor-
tativity results in lower stability against random damage, and higher
stability against a targeted attack), but the scope of these effects
depends on the average degree. Assortativity has larger impact on
stability against targeted attacks, while the average degree has larger
impact on stability against random damage. Therefore, the degree
structure of both the network and the node damage must be con-
sidered carefully when building optimal damage-resilient dominat-
ing sets.

We must clarify and make a distinction between the prescribed
domination redundancy and the actual achieved domination
redundancy in a network, when using frDS. The former is the one

denoted by the r parameter, while the latter (i.e., the actual number of
dominators in the closed neighborhood of a node) can be easily
calculated for any given dominating set (not just frDS), and its aver-
age always exceeds the prescribed value. For example, even an MDS
could have an actual average redundancy of 2.5 in certain networks,
although most nodes would have only one dominator. However, an
frDS with r 5 2.5 would guarantee not only that the actual redund-
ancy is at least 2.5, but also that no nodes will have less than 2
dominators.

The usage of frDS against degree-ranked or any other targeted
attacks seems counter-intuitive, since in frDS, we aim for an overall
increased redundancy that is most effective against random damage.

a) synthetic

b) Gnutella08

c) powergrid

Figure 8 | Stability of fcDS against degree-ranked node removal as a function of the damage anticipation accuracy: (a) synthetic scale-free network with
N 5 5000, Ækæ 5 8, c 5 2.5; (b) Gnutella peer-to-peer network; (c) ENTSO-E powergrid. The actual damage fraction is indicated above the plots and

marked by red dashed lines; the actual degree distribution of the damage corresponds to a $ 4 values.
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However, the greedy algorithm has no preference toward selecting
low-degree or high-degree dominators when trying to fulfill dom-
ination requirements, and in general, we observe empirically that the
selected dominators have a large variability in degrees. This indicates
that dominators of a given node may have significantly different
degrees, which helps to keep the node dominated even if high degree
nodes are targeted by an attack.

In the calculation of node stability in fcDS we assumed that nodes
are deleted independently. In a realistic scenario, an attack may have
between-node correlations, especially, in spatial graphs (e.g., clus-
tered attack on a power grid). Taking this into count would add more
complexity to the calculations, which we postpone for future work.
However, it is important to emphasize that even without correla-
tions, the fcDS algorithm can use arbitrary node strength values,
irrespective of node degrees, therefore its applicability goes much
beyond our studied scenario of a degree-ranked attack.

Currently, the time complexity of fcDS is O(d2 log N) for selecting
each dominator node, which makes it prohibitive for very large
graphs. In order to speed up the algorithm, the only obstacle we need
to overcome is maintaining the sortedness of nodes by their poten-
tials efficiently, which takes O(log N) steps after each change with
comparative sorting. In principle, the potentials could be discretized
and assigned to bins (the same optimization we use in frDS), which
would lead to O(E) complexity, as long as the bin count remains
O(N). However, the effects of such discretization on the dominating
set and its stability is unclear, and it would require a thorough ana-
lysis to test the method’s viability.

We can easily explain that fcDS has a slightly lower stability than
frDS at low damage fractions, which we can observe in all graphs, by
looking at the effects of incorrect attack anticipation. When the
actual damage is very small, we overestimate the damage with our
degree-dependent strength formula (s(i) 5 1 2 d(i)/N), because we
assign nonzero probabilities to losing nodes with medium to low
degrees. In reality, these nodes will not be deleted in a small targeted
attack, thus the overestimated damage causes fcDS to lose stability,
dropping slightly below the levels of frDS. This also underlines the
need to correctly estimate the size as well as the distribution of the
expected attack to achieve optimal domination stability.

Finally, we can provide a simple guide for selecting one of our two
methods for practical applications. If we have no detailed information
about a potential attack, or the network is very large, then frDS is a
good choice for providing a dominating set with decent stability against
any form of damage (mostly against random damage originating from
natural sources), with a short computational time. However, if there is
a fixed budget for dominators, or detailed (and reliable) information is
available about potential attacks, then fcDS can be used to optimize the
selected dominating set for the highest possible stability.

Methods
We measure domination stability as an averaged value over an ensemble of networks,
using the following procedure. First, a network sample is generated, and its dom-
inating set is calculated by one of the preselected dominating set search algorithms.
Then, m nodes are removed from the network, according to a predetermined node
removal strategy, where m/N 5 f is the desired fraction removed from a network with
N nodes. Finally, stability is evaluated using Eq. 1 in the remaining network.

Each node removal strategy is implemented using a sorted list of all nodes in the
network; nodes are sorted such that the first m nodes will be removed. For random
node removal the list of nodes is shuffled (a random permutation is computed) by the
Fisher-Yates algorithm32. For degree-ranked node removal the nodes are sorted in
decreasing order of degrees (with random tie-breaking).

We generate scale-free network samples using the configuration model33–35. First, a
discrete power-law degree distribution is constructed for given network size N, degree
exponent c, and average degree Ækæ. The degree sequence is then sampled from the
degree distribution, and treated as a set of half-links for each node to be connected.
Links are realized by randomly (uniformly) selecting any two unconnected half-links,
until no more links can be formed. This may result in multiple links between some
nodes, but they are treated only as single links, resulting in a small loss of total links.
However, the loss is negligible, since we only focus on networks with c . 2.

The average degree is controlled by adjusting the minimum degree cutoff kmin of
the degree distribution, while the maximum degree cutoff kmax~

ffiffiffiffi
N
p

. The correct

kmin value that yields the desired average degree for the network is obtained from a
precomputed lookup table. We have used the same technique in our previous work4

where we have shown the high level of accuracy achievable with this method.
According to our previous notation in4, the networks we use here are cCONF net-
works (abbreviation for configuration model with structural cutoff kmax~

ffiffiffiffi
N
p

).
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