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The redox properties that make iron an essential nutrient also make iron an

efficient pro-oxidant. Given this nascent cytotoxicity, iron homeostasis relies on a

combination of iron transporters, chaperones, and redox buffers to manage the

non-physiologic aqueous chemistry of this first-row transition metal. Although a

mechanistic understanding of the link between brain iron accumulation (BIA) and

neurodegenerative diseases is lacking, BIA is co-morbid with the majority of cognitive

andmotor function disorders. Themost prevalent neurodegenerative disorders, including

Alzheimer’s Disease (AD), Parkinson’s Disease (PD), Multiple System Atrophy (MSA),

and Multiple Sclerosis (MS), often present with increased deposition of iron into the

brain. In addition, ataxias that are linked to mutations in mitochondrial-localized proteins

(Friedreich’s Ataxia, Spinocerebellar Ataxias) result in mitochondrial iron accumulation

and degradation of proton-coupled ATP production leading to neuronal degeneration.

A comorbidity common in the elderly is a chronic systemic inflammation mediated by

primary cytokines released by macrophages, and acute phase proteins (APPs) released

subsequently from the liver. Abluminal inflammation in the brain is found downstream as

a result of activation of astrocytes and microglia. Reasonably, the iron that accumulates in

the brain comes from the cerebral vasculature via the microvascular capillary endothelial

cells whose tight junctions represent the blood-brain barrier. A premise amenable

to experimental interrogation is that inflammatory stress alters both the trans- and

para-cellular flux of iron at this barrier resulting in a net accumulation of abluminal iron over

time. This review will summarize the evidence that lends support to this premise; indicate

the mechanisms that merit delineation; and highlight possible therapeutic interventions

based on this model.
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INTRODUCTION

A strong correlation between cognitive decline and systemic pathology underlying chronic
inflammation has been long recognized (1–4). Chronic inflammation common as one ages
can be linked to arthritis, diabetes, cancer and/or chronic bacterial infection including
periodontal disease (5). Another metabolic trajectory common to the elderly is brain
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iron accumulation as noted by both post-mortem quantitative
analyses (6) and fMRI (7). This brain iron accumulation
occurs despite the commonly co-morbid anemia linked also
to chronic inflammation (8). Here we review the molecular
cell mechanisms that underlie these clinical patterns. This
synthesis provides support for the premise that a combination of
therapeutic management of the brain iron and oxidative stress
exacerbated by chronic inflammation is a mechanistically
rational pharmacologic approach in the suppression of
cognitive decline.

IRON METABOLISM

Iron is an essential trace element that is necessary for normal
cell functioning, but can be harmful in excess. Due to Fenton
chemistry, excessive amounts of iron can produce free radicals
that can result in oxidative stress and ultimately, cell death (9).
Therefore, iron metabolism must be highly regulated within
tissues and cells. Iron functions as a co-factor for several
enzymatic processes, energy metabolism, myelination, and DNA
synthesis (10–12). The brain has critical need for iron due to
this organ’s high metabolic activity. In this context, maintenance
of iron homeostasis is essential so as to avoid iron-dependent
oxidative stress leading to neuronal degeneration and death.
Healthy, normal brains accumulate iron specifically within the
globus pallidus, caudate nucleus, putamen, dentate nucleus, and
substantia nigra as shown by postmortem analysis and MRI
(13–15). Iron in the brain can be found in several different
forms. Ferrous (Fe2+) and ferric (Fe3+) iron is chelated by small
molecules such and citrate and glutathione; Fe2+ is bound to
the iron chaperones, PCBP1 and 2; and both redox forms are
prosthetic groups of a multitude of proteins, both catalytic and
structural. As a polyphosphate complex, ferric iron is stored in
ferritin. When ferritin is degraded in the lysosome, hemosiderin
is produced, which contains both ferrous and ferric iron. Within
neurons, neuromelanin forms complexes with metals, including
iron, and is found in autolysosomal organelles mostly in neurons
of the substantia nigra and locus coeruleus, but in other regions
of the human brain as well (16, 17). Cells of the brain do not
have direct access to nutrients, including iron, from the systemic
circulation because the blood-brain barrier (BBB) separates the
brain from the systemic circulation, preventing toxic material

Abbreviations: BIA, Brain Iron Accumulation; AD, Alzheimer’s Disease; PD,
Parkinson’s Disease; MSA, Multiple System Atrophy; MS, Multiple Sclerosis;
APPs, Acute Phase Proteins; BBB, Blood Brain Barrier; BMVECs, Brain
Microvascular Endothelial Cells; TBI, Transferrin Bound Iron; NTBI, non-
transferrin bound iron; Tf, Transferrin; TfR, Transferrin Receptor; DMT1, Divalent
Metal Transporter 1; FPN, Ferroportin; APR, Acute Phase Response; CRP,
C-Reactive Protein; AI, Anemia of Inflammation; HO-1, Heme Oxygenase-1;
ROS, Reactive Oxygen Species; SWI, Susceptibility Weighted Imaging; QSM-
MRI, Quantitative Susceptibility Mapping MRI; EAE, Experimental Autoimmune
Encephalomyelitis; 6-OHDA, 6-hydroxydopamine; HIF-1α, Hypoxia Inducible
Factor 1α; TJs, Tight Junctions; AJs, Adherens Junctions; ZO-1, Zona-occludens
1; HUVECs, Human Umbilical Vein Endothelial Cells; BRB, Blood Retinal
Barrier; VEGF-A, Vascular Endothelial Growth Factor, A; CFA, Complete Freund’s
Adjuvant; DCE-MRI, Dynamic Contrast Enhanced MRI; NAC, N-acetyl cysteine;
NSAIDS, non-steroidal anti-inflammatory drugs; APP, Amyloid Precursor Protein;
RSLs, RAS-selective lethal compounds; MH, Mini Hepcidins.

transport. Iron transport into the brain occurs at the BBB, which
is composed of brain microvascular endothelial cells (BMVECs)
and is supported by astrocytes, neurons and microglia (18).

Several proteins on the luminal, or systemic blood membrane,
and on the abluminal, or membrane closest to the brain
interstitium, of the BBB mediate iron uptake and efflux into
the brain. Iron uptake occurs through either transferrin-bound
iron (TBI) or non-transferrin bound iron (NTBI) mechanisms.
The TBI uptake pathway involves the binding of iron to
the transferrin (Tf) protein, the binding of transferrin to the
transferrin receptor (TfR), endocytosis of this complex, and
finally, iron reduction and release into the cytosol through the
divalent metal transporter 1 (DMT1) (19). NTBI uptake can
occur by first either, reduction of extracellular free ferric iron
(Fe3+), or reduction of TBI by a ferrireductase, Steap2/3. Once
reduced, NTBI is brought into the cell by either ZIP8 (gene
SLC39A8) or ZIP14 (SLC39A14), which are divalent metal ioin
transporters that also transport Zn2+ and Mn2+ (20). Once in
the cytoplasm of the BMVEC, ferrous iron can be chaperoned
by the iron chaperones, PCBP1/2 for storage in ferritin (as
Fe3+) or metalation of cytosolic iron-dependent enzymes; or
delivered to the mitochondria for assembly of Fe,S clusters
and heme. BMVEC-accumulated iron also can be exported
apically back into circulation or basolaterally released into the
abluminal space. Lysosomal degradation of ferritin releases
ferrous iron into the cytosol when needed, with the help of the
ferrireductases Steap2/3 and Lcytb (21). Ferrous iron efflux is
supported by the sole iron efflux transporter, ferroportin (FPN).
FPN-dependent efflux requires the subsequent ferrous iron
oxidation—ferroxidation—by a ferroxidase, either ceruloplasmin
(CP) or hephaestin (HP) (22). Efflux is regulated by the
abundance of FPN in the plasma membrane. The peptide
hormone, hepcidin, binds to FPN and triggers its internalization
and degradation (23–25). Systemically, hepcidin is released
from hepatocytes; in the brain, it is released from glial cells
(26, 27). These pathways are displayed in Figure 1 and the
proteins of interest are presented in Table 1. In BMVECs,
endosomal-independent NTBI and TBI incorporation pathways
are likely to be the main mode of iron transport into the
brain. Evidence for this comes from many veins, showing
that removing ferrireductases, chelating extracellular iron, and
knocking down the ZIP proteins all inhibit TBI uptake (20,
28). These results implicate ZIP-mediated iron transport as the
most prominent method of iron accumulation in BMVEC, the
first step in the accumulation of iron in the abluminal space
and the glia and neurons therein. Much is understood about
the basic cellular processes involved with iron metabolism, but
how these processes are affected by chronic inflammation is an
underrepresented area of investigation.

CHRONIC INFLAMMATION

The focus of this review is broadly on the relationship
between inflammation and iron accumulation in the brain. More
specifically, it is to describe knowledge about the mechanisms
behind brain iron accumulation that presents in chronic
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FIGURE 1 | Methods of iron trafficking in BMVECs. This image highlights the uptake and efflux pathways used for iron transport in BMVECs. The yellow bars

represent tight junctions which will be discussed in a later section. ZIP8/14 can transport transferrin bound iron (TBI) and non-transferrin bound iron (NTBI), with the

help of a reductase which reduces the iron and allows it to enter the cell. Ferric (Fe3+) iron binds to transferrin, creating holo-Tf which binds to TfR and is endocytosed

into an endolysosome in the cell. Here, the iron is reduced and leaves the endolysosome through DMT1. Within the cell, ferrous iron (Fe2+) can be stored in ferritin for

later use. When the iron is ready to exit the cell, it is first oxidized back to ferric iron by a ferroxidase, and exits through ferroportin (FPN). Hepcidin is an effector

hormone known to induce degradation of ferroportin and prevent cellular iron efflux. This image was created with Biorender.com.

inflammatory disorders. To understand chronic inflammation,
acute inflammation must be discussed. Acute inflammation
can be activated by changes in body homeostasis such as
bacterial infection, viral infection, body injury, or immunological
disorders. These occurrences can induce the acute phase response
(APR), which is characterized by changes in the concentration
of plasma proteins known as acute phase proteins (APPs)
(29). Following an immunological trigger, monocytes become
activated and release cytokines (IL-6, TNFα, IL-1, IFN-γ, TGF-β).
These cytokines induce the synthesis and release of acute phase
proteins from hepatocytes in the liver (Figure 2). Of note, IL-6 is
known as the most potent cytokine that induces the APR (30, 31).
An acute phase protein is any plasma protein that increases
or decreases by 25% during inflammation (29). Interestingly,
there are several APPs that are associated with iron homeostasis.
For example, concentrations of the iron storage protein ferritin
and the ferroxidase ceruloplasmin increase during acute phase
inflammation. Also, the iron uptake protein transferrin is
decreased during this response. Once released, APPs can travel
to various tissues and initiate downstream effects relating to an
inflammatory response, such as fever, leukocytosis, and muscle
breakdown (29). One relevant downstream effect of the APR is
a decrease in the serum concentration of iron, or hypoferremia,
suggesting that iron is being sequestered within cells and tissues
(32). Of high importance, another APP, hepcidin, is a key
regulator of this effect due to its ability to prevent iron efflux
from cells (33). Indeed, a significant feature of the inflammatory
response due to this hepcidin release is iron sequestration in

macrophages (34–36), duodenal enterocytes affecting dietary
iron absorption (37–39), and in hepatocytes (40), but the effect of
inflammation on brain iron sequestration is not well understood
(Figure 2). Overall, acute phase inflammation and its relationship
to iron homeostasis is relevant to understanding the connection
between chronic inflammation and brain iron accumulation.

Chronic inflammation is characterized as slow, long-term
inflammation that lasts for several months to years. This
long-term inflammation can be due to failing to remove
the agent causing acute inflammation, such as a virus or
bacterial infection, autoimmune disorders, such as rheumatoid
arthritis, or chronic diseases that involve an inflammatory
response (41). Features of acute phase inflammation continue
as the inflammation becomes chronic, specifically vasodilation,
increased barrier permeability, and activation of monocytes
and resulting release of pro-inflammatory cytokines. This
helps contribute to the goal of chronic inflammation, which
is infiltration of the primary inflammatory cells into the
tissue site, production of inflammatory cytokines and growth
factors, and resulting tissue damage and/or repair (42).
Chronic inflammatory diseases are the leading cause of
mortality worldwide and therefore the biggest threat to
human health (43). Highly prevalent chronic inflammatory
disorders include diabetes, stroke, asthma, coronary heart
disease, and allergies. Neurodegenerative disorders often present
with chronic inflammation, and therefore are also considered
chronic inflammatory disorders (41). Several studies have
shown increased expression of pro-inflammatory cytokines
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TABLE 1 | Iron metabolism proteins in BMVEC.

Classification Protein Note References

Uptake

transporter

ZIP8 TBI and NTBI transport (18, 20)

ZIP14 TBI and NTBI transport (18, 20)

Transferrin (Tf) TBI transport (17, 20)

Efflux

transporter

Ferroportin (FPN1) (20)

Divalent metal

transporter 1 (DMT1)

Endolysosomal and

lysosomal efflux

(17, 20)

Receptor Transferrin receptor

(TfR)

(17, 20)

Storage Ferritin (19, 20)

Enzyme Steap 2/3 Ferrireductase,

Lysosomal

Ferrireductase

(19, 20)

Lcytb Lysosomal

Ferrireductase

(19)

Ceruloplasmin Ferroxidase (20)

Hephaestin Ferroxidase (20)

Effectors Hepcidin Inhibits iron efflux

through effects on

ferroportin

(21–23)

in neurodegenerative disorders including Alzheimer’s Disease
(AD), Multiple Sclerosis (MS), and Parkinson’s disease (PD)
(44–48). In the brain, chronic inflammation is mediated by
microglia and astrocytes, which respond to signals from the
systemic circulation and subsequently produce inflammatory
stimuli themselves (Table 2). Specifically, microglia, which are
the macrophages of the brain, become activated when signals
from systemic serum are released and cross the BBB (55).
Activated microglia release inflammatory signals that activate
astrocytes to a reactive phenotype, in which they release
several cytokines and factors affecting the brain microvascular
endothelial cells and circulating through the brain interstitium
(56). This chronic inflammatory activation can perpetuate
neuronal damage, neurodegeneration, and subsequent cognitive
decline, of which the mechanisms are not yet fully understood.
Altogether, inflammation leads to a cascade of events and the
inflammatory stimuli involved, when chronic, lead to alterations
in iron metabolism in the periphery, and possibly in the brain.

Consequences of chronic inflammatory mediators have
mainly been studied on the endothelial cells of other
known barriers, especially those of the macrovascular
endothelium. For example, CRP has been shown to affect
macrovascular endothelial cells by inducing cytokine release and
upregulating the expression of adhesion molecules, promoting a
proinflammatory response and atherosclerosis (57–59). IL-6 also
activates macrovascular endothelial cells and increases adhesion
molecule expression and chemokine release (60–62). Lastly, TNF
cytokine family members increase adhesion molecule expression
and chemokine production in macrovascular endothelial
cells (63–65). Therefore, it is known that inflammatory
signals associated with a chronic inflammatory response alter

FIGURE 2 | Acute phase response effect on cellular iron trafficking. Essentially

all of the cytokines released upon activation of macrophages and monocytes

trigger changes in most if not all tissues with impact on their iron trafficking. In

addition, several of the acute phase proteins released from hepatocytes (APP)

have a sustaining effect on these processes. Hepcidin (Hepc) has the specific

role of modulating the steady-state level of the sole iron efflux transporter,

Ferroportin (FPN), in a cell’s plasma membrane, thus regulating cell iron efflux.

This image was created with Biorender.com.

macrovascular endothelial cells and promote inflammation, but
the function of these signals with respect to BIA mediated by
BMVECs has not been elucidated.

NORMAL AGING AND INFLAMMATION

With normal aging, there is physiological and cognitive
deterioration. One theory to explain this has been described
as the “free radical theory of aging,” basically stating that
with age, there is greater production of reactive oxygen and
nitrogen species, activating transcription factors and leading to
the generation of pro-inflammatory molecules and a chronic
inflammatory state. Developing on this theory, the chronic
inflammatory state seen in aging is characterized by local
infiltration of macrophages into tissue sites of inflammation,
and increased levels of circulating pro-inflammatory cytokines,
complement components, and adhesion molecules (66, 67).
This chronic inflammatory state is especially displayed in
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TABLE 2 | Glial cell responses to inflammation in normal aging and

neurodegenerative disorders.

Condition Glial cell Response References

Normal Aging Microglia Increased MHC expression,

complement proteins, integrins,

toll-like receptors

(49, 50)

Microglia Release TNFα, C1q, IL-1α (48)

Astrocyte A1 reactivity = secretion of

toxins that kill neurons, loss of

normal astrocyte functions

(promotion of neuron survival,

promotion of synapse growth)

(48)

Parkinson’s

Disease

Microglia Increased MHC II expression,

association with CD4+ and

CD8+ T cells

(51, 52)

Astrocytes A1 reactivity (48)

Alzheimer’s

Disease

Microglia Cytokine production and release,

loss of ability to clear amyloid β

(53, 54)

Astrocytes A1 reactivity (48)

the aged brain, which has been shown in both mouse and
human studies. For example, older mice injected with LPS
had an exaggerated inflammatory response indicating amplified
neuroinflammation compared to young mice (68). Also, the
brains of aged mice have greater levels of IL-1, IL-6, and
reduced expression of the anti-inflammatory cytokines IL-
10 and IL-4 (49, 69–71). Of importance, when primed with
LPS, old mice had an increased inflammatory response in
the hippocampus compared to younger cohorts which was
accompanied by neurobehavioral complications. The same group
found that hippocampal processing in these old mice was more
easily disrupted than in younger ones when the peripheral
innate immune system was stimulated (50). This indicates
that inflammation may have negative downstream effects on
cognition in aged brains. In the aging brain, glial cells respond in
a pro-inflammatory manner. Microglia in the aged brain become
primed to respond to inflammation (Table 2). They have greater
MHC II expression, complement proteins, integrins and toll-like
receptors, all allowing for a stronger pro-inflammatory reaction
(72, 73). Also, microglia morphology changes with aging, as the
cells become smaller with less process ramifications and less
motility, allowing them to stay at inflammatory sites longer (74).
Controversial questions still remain about whether aged, primed
microglia have a better ability to respond to neuroinflammation
or if their change in morphology is more reflective of senescence
and dystrophy (75–77). Aged microglia release factors that can
activate astrocytes to a reactive A1 phenotype, including TNFα,
C1q, and IL1α (56). The aging induced A1-like reactive astrocyte
phenotype is characterized by loss of normal astrocyte functions
such as promoting neuron survival and synapse formation. Most
importantly, A1 astrocytes become strongly neurotoxic and have
the ability to rapidly kill neurons in the aged brain (78). These
inflammatory alterations in the brain likely contribute to the
neurodegeneration that takes place with normal aging.

Aging-induced inflammation contributes to another
important phenomenon, anemia of inflammation. Anemia

of inflammation (AI) can occur in patients with infection, sepsis,
chronic inflammatory disorders, or in normal aging, in which it
is called anemia of aging. As mentioned, prevalence of anemia
increases with age, and is accompanied by rises in expression
of pro-inflammatory markers, including CRP and IL-6 (79, 80).
AI is characterized by decreased serum iron concentrations
despite normal amounts of the iron storage protein ferritin,
representing iron stores. Alterations in the expression of acute
phase proteins is a defining feature of AI. First, the acute phase
protein hepcidin plays a highly important role in this anemia.
As mentioned previously, in an inflammatory state, there are
greater hepcidin levels, which inhibits iron efflux by effects on
the iron efflux protein ferroportin. A hallmark of AI is hepcidin-
mediated hypoferremia that is induced by increased expression
of cytokines. The concentration of serum transferrin, another
acute phase protein, decreases in AI (81). How this affects
brain iron accumulation is unknown, but a lack of transferrin
would likely induce an increase in ZIP-mediated iron uptake,
although more research is needed to confirm this. Overall, much
is understood about systemic changes that occur with anemia of
inflammation and aging, but little is known about what happens
with respect to iron uptake and accumulation in the brain.

NORMAL AGING AND BRAIN IRON
ACCUMULATION

Unbalanced brain iron concentrations can result in neuronal
death and subsequently, a loss of cognitive and motor function.
Iron concentrations increase during the aging process in different
human brain regions. As determined with MRI methodology,
this iron is most strongly concentrated in areas of the basal
ganglia, specifically in the substantia nigra and the striatum (82)
(Table 3). In the substantia nigra, increases in different molecular
forms of iron are found with aging, including total iron, heavy
and light chain ferritin, and the neuromelanin-iron complex (16,
83, 103). In mice, similarly to humans, age-associated increases in
iron particularly in the whitematter tracts of basal ganglia regions
were found. This was accompanied by glia dystrophy, removing
the ability of the astrocytes and microglia to sequester iron and
prevent neurotoxicity (104).

Studies focused on the accumulation of iron in neuromelanin-
containing organelles have provided needed analytical evidence
of the co-morbidity of brain iron accumulation in normal
aging and associated with neurodegeneration. Using analytical
transmission electron microscopy and nano-secondary ion mass
spectroscopy, Biesemeier et al. demonstrated that iron was
present at ∼0.15mol percent in these organelles, three-fold
greater than for copper, for example (84). Neuromelanin has
promise as a bio-marker of Parkinson’s disease (105) and
given the association of iron with this autophagic marker of
catecholamine oxidation, it can be captured by MRI. However,
one difficulty moving forward is to distinguish between the
normal increase in neuromelanin with age and a co-morbid
change associated with disease on-set (106). While not useful
for the detection or treatment of disease, there are two new
approaches that can provide higher resolution in the effort
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TABLE 3 | Evidence of brain iron accumulation in aging and neurodegenerative disorders.

Condition Species Methods Result References

normal aging Human MRI Iron most strongly concentrated in areas of the

basal ganglia, specifically in the substantia

nigra and the striatum

(80)

Mouse Immunohistochemistry,

Elemental mapping

Increases in iron in white matter tracts of basal

ganglia

(81)

Rat Greater substantia nigra iron content, increased

ferritin, lipid peroxidation

(83)

Rat Immunocytochemistry, Western blot Increased HO-1 expression in areas known for

aging-induced brain iron accumulation

(84)

Alzheimer’s

Disease

Human Postmortem histochemistry Increased iron content in basal ganglia, greater

ferritin, decreased transferrin

(85)

Human Postmortem histochemistry Increased redox-active iron associated with

senile plaques and neurofibrillary tangles

(86, 87)

Human SWI MRI Increased brain and body iron levels (88)

Mouse APP/PS1 mouse model, X-ray

fluorescence microscopy

Iron associated with amyloid β plaques (89, 90)

Multiple sclerosis Human Postmortem histochemistry Increased iron in white and gray matter areas (91, 92)

Human QSM-MRI Higher susceptibility suggesting increased iron

in basal ganglia regions

(93)

Mouse EAE mouse model, MRI, Histochemistry increased brain iron content, iron deposits

found near areas of demyelination and

activated microglia

(94–96)

Parkinson’s

Disease

Human Postmortem histochemistry Higher iron content in substantia nigra

associated with microglia and dopamine

neurons

(97–100)

Human QSM-MRI Greater iron deposition in substantia nigra (101)

Rat 6-OHDA treatment, histochemistry,

immunohistochemistry

Greater iron in substantia nigra, decreased

ceruloplasmin expression

(102)

to localize the sites of brain iron accumulation. One of these
is Scanning Transmission X-ray Microscopy (STXM). In this
technique, at a given energy, the absorbed photon knocks
an element’s 1s electron into the continuum; for iron, this
is known as the K-edge, and it differs for ferrous (Fe2+) in
comparison to ferric (Fe3+) (107). Furthermore, given the plane
polarized nature of light—including X-rays—the ‘optical activity’
in the iron’s electronic structure can be exposed. In this way,
Telling et al. could dissect the redox state and differential
coordination chemistry of iron in amyloid plaques in a mouse
model of Alzheimer’s Disease (108) and in post-mortem tissue
from Alzheimer’s Disease patients (107). Another developing
technique for the high-resolution (∼1–2µm) quantification of
metal ions is microParticle Induced X-ray Emission (µPIXE)
(109). Rather than an X-photon as in STXM,µPIXE uses a proton
(the “particle”) to couple with an energy transition in the metal
ion. Using this approach, Friedrich et al. showed that in mid-
brain (substantia nigra) sections from controls, oligodendroglial
and astroglial cells were iron-rich, whereas in sections from
Parkinson’s disease patients, iron was increased throughout
except for these two cell types (110). In addition, this neuronal
iron increase appeared to be localized in the cytosol indicating
an increase in the labile iron pool. An obvious extension of
these experiments is the comparison between the quantitative
neuronal iron increase revealed by the µPIXE approach and

delineation of the redox state and coordination derived from the
STXMmeasurement.

A question of how increased iron accumulates in the aging
brain still persists. In aged mice, increased expression of the
iron transporter DMT1 have been found (51, 111). Interestingly,
in aged mice, expression of the transferrin receptor decreases
(51). Decreases in the proteins of the transferrin uptake pathway
take place in both aging and inflammation, suggesting again
that ZIP-mediated transport may be more important for iron
accumulation in these states. One noteworthy study injected
young and aged rats with LPS and measured the amount of
iron in the substantia nigra, the brain region most affected by
Parkinson’s Disease. Aged mice had greater substantia nigra
iron content, along with increased ferritin expression, microglia
activation, and lipid peroxidation (52). This study shows that
inflammation may play a role in the brain iron accumulation
that is seen in aging. Expression of heme oxygenase 1 (HO-
1) increases with age. HO-1 is an enzyme that degrades
heme, releasing several molecules including carbon monoxide
and ferrous iron (Fe2+) (53, 54). Higher levels of systemic
inflammation in aging can increase the expression of HO-1 in the
brain, an increase that is co-morbid with cognitive impairment
(112). Therefore, upregulation of HO-1 may be a component of
brain iron accumulation with inflammation that is seen in aged
populations. Another factor that can contribute to brain iron
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accumulation with aging is increased expression of abluminal
hepcidin. In aged mice, hepcidin increases in the cortex. This
results in decreased surface expression of ferroportin, and an
increased cytosolic non-heme iron that would result from the
expected knock down of ferrous iron efflux (113). This may
result in iron accumulation in any of the various cell types
encompassing the cortex. Therefore, increased expression of
hepcidin may contribute to a greater brain iron retention
associated with aging. This retention would predict a decrease in
efflux of iron from the brain, into either the cerebral-spinal fluid,
or by an abluminal to systemic flux of iron via the microcapillary
endothelium of the blood brain barrier. Thus, the mechanisms
for age-related increases of iron content are not clear, but
clearly relevant to the accumulation of dysregulated iron in the
aging brain.

NEURODEGENERATIVE DISORDERS AND
INFLAMMATION

Unhealthy aging, as in neurodegenerative disorder presentation,
is accompanied by elements of an inflammatory response.
As stated earlier, cytokine expression is upregulated in
neurodegenerative disorders. For example, CSF collected
from MS patients showed greater expression of IL-6 and TNFα
compared to patients with non-inflammatory neurological
diseases (114). Also, evidence of an abundance of macrophages
and CD3+ T cells in MS brain tissue samples, including
in patients with progressive disease, indicates continuous
activation of the innate and adaptive immune system throughout
prolongation of the disease (115). Systematic meta-analysis of
several AD patient CSF cytokine studies revealed heightened
expression of TGF-β and MCP-1 in AD patients compared
to controls, suggesting that these cytokines could be used as
biomarkers for this disease (85). Studies have found increased
levels of pro-inflammatory cytokines, such as TNFα, IL-1β,
and IL-6, in the nigrostriatal region of postmortem brains
and in the CSF of patients with PD (86, 87). Serum samples
taken from PD patients display amplified levels of monocytes,
neutrophils, leukocytes, and CRP expression, suggesting the
presentation of a heightened inflammatory response (116).
Inflammatory mediator expression is a well known aspect of
neurodegenerative disease and may be an upstream explanation
for neurodegeneration and cognitive decline.

Glial cell activation and perpetuation of inflammatory
response is prominent in neurodegenerative disorders. In
the postmortem substantia nigra of PD patients, significant
microglial activation has been found, correlating to increased
MHC-II expression (91) (Table 2). MHC-II expressing microglia
were discovered in the substantia nigra of a rat model of
PD, along with CD4+ and CD8+ T cells, suggesting these
microglia are in an environment where they are primed to
present Parkinson’s related antigens for T cell recognition,
furthering disease pathogenesis (92). Microglia activation, release
of cytokines, and induction of neuron death is associated
with AD pathology. Aβ production and failure to clear this
protein are key components in the development of AD. As this

disease progresses, persistent microglia activation and release
of cytokines and ROS increases Aβ generation and decreases
clearance of this harmful protein (97, 117). These examples
of glial cell mediated inflammation advocate for the idea that
glial cells may play a prominent role describing mechanisms of
inflammation induced brain iron accumulation.

Several studies with mice have made clear that inflammation
can have an important effect on neurodegenerative disease
pathogenesis. In a study examining AD, treating wild type ICR
mice with LPS resulted in memory impairment as shown by
the passive avoidance and the water maze tests. These cognitive
deficits were accompanied by Aβ generation in the cortex and
hippocampus and greater neuron death when treating with LPS
(98). Similar results were seen when giving wild type C57BL/6J
mice LPS for a longer period of time, confirming that long-
term chronic inflammation can perpetuate AD pathophysiology
and cognitive impairment (99). Another study investigating how
systemic inflammation can result in neurodegeneration found
that one systemic injection of LPS into adult wild type mice
can produce increased levels of brain TNFα for 10 months.
Researchers in this group found that this increase in brain
TNFα was accompanied by activated microglia in the cortex,
hippocampus, and substantia nigra. Lastly, they discovered
a loss of dopamine neurons that did not become apparent
until 7 months after the initial LPS treatment (100). This
study illustrates that sustained neuroinflammation induced by
a systemic stimulus can be a source of harm to neurons and
can attenuate PD disease progression. Overall, several lines of
evidence state that neurodegenerative disorders present with
systemic and neuroinflammation, butmechanisms describing the
effects of inflammation on disease progression are still lacking
and need continued research.

NEURODEGENERATIVE DISORDERS AND
BRAIN IRON ACCUMULATION

One possible pathway to the neurodegeneration seen
in neurodegenerative disorders is increased brain iron
accumulation (Table 3). Increased disordered iron in brain
tissue can result in greater production of ROS and neuronal
death. Research in this area has been conducted using human
postmortem tissue samples, human brain MRI, and animal
models. Elevated iron levels in postmortem AD brains was first
discovered in 1953 (88). Several studies following confirmed this,
and added that iron colocalizes with the senile Aβ plaques and
neurofibrillary tangles associated with this disorder (93, 118–
120). Histopathological studies on MS patients have also been
completed, finding increased brain iron accumulation in both
gray and white matter regions (101, 121). One specific study
found iron in normal controls near oligodendrocytes and
myelin fibers, but when demyelination in MS patient lesions
was analyzed, iron was more closely associated with microglia,
suggesting dysregulation of iron homeostasis in this disease
(94). In postmortem PD tissue, increased iron levels are found
in the substantia nigra. Specifically, this iron has been detected
associating with microglia and dopaminergic neurons, signifying
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iron deposition in these areas as a contributor to the neuronal
death seen in this disease (95, 96, 122, 123). Excess reactive
iron becomes associated with neuromelanin within neurons
and extracellularly. When these neurons die, neuromelanin
remains in the extra neuronal space and stimulates microglial
release of neurotoxic factors including TNF-a, IL-6, and nitric
oxide. This microglial activation is also stimulated by Aβ-iron
complexes, suggesting a pattern of protein aggregation, metal
complexing, and induction of inflammation (124). This release
of inflammatory factors may function to increase brain iron
accumulation through effects on iron transporters and BBB
permeability, ultimately aggravating the neuropathology.

fMRI methods have been widely used to confirm alterations
in iron concentrations of patients with neurodegenerative
disorders. Iron, in general, is the most abundant paramagnetic
ion in the brain. Different forms of iron in the brain have varying
levels of paramagnetism, altering their magnetic susceptibility,
or response to an applied magnetic field. For example, ferric
iron stored in ferritin, a main source of iron in the brain,
is superparamagnetic. In contrast, although oligodendrocyte-
dependent myelin biosynthesis is strongly iron-dependent, much
of this iron is the ferrous form and is diamagnetic. Thus, white
matter areas of the brain display both dia- and para-magnetism.
One important fact to consider is that MRI methods do not
yet have a way to distinguish different molecular forms of iron,
an area needing further development (102). Another approach
is susceptibility weighted imaging. SWI is an MRI technique
that uses the paramagnetic property of the iron storage protein
ferritin to measure a phase shift relating to the amount of iron
in the tissue, has been used to investigate iron in the brains
of AD, PD, and MS patients. In all disorders, SWI revealed
increased iron content in several brain regions compared to
healthy patients (89, 90, 125, 126). QSM-MRI, a more advanced
and quantitative method used to measure brain iron in vivo,
measures the susceptibility of tissues to paramagnetic species. As
noted, many forms of iron are paramagnetic and therefore this
MRImethod has been accepted as a quantitative method to assess
tissue iron levels including iron content in neurodegenerative
disordered brains. For example, QSM-MRI has demonstrated
increased iron content in MS, PD, and AD brains (127–129).

Animal models of neurodegenerative disorders have been
utilized to determine the involvement of altered brain iron
metabolism in disease progression. Similar to humans, a mouse
model of MS called experimental autoimmune encephalomyelitis
(EAE), displays increased brain iron content, measured by both
MRI and histochemical techniques. These iron deposits were
found near areas of demyelination and activated microglia
(130–132). This highlights a possible mechanism for iron
accumulation and neurodegeneration in MS, which is that
oligodendrocyte death leads to myelin destruction, iron
release from dying oligodendrocytes, subsequent oxidative
damage and neuron death. Injection with 6-hydroxydopamine
(6-OHDA) is a method commonly used to create a mouse
model of PD. Using this model, techniques such as elemental
bio-imaging, immunohistochemistry, and MRI have been
implemented to measure iron levels. Several pieces of evidence
from these studies reveals increased iron content specifically

in the substantia Nigra in the brains of animals modeling
PD (133–135). In this same model, decreases in the iron
efflux protein ferroportin and the ferroxidases hephaestin and
ceruloplasmin were discovered, suggesting iron sequestration
in CNS cells as a mechanism for dysregulated iron homeostasis
in PD (136, 137). Lastly, the APP/PS1 mouse model of AD,
which displays amyloid plaques closely resembling those of
human AD, has been utilized to measure iron accumulation
with neurodegeneration. Using this model, increases in
microglial-iron retention and iron surrounding Aβ plaques
was determined (138, 139). Altogether, there is ample research
providing evidence for a relationship between brain iron
accumulation and neurodegenerative disorders. Mechanisms
for what triggers this iron accumulation need ongoing
study to fully understand and prevent neurodegenerative
disease propagation.

MECHANISMS FOR BRAIN IRON
ACCUMULATION WITH INFLAMMATION

Much is known separately about the processes of inflammation
and iron metabolism in healthy aging and neurodegenerative
disease progression. What is still unclear is whether there is
a cause and effect relationship between these two phenomena
that can explain the cognitive decline that is present in both
healthy and diseased aging brains. Considering the information
presented above, two mechanisms explaining how brain iron
accumulation occurs in states of inflammation will be discussed.

Inflammation and Iron Transporters:
Transcellular Brain Iron Accumulation
A likely mechanism for increased BIA in an inflammatory
state is functional changes in iron uptake and efflux proteins
(Figure 3). Specific inflammatory mediators are known to
upregulate expression of iron metabolism related proteins. Also,
a noteworthy study revealed that treating hippocampal neurons,
cortical astrocytes, and cortical microglia with IL-6, TNFα, and
LPS increases expression of DMT1 and decreases expression
of Fpn1. The changes in these proteins was correlated to
greater iron uptake into the hippocampal neurons and cortical
microglia (140). Transgenic mice expressing IL-6 in astrocytes
present with increased iron deposition in the cerebellum, greater
ferritin expression, and decreased transferrin expression (141).
Lastly, microglia are known to take up NTBI in response to
LPS, which occurs through increased DMT1 expression (142).
This research demonstrates that inflammatory mediators have
the ability to alter iron-related protein synthesis and resulting
iron accumulation, although the mechanisms behind this are
not known. The decrease in FPN expression in response to
inflammation begs the question of how would abluminal iron
efflux from BMVECs occur. Stated before, inflammation induced
hepcidin would likely decrease expression of FPN in BMVECs.
One study found that mouse astrocytes overexpressing hepcidin
reduced BMVEC expression of TfR1 and FPN, suggesting
reduced iron flux across the BBB (143). Although this study
lacks functional determination of iron flux across BMVEC and
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determination of non-canonical iron accumulation pathways,
it highlights the ability of hepcidin to affect proteins involved
with iron accumulation. Another report provided further insight,
showing that glia grown in contact with BMVEC released
hepcidin that knocked down BMVEC FPN-dependent iron efflux
(144). Certainly, as inflammation is known to increase hepcidin,
more research is needed to determine if inflammation increases
or decreases iron flux across the BBB. While this information is
provided in these cell types, research into how IL-6, and other
significant inflammatory signals, affect iron uptake transporters
in BMVECs is lacking. As mentioned previously, brain iron
accumulation must occur at the BMVECs of the BBB, therefore
it is extremely essential to understand how iron transporter
trafficking is affected in this cell type.

As noted throughout this article, iron uptake into BMVECs
is mostly mediated through the ZIP proteins, which stands
for zinc-regulated, iron-regulated transport proteins (Figure 3).
The ZIP protein family is very large, but ZIP8 and ZIP14
are the most homologous with 50% amino acid similarity
(145). Structurally, ZIP proteins have 8 transmembrane domains,
extracellular N- and C-termini, and 4 intracellular loops. The
metal binding site is within transmembrane domain 5 and is
conserved as HEXPHEXGD, except for in ZIP8 and ZIP14
in which the first histidine is changed to a glutamic acid.
This is predicted to broaden the metal ion substrate range to
include iron, zinc, manganese, and cadmium, unlike other ZIP
proteins (145). Both of these proteins are expressed (145, 146).
Both ZIP8 and ZIP14 are expressed in BMVEC, as shown by
qPCR and immunologic analyses. Data from the same group
demonstrated that LPS induces localization of both ZIP8 and
ZIP14 to the BMVEC cell surface plasma membrane, showing
that inflammation can alter localization of iron transporters
(147). As LPS induces downstream cytokine release, it is likely
that cytokines such as IL-6 and TNFα have similar effects on
these proteins in BMVECs, but this hypothesis has not been
tested. Research from multiple groups has revealed that IL-6
can increase expression of the both uptake proteins in liver
hepatocytes and SH-SY5Y cells, a neuronal cell line (148, 149).
Also, ZIP14 is known as the primary transporter facilitating zinc
uptake in hepatocytes, which is regulated by the cytokine IL-1β
(150). It has also been discovered that LPS treatment increases
ZIP14 mRNA and protein expression, which was correlated
to decreased serum zinc and increased liver zinc levels (151).
As serum hypozincemia and hypoferremia both occur with
inflammation, it is possible that inflammation is leading to
ZIP14-mediated brain iron accumulation, as in the liver. Most
research on inflammation and the ZIP proteins focuses on ZIP14
because of its direct relationship to IL-6, but ZIP8 can also be
affected by inflammatory stimuli. ZIP8 transcript upregulation
and amplified zinc uptake occurs in response to TNFα treatment
in primary human lung epithelia and human immortalized
lung epithelial cells (152). Treating synovial fibroblasts with
TNFα and IL-1β induced higher zinc concentrations and greater
expression of both ZIP8 and ZIP14, which was determined
to be dependent on NF-κB signaling downstream of HIF-1α
activation (153). ZIP8 expression is induced by the cytokine,
IFN-γ, in intestinal epithelial cells, further propagating the

changes in metal homeostasis seen in Crohn’s Disease (154).
This accumulation of evidence relates inflammation and the ZIP
proteins to processes in numerous cell types, tissues, and diseases.
This suggests that inflammation may regulate the ZIP proteins
in the context of the brain, allowing for greater brain iron
acquisition, oxidative stress, neuronal damage, and ultimately
cognitive decline.

Inflammation and Blood Brain Barrier
Permeability: Paracellular Brain Iron
Accumulation
Changes in BBB permeability in response to inflammatory
stimuli may be a significant mechanism describing BIA with
inflammation (Figure 3). Permeability of the BBB refers to how
well materials are able to cross, with increased permeability
meaning that the barrier is less intact and more accessible to
substance transport. Reviewed earlier, the BBB is composed
of a neurovascular unit encompassing BMVECs, astrocytes,
microglia, and neurons. Barrier permeability is controlled by
tight junctions (TJ) and adherens junctions (AJ) which form
between the BMVECs of the BBB. When these junctions are
strong and intact, the brain’s protection from systemic toxins is
increased, but when they are broken down the brain is exposed
to materials from the rest of the body. TJ and AJ of the cellular
cytoskeleton are composed of multiple proteins converging to
control permeability. TJ proteins highly expressed in BMVECs
comprise claudin-3, claudin-5, occludin, and zona occludens
1 (ZO-1). AJ proteins expressed in BMVECs include VE-
cadherin and β-catenin (155). Organization of these junctions
in BMVECs is shown in Figure 4. Junctional proteins in many
different cell types can be greatly affected by inflammation
and various disease states. IL-6 receptor trans-signaling in
human umbilical vein endothelial cells (HUVECs) results in a
loss of ZO-1 and VE-cadherin localization, determined to be
induced by STAT phosphorylation of these proteins (156). IL-
6 incubated cerebral capillary endothelial cells (cEND) express
less claudin-5, occludin, and VE-cadherin, and have reduced
barrier functionality (157). Evidence demonstrates that the acute
phase protein CRP plays a role in barrier breakdown. CRP
disrupted TJ rearrangement and function of a co culture BBB
model by activating a kinase that phosphorylates the myosin-
light chain (158) (Table 4). Also, the blood retinal barrier (BRB)
was disrupted by CRP, due to reduced expression of ZO-1 and
occludin in retinal pigment epithelium (159). Oxidative stress
and ROS can lead to BBB breakdown, as actin is glutathionylated
in this cellular state. Actin glutathionylation limits the rate
and extent of actin polymerization, in turn affecting TJ protein
arrangement (160, 161). BMVECs treated with TNFα express
less VE-Cadherin, occludin, and claudin-5. This correlated to
increased expression of NADPH-oxidase subunits, which was
shown to be responsible for the loss of TJ proteins and highlights
the effect of oxidative stress on BBB integrity (162). Lastly,
synergistic effects of both IL-6 and TNFα can affect BBB
through decreased expression of ZO-1, claudin-5, occludin, and
VE-Cadherin (163). Evidence presented above establishes that
systemic inflammatory factors and oxidative stress can induce
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FIGURE 3 | Mechanisms for brain iron accumulation in a state of chronic inflammation. In a state of chronic inflammation, systemic inflammatory factors increase

plasma membrane iron transporter occupancy. These include the ferrous iron uptake transporters, ZIP8 and ZIP14, and the sole iron efflux transporter Fpn. Note that

these changes occur at both the apical (blood) and basolateral (brain) side of the endothelial cell blood-brain barrier in response to systemic and abluminal signals.

This image was created with Biorender.com.

FIGURE 4 | Endothelial junctions at the Blood Brain Barrier. Illustration depicting tight junctions and adherens junctions in brain microvascular endothelial cells of the

BBB. Inducers of BBB breakdown are shown both in the systemic circulation and brain interstitium. TJ and AJ proteins are depicted between the two endothelial

cells. Inducers shown on either side of the BBB make modifications such as phosphorylation, or glutathionylation, that have downstream effects on TJ/AJ localization

and expression. This alters BBB integrity and barrier leakiness. This image was created with Biorender.com.
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TABLE 4 | Cytoskeletal modifications leading to changes in TJ/AJ function and barrier permeability.

Inducer Modification Result References

CRP Phosphorylation of myosin light chain Decrease in barrier resistance

ZO-1 and occludin rearrangement

(142)

Glutathione, Oxidative

Stress

Actin glutathionylation Disrupted actin polymerization

Altered TJ protein anchorage

(144, 145)

Glutamate, NMDAR and

AMPAR activation

Occludin phosphorylation and

dephosphorylation

Occludin rearrangement

Increase in barrier leakiness

(149)

MCP-1/CCL2 TJ and myosin light chain

phosphorylation by RhoA kinase

Rearrangement of ZO-1, claudin-5,

occluding

Disrupted actin assembly

(150, 151)

IL-6 JAK/STAT phosphorylation of ZO-1

and VE-Cadherin

Loss of ZO-1 and VE-Cadherin

localization

(140)

TNFα NADPH Oxidase-Dependent ROS

Generation

Reduced expression of VE-Cadherin,

occludin, claudin-5

(146)

endothelial cell barrier breakdown, but factors from within the
brain can have a similar effect.

Reactive astrocytes release factors that can have harmful
effects on the BBB. In normal conditions, astrocytes take
up glutamate from BMVECs, but in an inflammatory state,
this function is disrupted and instead they release glutamate
(164). Activation of both the NMDA and AMPA receptors
is involved in glutamate-induced BBB breakdown. When
glutamate binds to the NMDA receptor on BMVECs, Src
kinases are activated, which phosphorylate tyrosine residues
of occludin. When glutamate binds to the AMPA receptor, a
PKCη phosphatase is activated which dephosphorylates serine
and threonine residues of occludin. In both cases, occludin is
removed from normal positioning, allowing for greater barrier
leakiness (165). CCL2, or MCP-1, a chemokine released by
astrocytes in inflammatory conditions, facilitates breakdown of
TJ and migration of leukocytes across the BBB through changes
in expression and localization of ZO-1, claudin-5, and occludin
(166, 167). Astrocyte-derived vascular endothelial growth factor
A (VEGF-A) breaks down the BBB by targeting claudin-5 and
occludin, discovered using VEGF-AKO astrocytes (168). Overall,
signals coming from both the systemic circulation and the brain
interstitium can alter BBB integrity (Table 4).

The BBB is compromised in many diseases of
neuroinflammation. In inflammatory diseases, a more permeable
barrier would be harmful because macrophages and T cells
harboring antigens to the disease would more easily pass
through into the brain. This, in turn, activates glial cells, induces
cytokine release, and propagates neuroinflammation. In HIV
encephalitis, a complication of HIV associated with cognitive
dysfunction, BBB integrity is lost. In this disease, this allows
for accumulation of activated, HIV-infected macrophages and
induction of reactive astrocytes, the mechanism behind this
being significant loss of the TJ proteins occludin and ZO-1 (169).
Systemic inflammatory pain rat models, including injection of
formalin, carrageenan, and complete Freund’s adjuvant (CFA)
display increased BBB permeability. In both the carrageenan
and CFA injected rats, this was due to decreased expression
of ZO-1. Carrageenan and CFA inflammatory pain models are

considered longer-term than the formalin model, suggesting that
BBB breakdown is induced with chronic inflammation (170).
Loss of BBB integrity is an integral aspect of neurodegenerative
disorders. In EAE mice, BBB breakdown increases with disease
severity, encompassing disruption of ZO-1 and actin in the
spinal cord and BMVECs of the BBB (171). Results of this
study correlate to what has been discovered in humans with
MS, demonstrating significant BBB defects in this disease
(172–174). BBB abnormalities have also been discovered in AD
cases. Leakage of plasma proteins into the brain that associate
with senile plaques was found in postmortem AD brains,
indicating increased BBB permeability (175, 176). Also, an MRI
technique called dynamic contrast-enhanced MRI (DCE-MRI),
found increased extravasation of a gadolinium bolus into the
CSF of AD patients compared to controls, again indicating
BBB breakdown in this disease (177). Overall, many lines of
evidence confirm alterations in the BBB protein architecture
in inflammatory conditions and suggest a relationship between
inflammation, BBB integrity, and cognitive decline. What has
not been examined is if these changes in BBB permeability can
lead to increased brain iron accumulation. This finding would
link the inflammation presented in neurodegenerative disorders
to brain iron accumulation, downstream oxidative stress, and
cognitive decline, an important connection to be made.

THERAPEUTIC INTERVENTIONS FOR
INFLAMMATION-INDUCED BRAIN IRON
ACCUMULATION

Several different approaches can be taken to treat BIA induced
by inflammation. Targets include oxidative stress, iron itself, and
inflammatory mediators. Antioxidants have shown promise as
therapeutics for the oxidative stress presented in healthy aging
and neurodegenerative disease. For example, N-acetyl cysteine
(NAC), a precursor to cysteine known to amplify glutathione
levels, increased the levels of antioxidants, decreased the amount
of prooxidants, and decreased expression of IL-6, TNFα, and
IL1β in aging rat brains (178). Long term oral administration of
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NAC markedly reduced dopaminergic neuronal loss, oxidative
stress, and motor abnormalities in a mouse model of PD (179,
180). N-acetyl cysteine had similar effects in human patients with
PD, increasing dopamine transporter binding as a biomarker for
PD pathology (181). This result demonstrates that antioxidants
have therapeutic qualities to prevent the oxidative stress seen
with neurodegeneration. N-acetyl cysteine was also discovered
to prevent manganese toxicity in SH-SY5Y cells, a dopaminergic
cell line, indicating a direct effect of antioxidants on metal
toxicity (182). Non-steroidal anti-inflammatory drugs (NSAID)
are another possible therapeutic intervention for inflammation-
induced BIA. Ibuprofen treatment led to a reduction of
plaque-associated microglia and a corresponding attenuation
in proinflammatory cytokine levels in brains of Tg2576 mice
overexpressing human amyloid precursor protein (APP), a
mouse model of AD (183). A conjugate of glutathione and
Ibuprofen attenuated AD characteristics, specifically loss of Aβ,
in a rat model of AD, suggesting that antioxidant and NSAID
together can be used to increase efficacy in neuroprotection (184).

In addition to these off-the-shelf small molecule anti-oxidants
are ones designed based on them, eg, idebenone, a congener
of ubiquinone or co-enzyme Q (CoQ) (185–187). These are
quinone-based molecules with redox properties comparable to
ascorbic acid and vitamin C. Although CoQ and idebenone
have exhibited some therapeutic promise, eg., as in a Phase III
clinical trial of the latter in the treatment of Duchenne muscular
dystrophy (188), there are no approvals for use although in some
European countries it is available in special cases (189). With
respect to the use of idebenone in the treatment of cognitive
decline, the results are unclear; an earlier study failed to find any
benefit in the treatment of Alzheimer’s disease (AD) (190) while a
more recent one, employing an idebenone nanorod formulation
taken orally, demonstrated efficacy in a mouse model of AD
(191). This result indicates that as with any potential therapeutic,
efficacy is often more a matter of delivery than function at the
cell level.

Iron chelation could be useful to prevent the downstream
BIA caused by inflammation. Deferiprone has shown promise
in treating PD, reducing iron content in the caudate and
dentate nuclei (192). Deferiprone shows efficiency at reducing tau
phosphorylation and Aβ accumulation in a rabbit model (193).
An issue with iron chelators is that because theymust be delivered
systemically, they are likely to affect iron levels in the systemic
circulation. This would be damaging to elderly populations and
those with chronic disease due to the anemia and iron deficiency
seen in aging and inflammatory disorders. Treating with an iron
chelator would be tackling the secondary harmful event, the iron
accumulation, rather than the inflammation itself. A primary
limitation of iron chelators such as deferiprone and deferasirox
(Exjade@) is their affinity for iron. The stability constants of
their complexes with iron exceed 1025, a value that indicates
either would sequester essentially all of the iron in a cell or
organism. Thus, while useful in the treatment of iron overload
as in hemochromatosis (194), they are contraindicated for the
management of the progressive iron accumulation downstream
of chronic inflammation (195). A cautionary example is in
the use of deferiprone for treatment of Friedreich’s Ataxia,

an autosomal recessive disorder resulting in the reduction of
frataxin essential to the function of all iron-containing enzymes
in the mitochondria. In this disease, iron accumulates in the
mitochondria, a pathology logically addressed by iron chelation.
Not surprisingly, deferiprone treatment exacerbates the iron
enzyme deficiency, out-competing the cell’s iron metabolism
machinery for this essential co-factor (196).

Clearly, iron chelation and anti-oxidant approaches have
proven frustrating in that the results have been variable, and
in some cases, contra-indicating. On the other hand, there is
accumulating evidence that a combination therapy may hold
promise. For example, combination of deferiprone and N-
acetyl cysteine was efficacious in suppression of the brain iron
accumulation, mitochondrial dysfunction and reduced dendritic
spine density in mice with chronic brain iron overload (197).
An excellent argument has been given as to why managing
neuronal iron and redox biology is likely to be a productive
pharmacologic approach (198). Indeed, recent reports of the
efficacy of a quinazolinone derivative, PBT434, in a Phase I
trial involving Multiple System Atrophy indicate the potential of
such chemical platforms (199). PBT434 suppresses α-synuclein
toxicity in models of Parkinson’s disease (200) and MSA (201).
PBT434 has a moderate affinity for both ferrous and ferric iron
(stability constants∼107); has a redox potential that supports cell
anti-oxidant activity; and exhibits facile equilibration across the
BBB without disrupting iron homeostasis in BMVEC (200, 202).
In short, PBT434 reflects the chemical properties that appear
most desirable in a rationally developed pharmaceutical approach
to managing the cell dysfunction associated with BIA.

Ferroptosis is a more recently identified form of iron-
dependent cell death. This type of cell death is induced by
RAS-selective lethal compounds (RSLs), which were found
to be selectively lethal to oncogenic RAS-mutant cell lines.
Ferroptosis is divergent from other apoptotic pathways because
it is associated with increased levels of ROS and is prevented
by iron chelation, suggesting dependence on iron and oxidative
stress. Erastin and RSL3, two important RSLs, can induce
oxidative, iron dependent cell death (203). Glutathione can
prevent this form of cell death, as depletion of a glutathione
peroxidase and subsequently glutathione is a mechanism behind
ferroptosis induction (204). Deferoxamine, another high-affinity
iron chelator, is also efficient at preventing ferroptosis (205). As
inflammation can result in oxidative stress, it is possible that
inflammation-induced BIA can result in cell death by ferroptosis,
but more research is needed to confirm this. If ferroptosis is
induced by inflammation, glutathione and iron chelation may
work as therapeutics for the resulting BIA.

Of course, all of the above pharmacologic strategies address
the consequences of inflammation-dependent BIA and not the
inflammatory process nor the mechanism(s) underlying the
BIA itself. In regard to the latter, the fact is that the brain’s
iron content does increase. This can result from an increase
in iron trafficking from the circulation at the BBB; a decrease
in the rate of diffusive iron efflux at the cerebrospinal fluid
barrier; or a combination of these changes in metabolite flux.
This review has focused primarily on the latter reflecting the
fact that accumulating evidence supports the premise that both
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transcellular and paracellular, apical to basolateral brain iron
uptake is increased in an inflammatory state (Figure 3). This
model suggests alternatives to the iron chelation and anti-oxidant
approaches, namely, modulation of the activity of the iron
efflux protein, FPN, and maintenance of the tight junctions that
suppress paracellular blood-to-brain leakage.

A rational way of modulating the functional activity of Fpn
is via managing its residence time in the plasma membrane. As
noted, FPN membrane occupancy is regulated by its interaction
with hepcidin. Systemic hepcidin regulates the function of FPN
found at the apical, blood membrane of all cells, including
BMVEC; glial cell-secreted hepcidin regulates FPN basolateral
localization (Figure 3). Thus, conceptually, a hepcidin antagonist
functions to up-regulate apical FPN-dependent BMVEC iron
efflux while a basolateral hepcidin agonist would suppress iron
efflux into the abluminal space. Both such compounds are in
development. For example, a Phase I trial of an antagonist in
the treatment of patients with an anemia caused by elevated
circulating hepcidin has shown considerable clinical benefit
(206). Such treatment increases the flux of iron into circulation
from cells, eg, apical iron efflux from BMVEC. With respect
to hepcidin “agonists” the most promising are not agonists,
per se, but hepcidin-mimics, “mini-hepcidins” (MH) (207, 208);
MH are poly-peptides including 7–10 residues of the hepcidin
sequence. Several have been used in pre-clinical studies (209, 210)
including a recent report of improvement in a mouse model of
β-thalassemia major (211). The objective of targeting a hepcidin
agonist to the basolateral-localized FPN—indeed, the FPN
localized to any membrane facing the brain’s interstitium—is its
delivery across the BBB. The molecular bases for pursuing this

rational pharmaceutic are in hand given the extensive study of
both MH and methodologies for accessing the abluminal space.

Clearly, the mechanisms underlying inflammation-induced
BIA and its link to neurodegenerative disorders remain a critical
area of research in two areas: molecular cell and correlated animal
model studies to interrogate the mechanisms underlying the
increase in brain iron specifically; and use of these experimental
paradigms to develop a mechanistic understanding underlying
the efficacy of small molecules that support a remediation of the
cell misfunction revealed in these model studies. One objective
of this review was to provide likely targets for this future
drug discovery. The bottom line is that, at present, there are
no governmentally-approved pharmacologic approaches for the
treatment of BIA or the associated neuronal pathology.
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