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The Vibrio vulnificus (V. vulnificus) hemolysin (VVH) is a pore-forming cholesterol-
dependent cytolysin (CDC). Although there has been some debate surrounding the in
vivo virulence effects of the VVH, it is becoming increasingly clear that it drives different
cellular outcomes and is involved in the pathogenesis of V. vulnificus. This minireview
outlines recent advances in our understanding of the regulation of vvhA gene expression,
the biological activity of the VVH and its role in pathogenesis. An in-depth examination of
the role of the VVH in V. vulnificus pathogenesis will help reveal the potential targets for
therapeutic and preventive interventions to treat fatal V. vulnificus septicemia in humans.
Future directions in VVH research will also be discussed.

Keywords: Vibrio vulnificus hemolysin (VVH), cholesterol-dependent cytolysin (CDC), biological activity, gene
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INTRODUCTION

V. vulnificus is an opportunistic human pathogen commonly found in estuarine environments.
Human infections usually occur following the consumption of contaminated seafood or via an open
wound exposed to a contaminated water source (1). Consumption of contaminated raw oysters can
result in rapidly fatal septicemia in susceptible individuals, with V. vulnificus having the highest
fatality rate among all food-borne pathogens (2). However, many aspects related to the biology,
genomics, and virulence capabilities of V. vulnificus remain elusive or poorly understood (1, 3).
During the last decade, research has mainly been focused on the pathogenic mechanisms and
virulence factors adopted by V. vulnificus (2, 4). The capsule has proven to be a critical virulence
factor, with non-encapsulated V. vulnificus isogenic mutants readily phagocytosed by host immune
cells (5). The V. vulnificus multifunctional-auto processing repeats-in-toxin (MARTX) toxin is also
likely to be critical to the success of infection. Supporting this, Gavin et al. showed that the MARTX
toxin is essential for bacterial dissemination from the intestine (6), while Jones and Oliver
demonstrated that the overwhelming tissue destruction that characterizes V. vulnificus infections
contracted either via ingestion or wound infection likely results from the powerful collagenase,
metalloproteases, and lipases/phospholipases produced by the bacterium (4). Moreover, MARTX is
also known to take part in resistance to phagocytosis, cell destruction, and sepsis (7, 8).

Although the VVH belongs to the cytolytic pore-forming family of toxins (PFTs), all of which
cause cytolysis in a variety of mammalian cells, VVH as a virulence factor is under debate. An earlier
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study has shown that disruption of hemolysin gene vvhA had no
effect on the virulence of V. vulnificus in a mouse lethality model
(9). However, other studies have confirmed that vvhA gene is
substantially regulated and expressed in vivo and is likely to play
important roles in the pathogenesis of V. vulnificus (10, 11). For
example, V. vulnificus is known for a siderophilic bacterium and
iron as one of the factors that regulate vvhA expression (12–14).
Fan JJ et al. indicate that there was a small difference in mortality
when wild type and vvhA-deficient mutant strains were force-fed
to mice, but VVH seemed to be important for causing damage in
the alimentary tract of the mice (15). Moreover, another study
suggested that in addition to the MARTX toxin, the VVH may
contribute to bacterial invasion from the intestine into the
bloodstream and other organs (16). These results would suggest
that VVH may not be responsible for the lethality of V. vulnificus,
but may be a contributor to the tissue damage in pathogenesis.
Moreover, other proposed virulence factors characterized to date
are not sufficient to explain the acute process of V. vulnificus
septicemia. The vvhA gene is found in most V. vulnificus isolates,
which was often used as a detecting marker for V. vulnificus (17,
18). However, unlike other Vibrio spp. such as V. cholerae and V.
parahaemolyticus, where distinct molecular attributes, such as
toxin genes, are normally associated with clinical strains (19,
20). More researchers contend that infections may be driven
more by factors associated with host susceptibility than the
virulence of V. vulnificus (1, 12). Besides V. vulnificus, the
hemolysins produced by Vibrio cholerae and Gram-positive
species such as Streptococcus pneumoniae, Streptococcus suis,
Bacillus Cereus, have been extensively reviewed (21–23). Like
most Gram-negative bacteria, the X-ray crystal structure of
VVH remains unknown. However, the mechanisms of pore
formation by VVH have been studied in crucial amino acid
residues and domains related to the activity of VVH (24–27).
Molecular architecture and functional analysis of V. cholerae
cytolysin (VCC) revealed that VVH has a similar cytolysin
domain and a lectin-like domain of VCC (28). However, although
these pore-forming cholesterol-dependent cytolysins share
structural similarity, they drive divergent cellular outcomes during
pathogenesis. In comparison to PFTs in Gram-positive bacteria,
more research is needed to clarify the role of VVH in pathogenesis,
especially in infections with raw oyster consumption, which can
produce rapidly fatal V. vulnificus septicemia.

In this review, we explore the features of VVH in its biological
activity, regulation of vvhA expression, and possible roles in
pathogenesis. Future directions in VVH research was also
discussed in this review. This in-depth evaluation of the
contribution of the VVH to V. vulnificus pathogenesis may aid
in the development of novel therapies aimed at treating and
preventing sepsis in humans.
EFFECTS OF THE VVH ON EUKARYOTIC
CELLS

VVH is a 51-kDa water-soluble protein thought to be a member
of CDC family of PFT; its hemolytic activity was inhibited by
Frontiers in Immunology | www.frontiersin.org 2
adding cholesterol or divalent cations (29). The VVH causes
necrosis, apoptosis, pyroptosis, and lysis in a range of host cell
types. First described as a hemolysin, the VVH causes hemolysis
of red blood cells in many species, with human erythrocytes
being the most susceptible. Although active against erythrocytes
from sheep, horses, cows, rabbits, and chickens, the amount of
VVH required to cause 50% hemolysis under identical
conditions differed between species, suggesting that erythrocyte
susceptibility may be closely associated with the binding ability
of the VVH and erythrocyte membrane stability (30). In vitro
studies have illuminated the effects of the VVH in various host
cell types, including human epithelial cells, human umbilical vein
endothelial cells (HUVECs), mice macrophages and
lymphocytes (Figure 1), and commonly used cell lines, such as
Chinese hamster ovary (CHO) cells (26, 27). However, similar
cytotoxic effects have not been reported in human platelets
or monocytes.

While in vitro studies have revealed the comprehensive effects
of the VVH on eukaryotic cells, researchers have also examined
the impact of host effectors on the activity of the VVH.
Cholesterol is well known for its ability to inactivate the VVH
through oligomerization of the toxin monomer (29). However,
there are some reports that the VVH recognizes and binds to
certain kinds of carbohydrates (38, 39), which suggested that
cellular cholesterol is not a receptor for VVH. It may be a trigger
factor of conformational changes frommembrane bound form to
pore-form (39). Moreover, although two studies indicate VVH
induces cell death via lipid raft-mediated signaling pathway in
human intestinal epithelial cells (31, 32), there is no evidence that
the VVH localizes at lipid raft so far. One study shows that
binding of VVH to target cells does not change by the methyl-
beta-cyclodextrin (MbCD) treatment (40), and the author
subsequently indicates that MbCD induces oligomerization of
VVH by binding to VVH directly (41).

Besides that, several other factors have also been reported to
affect the cytotoxicity of the VVH. Although albumin affects the
activity of many different bacterial toxins, Choi et al. reported that
neither human serum albumin (HAS) nor bovine serum albumin
(BSA) affected vvhA transcription or the growth of V. vulnificus.
However, both HSA and BSA stabilized VVH and delayed its
inactivation by oligomerization, thus enhancing VVH activity
(42). Blood lipoproteins have also been shown to be an
important defense factor against bacterial infection. Park et al.
found that low density lipoprotein inactivates the VVH
through the oligomerization of the toxin monomer (43). It was
widely reported that calcium prevented hemolysis caused by a
variety of bacterial hemolysins (44). Jin-Woo Park showed that
calcium exerts its major inhibitory effect onV. vulnificus cytolysin-
induced hemolysis as an osmotic protectant (45). Consequently,
trifluoperazine, a calcium-calmodulin antagonist, was found to
block the hyperpermeability induced by V. vulnificus cytolysin in
an in vitromodeled endothelium and prevented the deaths of mice
(46). Additionally, a recent study showed that melatonin, an
endogenous hormone molecule, inhibits apoptotic cell death
induced by VVH via melatonin receptor 2 coupling with NCF-1
(47).While promising, these results emphasize the fact that we still
October 2020 | Volume 11 | Article 599439
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have much to learn about how the VVH displays its cytotoxic
effects in vivo, knowledge that will provide important insights into
the potential for development of therapeutic strategies and agents
to combat V. vulnificus infection.

Of special interest is the question of whether the VVH
contributes to bacterial invasion from the intestine into the
bloodstream and other organs by interacting with host cells.
Intestinal epithelial cell death is a host defense response that
eliminates damaged cells as well as pathogens to maintain gut
homeostasis. However, many bacterial pathogens eventually
elicit epithelial cell death and disrupt the gut barrier function
to propagate persistent bacterial colonization. A study performed
in human intestinal epithelial cells (INT-407) showed that
infection with low doses of recombinant VVH protein induces
necrotic cell death and apoptosis. The study further
demonstrated that (r)VVH induces NF-kB-dependent
mitochondrial cell death via lipid raft-mediated reactive
oxygen species production by the distinct activation of PKCa
and ERK/JNK in intestinal epithelial cells (31). Besides VVH has
the ability to induce two general modes of cell death, apoptosis
and necrosis mentioned above; another study indicated that the
VVH induced autophagy-related cell death through the lipid
raft-dependent c-Src/NOX signaling pathway in human
intestinal epithelial Caco-2 cells. This study further showed
that, in an in vivo model, VVH increased autophagy activation
and paracellular permeabilization in the intestinal epithelium,
indicating that VVH plays a pivotal role in the pathogenesis and
dissemination of V. vulnificus via the upregulation of autophagy,
which may provide potential therapeutic targets for strategic
modulations of V. vulnificus infections (32).

V. vulnificus has been shown to produce sufficient VVH in the
small intestine to accelerate invasion into the bloodstream (16).
Frontiers in Immunology | www.frontiersin.org 3
Once V. vulnificus is in the bloodstream, the VVH interacts with
erythrocytes, white blood cells, and vascular endothelial cells.
In fact, a recent study has shown that VVH together with
MARTX mediates erythrocytes lyses ex vivo and, therefore,
could contribute to the bacterial growth in human blood that
provokes sepsis (13). Researchers observed in vitro proliferation
of lymphocytes upon re-stimulation of recombinant VVH
leukocidin domain (rL/VvhA)-primed splenocytes with
formalin-inactivated VVH toxin, while co-expression of T-cell-
polarizing cytokines (interferon-g, interleukin (IL)-12, and IL-4)
was detected in the cell culture supernatant (35). In an in vitro
study, the recombinant VVH induces apoptosis in HUVEC cells
via caspase-9/3-dependent pathway (33). The VVH can also
spread to other tissues via the bloodstream. Macrophages are
large phagocytes found in almost all tissues and play a critical
role in increasing inflammation and stimulating the immune
system. Claudia Toma et al. indicate that VVH-stimulated
NLRP3 Inflammasome activation of bone marrow derived
macrophages (BMM), which was induced by TLR and
nucleotide-binding oligomerization domain 1/2 ligand-
mediated NF-kB activation (34). Recently, analysis of VVH-
induced inflammation in mice showed that the VVH induces
inflammatory responses in RAW264.7 macrophages via calcium
signaling and causes inflammation in vivo (48).
REGULATION OF VVH GENE
(VVHA) EXPRESSION

In this review, we will outline the roles of environmental and host
factors and global regulators in the regulation of the vvhA in
terms of expression and transport (Figure 2). Cyclic-AMP
FIGURE 1 | Major activity of VVH’s interactions with host cells and a future perspective of in vivo studies involved in pathogenesis. Major activity and mechanism of
VVH’s Interactions with host cells mainly focus on intestinal epithelial cells (31, 32), vascular endothelial cells (33), macrophages, (34) and lymphocytes (35), which are
possibly involved in bacterial invasion from intestine to blood stream and other organs. However, the effects of VVH on platelets have not been reported. The animal
models that mimick human infection will provide a perspective to elucidate the role of VVH in pathogenesis, mainly including the National Institute on Alcohol Abuse
and Alcoholism (NIAAA) model (36) and a hepcidin-deficient mouse model (37).
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(cAMP) and bacterial cyclic-AMP receptor proteins (CRPs)
represent a classic regulatory system that has been adapted to
respond to distinct external and internal signals in many bacteria
(50). Hemolysin production in V. vulnificus increased after the
addition of cAMP but was undetectable in a putative crp mutant,
suggesting that vvh expression is positively regulated by cAMP-CRP
in V. vulnificus (49). In V. vulnificus, cAMP can be produced from
adenylate cyclase-encoding gene cya. Hemolysin and protease
production, motility, and cytotoxicity were all negatively affected
by mutation of cya (51). CRP activates vvhBA transcription in V.
vulnificus by sensing the depletion of specific nutrients, possibly as a
result of increased cAMP levels under glucose starvation (52). In
Escherichia coli, glucose starvation results in an increase in
intracellular cAMP concentrations in response to the altered
phosphorylation state of the phosphotransferase system; however,
this is difficult to reconcile with observations that the glucose
phosphotransferase system remains saturated when intracellular
cAMP concentrations increase (53). The regulation of vvhBA
expression can be more easily examined in the intestine because
the availability of free glucose is quite limited. V. vulnificus is a
ferrophilic bacterium that requires high levels of available iron for
growth (12, 13). Although iron can repress vvhA transcription via
Frontiers in Immunology | www.frontiersin.org 4
the ferric uptake regulator (Fur), it increases extracellular VVH
secretion through increased transcription of pilD, which encodes
PilD, a component of the type II general secretion system
responsible for extracellular VVH secretion (14). But there are
infection models that suggest that high iron levels (susceptible
patients) could also increase vvhA transcription (13). So, the
regulation of this gene expression should be more complex.

In many pathogenic bacteria, including V. vulnificus, quorum
sensing (QS) is one of the most important cellular regulatory
cascades. QS is responsible for cell–cell communication and is
mediated by a small diffusible molecule called autoinducer 2
(AI-2). LuxO is a central response regulator of the QS circuit in
V. vulnificus, with disruption of luxO shown to increase the
expression of smcR, crp, and luxS, which encodes the autoinducer
2 synthetase (54). In comparison, SmcR regulates cytotoxicity in V.
vulnificus via QS signaling by repressing HlyU, which positively
regulates vvhA expression (55). Temperature is one of the important
host parameters regulating the expression of virulence factors in
bacteria. The histone-like nucleoid structuring protein (H-NS)
global regulator is known to play a crucial role in the expression
of temperature-dependent virulence factors. A study on the role of
H-NS in temperature-dependent regulation indicated that hns
FIGURE 2 | The roles of environmental and host factors and global regulators in the regulation of the VVH expression. CRP activates vvhBA transcription in
V. vulnificus by sensing the depletion of specific nutrients, possibly as a result of increased cAMP levels under glucose starvation (32). Increased iron can repress
vvhA transcription via the ferric uptake regulator (Fur) and IscR (41, 46). However, it increases extracellular VVH secretion through increased transcription of pilD,
which encodes PilD, a component responsible for extracellular VVH secretion (41). IscR activates vvhBA by relieving H-NS repression by sensing nitrosative stress
(46). Meanwhile, a repressive interaction of H-NS would be relieved in response to the increase in temperature (39, 49). LuxO is a central response regulator of the
QS circuit in V. vulnificus, which negatively regulates vvhA expression via SmcR and HlyU (42, 43). However, the transmembrane transcriptional activator ToxRS
positively regulates the expression of the vvhA (47). Taken together, the transcriptional regulators integrate diverse environmental and host signals to collaboratively
regulate vvhA transcription during the course of infection. Lastly, FTH, an inhibitor target HlyU, was identified to inhibit the transcription of vvhA along with that of
other HlyU-regulated virulence genes.; OM, outer membrane; IM, inner membrane; FTH, fursultiamine hydrochloride; H-NS, histone-like nucleoid structuring protein;
cya, gene encoding adenylate cyclase; cAMP, cyclic AMP; CRP, cAMP receptor protein.
October 2020 | Volume 11 | Article 599439
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expression levels were higher at 26 °C than at 37 °C and that vvhA
expression and the resulting VVH production were increased
following disruption of hns (56). Moreover, H-NS, in its role as
a vvhA repressor, competes with HlyU for binding to the
vvhA promoter region (57); however, the exact mechanisms of
HlyU and H-NS regulation have yet to be fully characterized
(56). In addition to cAMP-CRP, Fur, and H-NS, the Fe-S
cluster, containing transcriptional regulator IscR, was recently
described as an important regulator of V. vulnificus virulence in
host environments. IscR activates the vvhBA operon in response to
nitrosative stress and iron starvation, thereby aiding successful host
infection (58). Lastly, transmembrane transcriptional activator
ToxRS, a homolog of the V. cholerae ToxRS transmembrane
virulence regulator, may also positively regulate the expression of
the vvhA (59). In summary, recognition of the subtle regulation of
vvhA gene expression and hemolysin delivery by V. vulnificus has
furthered our understanding of how the VVH contributes to
disease pathogenesis.

The complicated vvhA regulatory system that emerges from
this data suggests that inhibition of global regulators may be a
promising approach for the development of alternatives to
antibiotic treatment. Recently, an inhibitor-screening reporter
platform was used to target HlyU, a master virulence factor
transcriptional regulator in V. vulnificus. The study identified a
small molecule called fursultiamine hydrochloride that inhibited
the transcription of vvhA along with that of other HlyU-
regulated virulence genes. Fursultiamine hydrochloride
therefore has the potential to inhibit the pathogenesis of V.
vulnificus without inducing antimicrobial resistance (60).
THE ROLE OF THE VVH IN DISEASE AND
PATHOGENESIS

V. vulnificus most commonly causes severe gastroenteritis
following the consumption of contaminated raw seafood, with
sepsis infection mortality rates of 50% (12). Moreover, because V.
vulnificus is responsible for >95% of seafood-associated infection
deaths in the United States (4), a significant number of studies
have focused on the effects of the VVH on human intestinal
epithelial cells mentioned above. In addition, small intestine-
associated host factors together with mouse models have been
used to investigate the role of the VVH in pathogenesis. The
human intestine usually secretes cationic antimicrobial peptides
to prevent pathogen colonization, with Paneth cells in the
small intestine secreting antimicrobial molecule alpha-defensin
5 (HD-5). However, while HD-5 inactivated the Vibrio mimicus
hemolysin, it had no effect on VVH. The inability of V. mimicus
to penetrate the small intestinal epithelium suggests that the
cytolytic activity of the V. mimicus hemolysin is abolished by
HD-5 (61). In contrast, V. vulnificus causes intestinal tissue
damage and inflammation, which then promotes dissemination
of the pathogen from the small intestine into the bloodstream
and other organs in infected mice (6, 7). Notably, the
small intestine is recognized as the site of the most severe
tissue necrosis in humans based on autopsy results from
Frontiers in Immunology | www.frontiersin.org 5
V. vulnificus-infected patients (62). Indeed, VVH and
MARTX are the two V. vulnificus virulence factors associated
with both enhanced growth in vivo and necrosis of tissue in
the small intestine, followed by dissemination into the
bloodstream and other tissues. In the absence of these two
secreted factors, V. vulnificus is unable to cause intestinal
infection in mice (16).

V. vulnificus also causes primary septicemia in patients with
underlying liver disease or who are immunocompromised (63).
Patients with septicemia tend to die of hypovolemic shock
complicated by multi-organ failure. A study in rats found that
the VVH dilates the thoracic aorta by activating guanylate
cyclase, causing hypotension in vivo and vasodilatation in vitro
(64, 65). V. vulnificus can be spreading from the intestine to
bloodstream. To survive and proliferate in blood, V. vulnificus
requires to overcome the innate immune defenses, including
complement-mediated phagocytosis. Recently, capsular
polysaccharide and Flp (fimbrial low-molecular-weight
protein) pili are reported to play critical roles in evasion of the
host innate immune system by resistance to complement-
mediated killing (66, 67). Although an earlier work showed
that virulent isolates produced high titers of hemolysin, were
resistant to inactivation by serum complement (68), further
information is needed to uncover the mechanism of VVH-
mediated evasion of complement killing, which may help us to
better understand the basis of the V. vulnificus infection process
in human blood. Being at the crossroads between the immune
system, clotting cascade, and endothelial cells, platelets seem to
be an appealing central mediator and possible therapeutic target
for sepsis (69–71). The mechanism of bacterial-induced platelet
activation by pore-forming toxins has been well characterized in
other Gram-positive bacteria (72). However, despite the
significant fatality rate associated with V. vulnificus-induced
sepsis, the interaction between the VVH and platelets is not
clear. Because the CDC of Vibrio spp. share structural similarity
(28), it is possible that VVH represents a critical molecule of
Vibrio spp. involved in pathogenesis by interacting with platelets.
Linked to this, efforts should be focused on the mechanisms of
VVH-induced platelet activation for future work.
CONCLUSIONS AND FUTURE
PERSPECTIVE

Cholesterol-dependent cytolysins are a diverse group of proteins
that differ between bacterial species. However, it is these
differences that have informed much of our understanding of
the biological activities of the proteins, as well as their role in
pathogenesis. Despite this insight, further studies are needed to
determine the structure–function relationships of the VVH.
Functionally, the major roles of the VVH are to induce
cytotoxicity by binding to the cellular membrane to form pores
and activating the host inflammatory response. These functions,
along with the subtle regulation of VVH gene expression and
other potentially unrecognized activities, contribute to the
pathogenesis of V. vulnificus disease. Although the host
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response to the VVH involves lipid raft-dependent signaling
pathway-mediated cell death, it is likely that other mechanisms
may also be involved in the host response to the VVH.

V. vulnificus infection can result in severe disease. In fact,
most cases occur in patients with underlying conditions resulting
in hereditary hemochromatosis, primarily alcohol-associated
liver cirrhosis or immuno-compromised males, but it does not
cause severe illness in healthy individuals (73). Although there
have been many studies on the effects of the VVH on eukaryotic
cells in vitro, few animal models that mimick human infection
were used to elucidate the role of VVH in pathogenesis. As a
result, we still have much to learn about how this toxin
contributes to disease pathogenesis in vivo (Figure 1). An
interesting study found that hepcidin has a critical role in host
defense against V. vulnificus by inducing reactive hypoferremia
during early phases of infection (74). Hepcidin is a 25 amino acid
peptide secreted by hepatocytes. Hereditary hemochromatosis is
caused by deficiency of the iron-regulatory hormone hepcidin
Frontiers in Immunology | www.frontiersin.org 6
(75). Therefore, a hepcidin-deficient mouse model of severe
hemochromatosis (37) could be considered for the future work
about the role of VVH in the lethal infections by V. vulnificus, a
siderophilic bacterium. Additionally, the National Institute on
Alcohol Abuse and Alcoholism (NIAAA) model is a mouse
model of chronic and binge ethanol feeding, which mimics
acute-on-chronic alcoholic liver injury in patients (36). This
simple model will be very useful for the study of the function of
VVH in vivo, and the underlying mechanisms that contribute to
acute infections by V. vulnificus in liver disease patient.
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