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Abstract

Background: Obesity is a major health concern both in developed and developing countries. The use of herbal
medicines became the subject of interest for the management of obesity due to its natural origin, cost effectiveness
and minimal side effects. The present study aimed at investigating anti-obesity potential of ethanolic extract from
Cosmos caudatus Kunth leaf (EECCL).

Methods: In this study, the rats were randomly divided into six groups i.e., (1) Normal Diet (ND); (2) Normal Diet and
175 mg/kgBW of EECCL (ND + 175 mg/kgBW); (3) Normal Diet and 350 mg/kgBW of EECCL (ND + 350 mg/kgBW);
(4) High Fat Diet (HFD); (5) High Fat Diet and 175 mg/kgBW of EECCL (HFD + 175 mg/kgBW); (6) High Fat Diet and
350 mg/kgBW of EECCL (HFD + 350 mg/kgBW). The anti-obesity potential was evaluated through analyses of changes
in body weight, visceral fat weight, and blood biochemicals including total cholesterol, triglycerides, high-density
lipoprotein cholesterol (HDL-c), low-density lipoprotein cholesterol (LDL-c), leptin, insulin, adiponectin, ghrelin and fecal
fat content. In addition, metabolite profiling of EECCL was carried out using NMR spectroscopy.

Results: Rats receiving EECCL together with HFD showed significant (p < 0.05) reduction in body weight gain
compared to rats receiving HFD only. At the end of study, the body weight gain of EECCL treated rats was
not significantly (p > 0.05) different with those of ND rats. Other related obesity biomarkers including plasma
lipid profiles, insulin, leptin, ghrelin and adiponectin levels also showed significant improvement (p < 0.05).
Administration of EECCL caused significant (p < 0.05) increase in fecal fat excretion, which validates the hypothesis of
lipase inhibition, an anti-obesity mechanism similar to standard drug of Orlistat. The 1H-NMR spectra of EECCL
ascertained the presence of catechin, quercetin, rutin, kaempherol and chlorogenic acid in the extract.

Conclusion: Conclusively, EECCL showed anti-obesity properties by inhibition of intestinal lipid absorption and
modulation of adipocytes markers.
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Background
Obesity is characterized by increase in the size and/or
number of adipocytes in the adipose tissue [1]. Globally, it
is estimated that over 205 million men and 297 million
women were obese, which account for a total of more
than 600 million adults worldwide [2]. Studies by the

World Health Organization (WHO) indicated that at least
2.8 million people die each year as a result of being over-
weight or obese [2]. Obesity has now been considered as a
major health concern both in developed and developing
countries. It is also associated with various comorbidities
including hyperlipidemia, diabetes, fatty liver, cancer and
atherosclerosis [3–6]. Prevention of obesity is therefore
very crucial, not only in adults but also in children.
There are many ways to prevent or control obesity,

which includes, diet regimes, exercise and medication.
However, the use of anti-obesity drugs such as Orlistat
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and Sibutramine has been reported to cause adverse side
effects including high blood pressure, constipation, dry
mouth, headache, heart attack and insomnia [7, 8]. Conse-
quently, more trials have been conducted on the use of
herbal medicines that were reported to possess anti-
obesity potential in-vitro and in-vivo. These herbal medi-
cines became the subject of interest due to its natural
origin, cost effectiveness and minimal side effects [9].
Cosmos caudatus Kunth also known as ‘Ulam raja’ is a

popular salad among Malaysians and has traditionally
been used throughout the centuries for its nutritional
and medicinal properties. Previously, the researchers
have evaluated numerous medicinal effects of Cosmos
caudatus Kunth both in vitro and in vivo, and it has
been revealed that Cosmos caudatus extract play a
preventive role against various degenerative diseases
including hyperlipidemia, hypertension and diabetes.
Perumal et al. [10] reported that, 4 weeks treatment of
hyperlipidemic rats with Cosmos caudatus extract
helped to effectively reduce their atherogenic index and
glucose level, while Amalia et al. [11] found that Cosmos
caudatus showed antihypertensive effect by decreased
cardiac output and induction of diuresis. Loh et al. [12]
revealed that Cosmos caudatus extract effectively inhibit
α-amylase and α-glycosidase activity, key enzymes that
control post-prandial hyperglycemia [13]. Human studies
also showed that 8 weeks supplementation of Cosmos
caudatus significantly improves insulin resistance and in-
sulin sensitivity in type 2 diabetic patients [14].
The presence of quercetin, rutin and chlorogenic acid

in Cosmos caudatus is well documented [15]. These
compounds are known to take significant part in regula-
tion of obesity [16–18]. Results from our previous study
(results under publication) showed the ability of phenolic
rich ethanolic extract of Cosmos caudatus Kunth leaves
(EECCL) in inhibiting activities of fat metabolizing
enzymes i.e., pancreatic lipase (PL) and lipoprotein lipase
(LPL) in vitro. Thus suggesting that EECCL might be use-
ful in the prevention and treatment of obesity by limiting
dietary fat digestion, absorption and accumulation in adi-
pose tissue. Animal models have provided major contribu-
tions to the investigations of various complex diseases
including obesity [19]. They are very useful and widely
used in obesity research as they readily gain weight and
reached obesity in just few months of feeding with high
fat diet. The greatest advantage of using animal models is
that they allow strict control of all factors, which is very
crucial in safety and efficacy study. In this study, male
Sprague dawley rats were used with strict control of diet
and environmental conditions to ensure reliability of data
obtained at the end of the study. This model with its
physiological properties replicates many of the features
observed in obese human and also mimics human
obesity better when compared to the genetic model

[20, 21]. Therefore in the present study, the anti-
obesity effect of EECCL was evaluated using lean
Sprague dawley rats fed a high fat diet (HFD) with and
without EECCL supplementation.

Methods
Materials
Standard rat chow (Gold Coin, Selangor, Malaysia), high
fat diet (MP Diets, USA), tween 20, ethanol, biochemical
kits for total cholesterol, triglyceride, LDL-c, and HDL-c
were procured from Randox (Roche Diagnostics GmbH,
Sandhofer Strasse, Mannheim), insulin, leptin, ghrelin
and adiponectin levels were obtained from Mercodia Rat
Insulin ELISA Kit, Uppsala, Sweden, RayBio Rat Leptin
ELISA kit, Norcross, GA, USA, AssayMax Rat
Adiponectin ELISA Kit, and RayBio Rat Ghrelin Enzyme
Immunoassay Kit, Norcross, GA, USA. All the solvents,
reagents and chemical used in the present study were of
analytical grade.

Plant material and extraction
The fresh leaves of Cosmos caudatus Kunth were col-
lected from Agricultural Farm, Universiti Putra Malaysia
(UPM) Selangor, Malaysia. A voucher specimen of
Cosmos caudatus (H022) was deposited in the herbar-
ium of Facuty of Forestry, Universiti Putra Malaysia. The
leaves were immediately quenched using liquid nitro-
gen and lyophilized under pressure (−50 °C, 48–72 h,
LABONCO, Labonco Corporation, Kansas City, Missouri,
USA) until constant weight. The leaf extract of the plant
was prepared using the modified method of Chang et al.
[22]. The dried plant sample was ground using a commer-
cial grinder, sieved, and stored at −80 °C until further use.
Cosmos caudatus Kunth leaves were extracted with etha-
nol (100%). Dried plant material was soaked with ethanol
(1:10) at room temperature for 72 h (collected every 24 h
and pooled). The extracts were then filtered through
Whatman No1 filter paper and solvent evaporated off
using rotary evaporator at 40 °C. The resulting viscous
substance (EECCL) was freeze dried to ensure complete
removal of solvent and kept at −80 °C before feeding it to
the rats.

1H-NMR analysis for metabolite profiling of EECCL
A modified method by Kim et al. [23] and Kim et al.
[24] was used for the preparation of NMR sample. In
2 mL microcentrifuge tubes, 25 mg of EECCL was
weighed and dissolved in 0.375 mL of methanol-d4 and
0.375 mL of KH2PO4 buffer in D2O (pH 6.0) containing
0.1% Trimethylsilypropionic acid sodium salt (TSP).
The microcentrifuge tubes containing plant samples
were then vortexed for 1 min at room temperature
followed by ultrasonication for 15 min and centri-
fugation for 10 min at 13,000 rpm to separate the
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supernatant from \any insoluble components. The clear
supernatant (0.6 mL) was transferred to NMR tubes
and subjected to 1H-NMR analysis. The 1H-NMR ana-
lysis was performed using a 500 MHz Varian INOVA
NMR spectrometer (Varian Inc., California, USA),
operated at 499.887 MHz frequency and spectra were
recorded at 26 °C. Each spectrum consisted of 64 scans,
width of 20 ppm with 3.53 min of acquisition time.
Chenomix software (v. 5.1. Alberta, Canada) was used
to conduct phasing and baseline correction.

Experimental animals and design
Thirty-six male Sprague dawley rats (5 to 6 weeks
old) weighing at 185.46 ± 13.33 g (mean ± SD) (weight
of rats on the day received from supplier) were
purchased from A-Sapphire Enterprise Sdn. Bhd.
(Kuala Lumpur, Malaysia). Rats were housed in a
polycarbonate cages (15 × 25 cm) with stainless steel

covers (2 rats in a cage with wood shavings as bedding) at
26–28 °C temperature under dark (12-h) and light (12-h)
cycles with free access to standard animal chow/high fat
diet and water ad libitum. During acclimatization period,
the rats were given normal rat chow along with water ad
libitum. After 10 days of adaptation to the environment,
the rats were randomly divided into six groups (n = 6/
group) as follows: (1) Normal Diet (ND); (2) Normal Diet
and 175 mg/kgBW of EECCL (ND + 175 mg/kgBW);
(3) Normal Diet and 350 mg/kgBW of EECCL (ND +
350 mg/kgBW); (4) High Fat Diet (HFD); (5) High Fat Diet
and 175 mg/kgBW of EECCL (HFD + 175 mg/kgBW); (6)
High Fat Diet and 350 mg/kgBW of EECCL (HFD +
350 mg/kgBW). The schematic experimental design is il-
lustrated in Fig. 1. Rats in the normal diet and normal diet
with extracts groups (group 1, 2 and 3) were given stand-
ard rat chow (Gold Coin, Selangor, Malaysia) whereas rats
in group 4,5 and 6 were given high fat diet (MP Diets,

Fig. 1 Experimental design for the determination of EECCL on prevention of obesity in lean rats fed a high fat diet. N: Normal diet, HFD:
High fat diet, ND + 175 mg/kg: Normal diet + 175 mg/kg body weight of EECCL, ND + 350 mg/kg: Normal diet + 350 mg/kg body weight
of EECCL, HFD + 175 mg/kg: High fat diet + 175 mg/kg body weight of EECCL, HFD + 350 mg/kg: High fat diet + 350 mg/kg body weight
of EECCL, BW: Body weight
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USA). The composition of each diet is listed in the Table 1.
Health conditions of all rats were monitored daily and no
adverse events were observed throughout the study. At
the beginning of the experiments the weights of all rats
were recorded at 195.50 ± 12.61 g (mean ± SD) (weight of
rats after 10 days of acclimatization). All experiments and
biochemical analysis were conducted using 36 rats with
triplicate measurements. The permission to conduct this
study was obtained from ACUC (Animal Care and Use
Committee), Faculty of Medicine and Health Sciences,
UPM Malaysia (ACUC No: UPM/FPSK/PADS/BR-UUH/
00463).

Administration of EECCL
Treatments were started on the 11th day, after 10 days
of acclimatization. The dried crude EECCL was diluted
with 5% (w/v) Tween 20 for complete solubility and
administered daily according to the dosage for each
group, (175 mg/kg or 350 mg/kgBW) for group 2,3,5,
and 6 while rats in group 1 and 4 received 5% (w/v)
Tween 20. They were given by oral gavage everyday
using a force-feeding needle for 11 weeks.

Determination of body weight gain, food intake and
energy intake
Body weight change and food intake was measured ac-
cording to method by Akase et al. [25]. Intake of food
was measured weekly on a cage basis and expressed as g
of food/day. Initial body weight of all animals was mea-
sured before they were fed with either ND or HFD for
11 weeks. At the end of each week, the weight gain (%)
was calculated as followed:

Weight gain %ð Þ ¼ New weight W1ð Þ−Initial weight W0ð Þ
Initial weight W0ð Þ � 100

Collection of plasma, liver, lung, kidney, heart, testis,
visceral fats, and feces
Blood samples of overnight fasted rats were collected at
the end of treatment (week 11) at 8 a.m in the morning
by cardiac puncture under general anesthesia through
intraperitoneal injection of ketamine and xylazine mix-
ture (0.1 mL/100 g body weight of rat), which contains
90 mg/kg ketamine and 9 mg/kg xylaine. Ketamine and
xylazine mixture was used according to the IACUC
guidelines of anesthesia. The same combination of
anesthesia was also used previously in anti-obesity study
of germinated brown in high-fat diet induced rats [26].
The mixture also was used because it produce short-term
surgical anesthesia with good analgesia. The collected
blood was transferred into an EDTA tube following
plasma separation by centrifugation at 3500 rpm under
room temperature conditions for 15 min. The collected
plasma was stored at −80 °C for further biochemical ana-
lysis. After 11 weeks of treatment, all the rats were sacri-
ficed. The fats and organs like lung, liver, kidney, testis
and heart were also weighed. Feces were collected in the
middle and final week of the study for determination of
fecal fat content. All experimental procedure were
conducted in a specified surgical room of Animal House,
Faculty of Medicine and Health Sciences, UPM Malaysia.

Determination of fecal fat content
Fecal fat content of the rats were determined based on
the slightly modified method described by [27, 28].
Briefly, feces (0.5 g) were soaked in 2 mL distilled water

Table 1 Composition of normal and high fat diet used in the study

Normal Diet (ND) High Fat Diet (HFD)
Gold Coin, Malaysia
(3.27 kcal/g)

MP Diet, USA
(4.39 kcal/g)

Ingredients Percentage/Amount Ingredients Percentage/Amount

Crude Protein 21–23% Casein Purified High Nitrogen 20.00%

Crude Fibre 5.00% DL-Methionine 0.30%

Crude Fat 3.00% Sucrose 30.58%

Moisture 3.00% Corn Starch 20.00%

Calcium 0.8–1.2% Coconut Oil Hydrogenated 20.00%

Phosphorus 0.8–1.2% Alphacel, Non-Nutritive Bulk 5.00%

Nitrogen Free Extract 49.00% DL-a-Tocopherol Powder (250 IU/gm) 0.12%

Vitamin A 10 MIU AIN-76 Mineral Mix 4.00%

Vitamin D3 2.5 MIU MP Vitamin Diet Fortification Mixture 1.2 X Normal Amount

Vitamin E 15.0 g

AIN-76 Mineral Mix contain the following ingredients (1000 g): Calcium Phosphate Dibasic 500.00 g, Sodium Chloride 74.00 g, Potassium Citrate Monohydrate
220.00 g, Potassium Sulfate 52.00 g, Magnesium Oxide 24.00 g, Manganese Carbonate (43–48% Mn) 3.50 g, Ferric Citrate (16–17% Fe) 6.00 g, Zinc Carbonate
(70% ZnO) 1.60 g, Cupric Carbonate (53–55% Cu) 0.30 g, Potassium Iodate 0.01 g, Sodium Selenite 0.01 g, Chromium Potassium Sulfate 0.55 g, and Sucrose 118.00 g
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and homogenized completely. It was then stored at 4 °C
for 24 h followed by homogenization by vortex for
1 min. Extraction of lipids from feces was executed using
7.5 mL chloroform : methanol (1:2, v:v) for 30 min,
followed by the addition of 2.5 mL of chloroform and
deionized water and shaking for another 30 min.
Resultant mixtures were then centrifuged (at 2000 × g)
for 15 min, the lipophilic layer was isolated and dried
under vacuum.

Biochemical measurements
Various biochemical parameters were measured includ-
ing lipid profiles of plasma TG (triglyceride), TC (total
cholesterol), LDL-c (low-density lipoprotein cholesterol)
and HDL-c (high-density lipoprotein cholesterol) (Roche
Diagnostics GmbH, Sandhofer Strasse, Mannheim), liver
and kidney profile of alanine aminotransferase (ALT),
alkaline phosphatase (ALP), aspartate aminotransferase
(AST), gamma-glutamyl transferase (GGT), urea, cre-
atinine, insulin (Mercodia Rat Insulin ELISA Kit, Uppsala,
Sweden), leptin (RayBio Rat Leptin ELISA kit, Norcross,
GA, USA, Cat# ELR-Leptin-001), adiponectin (AssayMax
Rat Adiponectin ELISA Kit, Cat# ERA2500-1), ghrelin
(RayBio Rat Ghrelin Enzyme Immunoassay Kit, Norcross,
GA, USA, Cat# EIA-GHR-1). Concentration of LDL-c
was calculated by Friedwald’s formula, whereas HDL-c
was measured by a commercial direct non-precipitation
method as per manufacturer instructions [29, 30]. All
procedures were carried out according to manufac-
turer’s protocols.

Statistical analysis of data
Data obtained was expressed as mean ± standard devi-
ation (SD). The experimental data was analyzed by one-

way analysis of variance (ANOVA) with Duncan’s post
hoc test using SPSS Version 20.0. Moreover, p < 0.05 was
considered to describe the significant difference.

Results
Metabolite identification of EECCL from 1H-NMR spectra
The full 1H-NMR spectra of EECCL is shown in Fig. 2,
while the expanded aromatic regions are shown in Figs. 3
and 4. Trimethylsilypropionic acid sodium salt (TSP)
was used as internal standard and for calibration of the
NMR chemical shifts. The water suppression technique
(pre-sat) was used to remove the undesired residual
water signal. A typical 1H-NMR spectra of plant reveals
signals of metabolites i.e., amino acids, organic acids and
sugars in the aliphatic region (δ 0.5–3.0) and carbohy-
drate region (δ 3.0–5.5). The aromatic region (δ 5.5–9.0)
describes various distinctive signals of secondary metab-
olites such as phenolics and flavonoids. All identified
metabolites in EECCL are tabulated in Table 2.
In general the NMR spectra of EECCL showed

dominance in the carbohydrate and aromatic region. In
the amino acids region, signal for alanine was revealed
at δ 1.50 (d, J = 7.5 Hz), while signals for valine at δ 1.02
(d, J = 7.0 Hz), δ 1.11 (d, J = 6.5 Hz) and δ 2.22 (m). In
the carbohydrate region, the anomeric proton signals of
α-glucose δ 5.20 (d, J = 3.5 Hz), β-glucose δ 4.60 (d,
J = 8.0 Hz), and sucrose δ 4.19 (d, J = 8.5 Hz), δ 5.42
(d, J = 3.5 Hz) were also detected.
The expansion of the aromatic region as shown in

Fig. 3 further exposed signals of quercetin that were
visualized at δ 6.25 (d, J = 1.5 Hz), δ 6.26 (d, J = 2.0 Hz),
δ 6.42 (d, J = 1.5 Hz), δ 6.80 (d, J = 1.5 Hz), δ 6.83 (d,
J = 8.5 Hz), δ 6.98 (d, J = 8.5 Hz), δ 7.75 (d, J = 2.0 Hz),
δ 7.79 (d, J = 2.0 Hz) and δ 7.45 (dd, J = 8.5 Hz. 2.0 Hz).

Fig. 2 Representative of 500 MHz 1H-NMR spectra of EECCL from δ 0.50 to 10.0
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Quercetin 3-O-α-rhamnoside were also attributed due to
the resonance signals at δ 7.29 (dd, J = 8.0 Hz, 2.0 Hz), δ
7.75 (d, J = 2.0 Hz) with a methyl signal from the
rhamnosyl moiety attributed at δ 0.92 (d, J = 6.0 Hz).
Quercetin 3-O-β-glucoside were attributed with the sig-
nals at 6.25 (d, J = 1.5 Hz), and δ 7.75 (d, J = 2.0 Hz) while
the signal for the anomeric proton of glucosyl moieties
was found at δ 5.08 (d, J = 7.5 Hz).
Signals for chlorogenic acid was characterized at

δ 2.07 (m), δ 2.22 (m), δ 7.06 (dd, J = 8.5, 1.5 Hz), δ 7.14
(d, J = 1.5 Hz). Furthermore, chlorogenic acid of the

caffeoyl moiety showed signals at δ 6.36 (d, J = 16.0 Hz)
and δ 7.62 (d, J = 16.0 Hz), while quinic moiety showed
signal at δ 1.91 (d, J = 10.0 Hz). The characteristic signals
of rutin were observed at δ 6.25 (d, J = 1.5 Hz), δ 6.95
(d, J = 8.5 Hz) and δ 7.54 (dd, J = 8.5 Hz, 2.5 Hz) with
anomeric proton glucosyl at δ 4.54 (d, J = 2.0 Hz) and
rhamnosyl at δ 4.97 (d, J = 7.5 Hz). The signals for
catechin were detected at δ 2.56 (dd, J = 7.5 Hz, 16.0 Hz),
δ 2.85 (m), δ 3.91 (m) and δ 6.44 (d, J = 2.0 Hz). Structures
of potential bioactive compounds found in EECCL are
presented in Fig. 5.

Fig. 3 Expended 500 MHz 1H-NMR spectra of EECCL from δ 6.1 to 7.1. Values above the spectra indicate peak picking of 1H-NMR signals (ppm)
of bioactive metabolites identified in EECCL

Fig. 4 Expended 500 MHz 1H-NMR spectra of EECCL from δ 7.1 to 8.1. Values above the spectra indicate peak picking of 1H-NMR signals (ppm)
of bioactive metabolites identified in EECCL
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Effects of EECCL on body weight gain, visceral fat mass,
food and energy intake of rats
The food intake and body weights of each rat were re-
corded on a weekly basis. Both the low (175 mg/kgBW)
and higher dose (350 mg/kgBW) were used to see if the
lower dose could have the same or better effect as the
higher dose. At the end of the study (week 11), the body
weight gain of the rats fed the HFD was 154.0%, whereas
rats fed with the ND only gain 102.6% weight. The
percentage of body weight gain was higher (1.50-fold) in
the HFD group comparative to that of ND group
(Fig. 6).
The % changes in body weight gain were given in rela-

tion to the initial weight at week 0. The percentage body
weight gain of rats fed the HFD supplemented with both
low and high dose of 175 mg/kgBW and 350 mg/kgBW
of EECCL was significantly lower comparative to rats fed
with the HFD alone for the entire period of study.
EECCL with both low (HFD + 175 mg/kgBW) and high
(HFD + 350 mg/kgBW) dosage prevented the weight
gain by 32.99 and 42.47%, respectively when compared
with the HFD group. Distinct separation can be seen

Table 2 1H-NMR chemical shifts (δ) and coupling constants (Hz)
of metabolites identified in EECCL

Metabolite 1H-NMR signals

Quercetin δ 6.25 (d, J = 1.5 Hz)

δ 6.42 (d, J = 1.5 Hz)

δ 6.80 (d, J = 1.5 Hz)

δ 6.83 (d, J = 8.5 Hz)

δ 6.98 (d, J = 8.5 Hz)

δ 7.75 (d, J = 2.0 Hz)

δ 7.79 (d, J = 2.0 Hz)

δ 7.45 (dd, J = 8.5 Hz, 2.0 Hz)

Quercetin 3-O-α-rhamnoside δ 6.25 (d, J = 1.5 Hz)

δ 6.42 (d, J = 1.5 Hz)

δ 6.80 (d, J = 1.5 Hz)

δ 6.83 (d, J = 8.5 Hz)

δ 7.29 (dd, J = 8.0 Hz, 2.0 Hz)

δ 7.75 (d, J = 2.0 Hz)

Anomeric proton rhamnosyl

δ 4.54 (d, J = 2.0 Hz)

Methyl signal;

δ 0.92 (d, J = 6.0 Hz)

Quercetin 3-O-β-glucoside δ 6.25 (d, J = 1.5 Hz)

δ 6.42 (d, J = 1.5 Hz)

δ 6.80 (d, J = 1.5 Hz)

δ 6.83 (d, J = 8.5 Hz)

δ 7.75 (d, J = 2.0 Hz)

δ 5.08 (d, J = 7.5 Hz)

Anomeric proton glucosyl

δ 4.97 (d, J = 7.5 Hz)

Rutin δ 6.25 (d, J = 1.5 Hz)

δ 6.95 (d, J = 8.5 Hz)

δ 7.54 (dd, J = 8.5 Hz, 2.5 Hz)

Anomeric proton rhamnosyl

δ 4.54 (d, J = 2.0 Hz)

Anomeric proton glucosyl

δ 4.97 (d, J = 7.5 Hz)

Chlorogenic acid δ 2.07 (m)

δ 2.22 (m)

δ 7.06 (dd, J = 8.5, 1.5 Hz)

δ 7.14 (d, J = 1.5 Hz)

Signal for caffeoyl

δ 6.36 (d, J = 16.0 Hz)

δ 7.62 (d, J = 16.0 Hz)

Signal for quinic

δ 1.91 (d, J = 10.0 Hz)

Table 2 1H-NMR chemical shifts (δ) and coupling constants (Hz)
of metabolites identified in EECCL (Continued)

Catechin δ 2.56 (dd, J = 7.5 Hz, 16.0 Hz)

δ 2.85 (m)

δ 3.91 (m)

δ 6.44 (d, J = 2.0 Hz)

Epicatechin δ 6.44 (d, J = 2.0 Hz)

δ 7.00 (d, J = 8.0 Hz)

δ 7.29 (dd, J = 8.0 Hz, 2.0 Hz)

δ 4.97 (d, J = 7.5 Hz)

Kaempferol δ 6.26 (d, J = 2.0 Hz)

δ 6.44 (d, J = 2.0 Hz)

δ 6.80 (d, J = 1.5 Hz)

δ 7.00 (d, J = 8.0 Hz)

δ 8.01 (d, J = 8.5 Hz)

Sucrose δ 4.19 (d, J = 8.5 Hz)

δ 5.42 (d, J = 3.5 Hz)

β glucose δ 4.60 (d, J = 8.0 Hz)

α glucose δ 5.20 (d, J = 3.5 Hz)

Alanine δ 1.50 (d, J = 7.5 Hz)

Valine δ 1.02 (d, J = 7.0 Hz)

δ 1.11 (d, J = 6.5 Hz)

δ 2.22 (m)

Fatty acid δ 1.35 (m)

Choline δ 3.20 (s)

Isocitric acid δ 4.12 (d, J = 5.0 Hz)
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from week 6 onwards, whereby all the 4 groups that re-
ceived the extracts revealed non-significant (p > 0.05)
difference with that of the ND group. The lowest gain in
total body weight was observed for the HFD +
350 mg/kgBW group followed by the ND+ 350 mg/
kgBW, ND+ 175 mg/kgBW and HFD+ 175 mg/kgBW at
88.6, 98.2, 100.4 and 103.2%, respectively (Fig. 7).
Results also showed that the rats fed HFD for 11 weeks

had significantly higher (5.48 ± 1.01%) visceral adipose
tissues than that fed the ND (1.88 ± 0.55%). In the HFD
groups, both low and high dosage of EECCL significantly
decreased the visceral fats weight by 33.03 and 41.97%
when compared to that of HFD group (Fig. 8). High
dosage of EECCL in the HFD treated group showed
better effect compared to the lower dose group although
they were not-significantly different.
The food intake of the rats was significantly higher in

ND and ND supplemented (with EECCL) groups in com-
parison to that received HFD (Fig. 9). However, the food
intake of rats in the ND and HFD supplemented groups

were not significantly different with their respective con-
trol groups. Although there was significant difference in
the food intake (g/day) among the HFD and ND groups,
energy intake (kcal/day) was similar in all HFD and ND
groups except between the ND+ 350 and HFD group
(Fig. 9). Each gram of ND and HFD used in this study pro-
vides 3.27 and 4.39 kcal, respectively. The HFD group
consumed 14.03% higher caloric intake comparative to the
ND group. Results revealed that EECCL induced adipose
weight loss and reduction in body weight gain without
affecting the food or caloric intake.

Effects of EECCL on organ weights of rats
Results showed that the weight of organs including liver,
kidney, heart, lung and testis did not differ between all
groups tested (Table 3).

Effects of EECCL on fecal fat content of rats
Fecal fat content of all rats were analyzed at the end of
treatment with EECCL (Fig. 10). Results of the study

Fig. 5 Structure of major compounds found in EECCL
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showed that fecal fat content of rats on HFD groups
(5.54 ± 0.66%, 9.69 ± 1.05% and 11.46 ± 0.93% feces in
HFD, HFD + 175 and HFD + 350 mg/kgBW, respectively)
was significantly increased comparative to the ND group
(2.72 ± 0.31% feces). Treatment with EECCL in HFD rats
resulted in significant increase of fecal fat levels, the
higher dose showed more prominent result (2.07-fold in-
creased) than that of the lower dose (1.75-fold increased)
of the extracts. All the groups (control and treated) did
not suffer from diarrhea or other visible side effects.

These results suggested that the treatment of EECCL
prevented dietary fat absorption in the rats.

Effects of EECCL on plasma lipid profiles of rats
Plasma TG levels of HFD-fed rats were increased by 69.6%
compared to that of ND-fed rats (1.15 ± 0.20 mmol/L and
0.35 ± 0.02 mmol/L, respectively) (Table 4). However, no
significant effect was observed in both the ND supple-
mented groups comparative to the ND group. Interest-
ingly, both low and high dose supplementation of EECCL

Fig. 6 The effects of EECCL on percent body weight gain in rats for 11 weeks of treatment. Values are expressed as means ± SD (n = 6). Different
letters (a, b, c) indicate significant difference (p < 0.05) between different groups as shown by ANOVA using SPSS Version 20. Body weight gain
(%) = [(New weight–Initial weight)/Initial weight × 100]. N: Normal diet, HFD: High fat diet, ND + 175 mg/kg: Normal diet + 175 mg/kg body
weight of EECCL, ND + 350 mg/kg: Normal diet + 350 mg/kg body weight of EECCL, HFD + 175 mg/kg: High fat diet + 175 mg/kg body weight of
EECCL, HFD + 350 mg/kg: High fat diet + 350 mg/kg body weight of EECCL, BW: Body weight

Fig. 7 The effects of EECCL on total percent body weight gain in rats after 11 weeks of treatment. Values are expressed as means ± SD (n = 6).
Different letters (a, b) indicate significant difference (p < 0.05) between different groups as shown by ANOVA using SPSS Version 20. Total percentage of
body weight gain = [(Weight at week 11–Weight at week 0)/Weight at week 0 × 100%]. N: Normal diet, HFD: High fat diet, ND + 175 mg/kg: Normal
diet + 175 mg/kg body weight of EECCL, ND + 350 mg/kg: Normal diet + 350 mg/kg body weight of EECCL, HFD + 175 mg/kg: High fat
diet + 175 mg/kg body weight of EECCL, HFD + 350 mg/kg: High fat diet + 350 mg/kg body weight of EECCL, BW: Body weight
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in the HFD treated group resulted in significantly lower
plasma triglycerides levels. The HFD + 350 mg/kgBW
group was found to be more potent in triglyceride lower-
ing effect, although not significantly different with that of
the lower dose of HFD + 175 mg/kgBW treated rats. After
the completion of experimental period, HFD group
showed 69.6% higher TG and 18.4% lower HDL-c levels
when compared to that of ND group. Interestingly,
both HFD treated groups exhibited cholesterol lowering
effects, the higher dose of EECCL showed significant

reduction in both TC and LDL-c levels (18.8 and 38.5%
reduction, respectively) comparative to the HFD group.
The high dose of EECCL showed stronger lowering
effects on the levels of plasma TC and LDL-c than the
lower dose of extract.

Effects of EECCL on plasma insulin, leptin, adiponectin
and ghrelin levels of rats
The levels of plasma insulin, leptin, adiponectin and
ghrelin were measured after 11 weeks of treatment with

Fig. 8 The effects of EECCL on percentage of visceral fats in rats for 11 weeks of treatment. Values are expressed as means ± SD (n = 6). Different
letters (a, b, c) indicate significant difference (p < 0.05) between different groups as shown by ANOVA using SPSS Version 20. Fat (%) = [(Weight of
fats/Weight of rats) × 100%]. N: Normal diet, HFD: High fat diet, ND + 175 mg/kg: Normal diet + 175 mg/kg body weight of EECCL, ND+ 350 mg/kg:
Normal diet + 350 mg/kg body weight of EECCL, HFD + 175 mg/kg: High fat diet + 175 mg/kg body weight of EECCL, HFD + 350 mg/kg: High fat
diet + 350 mg/kg body weight of EECCL, BW: Body weight

Fig. 9 The effects of EECCL on food and energy intake in rats for 11 weeks of treatment. Values are expressed as means ± SD (n = 6). Different
letters (a, b) indicate significant difference (p < 0.05) between different groups as shown by ANOVA using SPSS Version 20. Energy intake =Weight of
food (g) × Total calorie of ND or HFD. ND= 3.27 kcal/g, HFD= 4.39 kcal/g. N: Normal diet, HFD: High fat diet, ND + 175 mg/kg: Normal diet + 175 mg/kg
body weight of EECCL, ND + 350 mg/kg: Normal diet + 350 mg/kg body weight of EECCL, HFD + 175 mg/kg: High fat diet + 175 mg/kg body weight of
EECCL, HFD + 350 mg/kg: High fat diet + 350 mg/kg body weight of EECCL, BW: Body weight
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EECCL to determine the mechanism by which the extracts
caused a significant reduction in the body weight gain of
the rats (Table 4). Feeding both low (175 mg/kgBW) and
high (350 mg/kgBW) dose of EECCL (in HFD rats)
after 11 weeks resulted in significant (p < 0.05) decrease
in the level of insulin i.e., 0.27 ± 0.06 μg/L (23.05%) and
0.23 ± 0.04 μg/L (33.14%) comparative to HFD group
(0.35 ± 0.03 μg/L). At the end of study, non-significant
difference was observed in the level of insulin between
the HFD + 350 mg/kgBW EECCL treated HFD-fed rats
and ND rats.
At the end of the study, HFD rats (2.05 ± 0.38 ng/mL)

exhibited significantly increased plasma leptin levels
compared to that of ND-fed rats (0.83 ± 0.20 ng/mL) of
about 2.46-fold. Interestingly, in the HFD groups, low

dose treatment showed ability to reduce the leptin level
up to 34.96% while the high dose showed stronger effect
of lowering leptin concentration up to 45.38% when
compared with that of HFD group.
In investigating further the mode of action by which

EECCL decreased excessive insulin concentrations and
body weight gain in treated rats, plasma adiponectin con-
centrations were measured. At the completion of the study,
ND rats (17.19 ± 0.95 ng/mL) exhibited significantly higher
plasma adiponectin levels compared to the levels observed
in untreated obese HFD-fed rats (10.26 ± 1.92 ng/mL) by
about 67.59%. Treatment of HFD-fed rats with EECCL in-
creased plasma adiponectin concentrations significantly
beyond those in HFD. All the treated groups differ non-
significantly with that of ND group.

Table 3 Organ weights of rats treated with EECCL for 11 weeks

Dietary group

ND ND + 175 mg/kgBW ND + 350 mg/kgBW HFD HFD + 175 mg/kgBW HFD + 350 mg/kgBW

Liver (g) 8.66 ± 0.82a 8.05 ± 0.42a 8.74 ± 1.35a 10.4 ± 2.09a 9.38 ± 1.05a 8.34 ± 0.53a

Kidney (g) 2.22 ± 0.21a 2.09 ± 0.33a 2.07 ± 0.15a 2.19 ± 0.28a 2.09 ± 0.23a 2.09 ± 0.26a

Heart (g) 1.25 ± 0.17a 1.16 ± 0.2a 1.16 ± 0.21a 1.20 ± 0.13a 1.29 ± 0.18a 1.17 ± 0.08a

Lung (g) 2.00 ± 0.27a 1.79 ± 0.26a 1.65 ± 0.34a 1.57 ± 0.08a 1.82 ± 0.28a 1.60 ± 0.28a

Testis (g) 1.55 ± 0.23a 1.68 ± 0.28a 1.53 ± 0.19a 1.54 ± 0.22a 1.40 ± 0.45a 1.59 ± 0.21a

Values are expressed as means ± SD (n = 6). Different letters indicate significant difference (p < 0.05) between different groups as shown by ANOVA using SPSS
Version 20. N Normal diet, HFD High fat diet, ND + 175 mg/kg Normal diet + 175 mg/kg body weight of EECCL, ND + 350 mg/kg Normal diet + 350 mg/kg body
weight of EECCL, HFD + 175 mg/kg High fat diet + 175 mg/kg body weight of EECCL, HFD + 350 mg/kg High fat diet + 350 mg/kg body weight of EECCL,
BW Body weight

Fig. 10 The effects of EECCL on fecal fat content in rats for 11 weeks of treatment. Values are expressed as means ± SD (n = 6). Different
letters (a, b, c, d) indicate significant difference (p < 0.05) between different groups as shown by ANOVA using SPSS Version 20. N: Normal
diet, HFD: High fat diet, ND + 175 mg/kg: Normal diet + 175 mg/kg body weight of EECCL, ND + 350 mg/kg: Normal diet + 350 mg/kg
body weight of EECCL, HFD + 175 mg/kg: High fat diet + 175 mg/kg body weight of EECCL, HFD + 350 mg/kg: High fat diet + 350 mg/kg
body weight of EECCL, BW: Body weight
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The levels of plasma ghrelin were also determined in this
study. Results showed that the ND (64.68 ± 7.72 ng/mL),
ND-treated groups (78.92 ± 26.32 ng/mL and 54.78 ±
34.99 ng/mL) and HFD-treated groups (89.44 ±
25.94 ng/mL and 50.80 ± 7.37 ng/mL) showed higher
level of plasma ghrelin concentrations compared to that
(35.25 ± 2.36 ng/mL) of HFD rats.

Effects of EECCL extract on kidney and liver function test
of rats
The kidney and liver function tests were performed to
determine if there were any toxic effects resulting from
oral administration or treatment with EECCL. This as-
sessment is very important in determining the safety of
EECCL for further application. Results showed that both
lower and higher dose of EECCL significantly inhibited
the HFD induced increase in GGT levels by 53.8 and
76.9%, respectively and was not significantly different
with that of ND and ND treated groups (Table 4). The
levels of AST, ALT, ALP, urea and creatinine changed
non-significantly in HFD treated groups comparative to
the HFD-fed group. Similar results were seen in the ND
treated rats when compared to the ND-fed group. It was
depicted that administration of both low and high dose
of the EECCL in the ND and HFD treated groups for
11 weeks did not induce any detectable adverse toxic
effects in the rats studied.

Discussions
The present study describes the NMR based metabolite
profiling and anti-obesity potential of EECCL in HFD-
fed lean rats. Identification of the metabolites of EECCL
was based on comparison of the NMR chemical shifts
and coupling constants with that of other studies or
samples [31–33], which were measured under similar
conditions. In general, the 1H-NMR spectra of ethanolic
EECCL showed the presence of catechin, quercetin,
rutin, kaempherol and chlorogenic acid, which were
similar to those reported by Perumal et al. [10] and
Mediani et al. [33].
Results from preliminary study on Cosmos caudatus

Kunth extracted with different concentration of ethanol
and water (100:0, 80:20, 60:40, 50:50 and 40:60) showed
that Cosmos caudatus Kunth extracted with 100% etha-
nol (EECCL) exhibited best pancreatic lipase, antioxidant
activity and highest phenolic and flavonoid content [34].
The different extracting solvent used in preparation of
Cosmos caudatus Kunth extracts were important for the
recovery of phenolic and flavonoid compounds and it
was found that 100% ethanol (EECCL) was the most
efficient solvent for extracting those compounds. Strong
positive correlation between phenolic and flavonoid
compounds and that of free radical scavenging and anti-
lipase activity were observed, which suggested that these
compounds were mainly responsible to the antioxidant

Table 4 The effects of EECCL on plasma obesity biomarkers level, liver and kidney functions in obese rats after 11 weeks of treatment

Dietary group

ND ND + 175 mg/kg ND + 350 mg/kg HFD HFD + 175 mg/kg HFD + 350 mg/kg

TG 0.35 ± 0.02c 0.32 ± 0.01c 0.41 ± 0.08c 1.15 ± 0.20a 0.70 ± 0.12b 0.62 ± 0.09b

TC 1.27 ± 0.17a 1.09 ± 0.22ab 1.26 ± 0.14a 1.28 ± 0.05a 1.14 ± 0.06ab 1.04 ± 0.05b

HDL-c 0.87 ± 0.14ab 0.86 ± 0.11ab 0.89 ± 0.08a 0.71 ± 0.04b 0.72 ± 0.05b 0.73 ± 0.03ab

LDL-c 0.25 ± 0.03a 0.25 ± 0.05a 0.27 ± 0.07a 0.26 ± 0.04a 0.24 ± 0.04a 0.16 ± 0.02b

Insulin 0.21 ± 0.03c 0.19 ± 0.02c 0.18 ± 0.02c 0.35 ± 0.03a 0.27 ± 0.06b 0.23 ± 0.04bc

Leptin 0.83 ± 0.20bc 0.65 ± 0.23c 0.68 ± 0.15c 2.05 ± 0.38a 1.33 ± 0.26b 1.12 ± 0.20bc

Adiponectin 17.19 ± 0.95a 17.00 ± 2.18a 16.11 ± 3.54a 10.26 ± 1.92b 17.49 ± 2.36a 17.07 ± 5.86a

Ghrelin 64.68 ± 8.64ab 78.92 ± 26.32a 54.78 ± 34.99ab 35.25 ± 8.64b 89.44 ± 25.94a 50.80 ± 7.37ab

AST 93.38 ± 24.24a 93.50 ± 11.25a 84.85 ± 12.09a 156.98 ± 113.32a 123.63 ± 32.56a 158.90 ± 48.09a

ALT 34.25 ± 4.38bc 33.25 ± 6.80c 32.08 ± 1.14c 51.90 ± 2.46a 56.38 ± 7.24a 45.95 ± 7.51ab

ALP 80.75 ± 6.02bc 79.75 ± 7.59bc 66.00 ± 16.85c 129.50 ± 23.70a 116.30 ± 26.14ab 94.00 ± 11.17abc

GGT 1.00 ± 0.00b 1.00 ± 0.00b 1.25 ± 0.50b 3.25 ± 1.26a 1.50 ± 1.00b 0.75 ± 0.50b

Urea 5.60 ± 0.35a 5.58 ± 0.33a 5.88 ± 1.07a 5.65 ± 0.90a 5.08 ± 0.49a 5.08 ± 0.54a

Creatinine 48.25 ± 0.96a 47.00 ± 3.16a 47.75 ± 5.19a 52.75 ± 3.30a 51.75 ± 2.06a 47.25 ± 2.06a

Values are expressed as means ± SD (n = 6). Different letters (a, b, c) indicate significant difference (p < 0.05) between different groups as shown by ANOVA using SPSS
Version 20. N Normal diet, HFD High fat diet, ND+ 175 mg/kg Normal diet + 175 mg/kg body weight C. caudatus extract, ND+ 350 mg/kg Normal diet + 350 mg/kg body
weight of EECCL, HFD + 175 mg/kg High fat diet + 175 mg/kg body weight of EECCL, HFD + 350 mg/kg High fat diet + 350 mg/kg body weight of EECCL, TG Total
triglyceride, TC Total cholesterol, HDL-c High density lipoprotein–cholesterol, LDL-c Low density lipoprotein–cholesterol, AST Aspartate aminotransferase, ALT Alanine
aminotransferase, ALP Alkaline phosphatase, GGT Gamma-glutamyl transferase. TG, TC, HDL-c and LDL-c were measured in mmol/L. Insulin was measured in μg/mL
whereas leptin, adiponectin and ghrelin were measured in ng/mL. AST, ALT, ALP and GGT were measured in U/L whereas Urea and Creatinine were measured
in mmol/L

Rahman et al. BMC Complementary and Alternative Medicine  (2017) 17:122 Page 12 of 17



and anti-obesity potential observed. Therefore the effect
of phenolic rich EECCL extract on preventing obesity
was further explored in this study using Sprague dawley
rat model.
The current study ascertained the anti-obesity poten-

tial of EECCL in HFD-fed lean rats. The supplementa-
tion of HFD-fed rats with EECCL at 175 and 350 mg/kg
levels significantly decreased body weight gain compara-
tive to untreated HFD-fed rats without affecting food
intake or energy intake. The suppression of body weight
gain was accompanied with significant decreases in vis-
ceral fat mass among the HFD-treated groups. However,
EECCL did not cause any significant suppression in body
weight as well as their visceral fat mass in the ND
treated rats comparative to the ND group. Supplementa-
tion of EECCL has little effect in normal rats comparable
to the previous studies [25, 35].
Inhibition in the PL activity and augmentation of

lipolysis are being considered to be the effective ways in
management of body weight [36]. Present study revealed
that, limitation in the absorption of lipid in the intestine
is the potential mechanism by which the EECCL pre-
vented weight gain in the HFD-fed rats. Previous studies
also supported this hypothesis [37, 38]. Therefore, in this
study, the ability of EECCL to increase the excretion of
fecal fat and consequently fecal fat energy excretion
partially explained the observed significant reduction re-
garding body weight gain of the treated rats.
Various in vitro and in vivo studies have revealed the

presence of hypolipidemic compounds in EECCL [39–41].
Therefore, it is possible that the presence of these bio-
active metabolites influences lipid dynamics and further
prevents the treated rats from developing obesity. Effects
of EECCL on lowering the TG, TC and LDL-c are consist-
ent with that of other studies [42–44]. There might be two
possible mechanisms behind the observed hypolipidemic
effect of the extract, i.e., decrease in dietary cholesterol
absorption in the intestinal tract or interference in the
synthesis of cholesterol. The inhibition in the absorption
of dietary fats usually limits the excess energy required for
the storage of fats in adipose tissue, which was seen with
the significant suppression of visceral fats in the treated
rats. Study by Osada et al. [45] on apple phenols in rats
showed that the antiatherogenic and hypolipidemic effects
are associated with the inhibition of cholesterol absorption
in the intestines of the rats and promotion of cholesterol
catabolism. Hence, it could be depicted that the improve-
ment in the lipid profiles were partially due to the phyto-
chemical contents of EECCL.
Leptin, insulin, adiponectin and ghrelin are hormones

involved in energy homeostasis and neuroendocrine
regulation of appetite and satiety. It is known that adi-
pose tissue does not only function as energy storing cells
but also serve as a site for the secretion of various

adipocytokines including leptin, adiponectin, resistin and
others [46, 47]. Normally plasma leptin and insulin
concentrations correlate positively while ghrelin and adi-
ponectin correlate negatively with general adiposity and
increase of fat mass [48]. Improving glucose and fat
metabolism by normalization of these obesity related
marker’s level is therefore a useful strategy in the treat-
ment of obesity.
Obesity is associated with leptin and insulin resistance

leading to hyperinsulinemia and hyperleptinemia, which
are further linked with excessive body weight, especially
central obesity [49, 50]. Therefore, improvement in glu-
cose and fat metabolism by enhancement of both the
insulin and leptin sensitivity and decreasing their levels
is considered to be emphatic treatment strategy for
obese patients. In the present study, plasma insulin level
decreased in a dose dependent manner with a significant
reduction in the level of insulin at 23.05 and 33.14%
compared to that of HFD group. Prolong feeding of
HFD has been reported to increase the insulin level,
causing insulin resistance and hyperinsulinemia in rats
[51]. It was revealed that in the present study, treatment
with EECCL suppressed increase in insulin level in HFD
fed rats.
Leptin and ghrelin contribute in the regulation of the

feed intake and energy expenditure [49]. Feeding HFD
has also been reported to increase leptin concentrations
and cause leptin resistance in rats [52]. Kim et al. [53]
and Lee et al. [54] reported that treatment with Coix
lachrymajobi var. mayeun (seed) and Diospyros kaki
(leaf ) extracts exhibited 36 and 11% reduction in body
weight gain of HFD-fed Sprague dawley rats through
modulation of leptin. In this study, plasma leptin levels
in the low and high dose treated groups was found to
decrease by 34.96 and 45.38%, respectively in accordance
with the decrease in visceral fat mass and suppression of
body weight. This is probably due to the induced leptin
resistance in the control rats. Insulin has been well rec-
ognized to play a role in determining leptin level [55].
Therefore, the significant decrease in the plasma leptin
levels observed in the present study may have resulted
in the suppression of body weight gain, visceral fat mass
and plasma insulin concentration.
Adiponectin is one of the adipocytokines secreted by

adipocytes. In addition, it has also been revealed that
hypoadiponectemia is closely linked with insulin
resistance along with hyperinsulinemia [56]. Various
studies have demonstrated anti-atherogenic and anti-
diabetic properties of adiponectin [57, 58]. In a previ-
ous study, green tea polyphenol (EGCG) significantly
increased the level of adiponectin concentration in
rats, which act as biomarker in obesity and its related
complications [59]. A weight loss study revealed that
adiponectin level was decreased in obesity, whereas
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increased with weight loss [60]. Similar effects have
also been observed in the present study, whereby
treatment of polyphenolic rich EECCL increases con-
centration of plasma adiponectin by 45.03 and 41.58%
in both low and high dose treated groups compared to
that of HFD. The significant increase of adiponectin
concentration was in accordance with the decrease in
visceral fat mass, body weight gain and plasma insulin
concentrations. The results were in accordance with
that of previous studies, which suggested that increase
in adiponectin level is associated with weight loss [61].
Ghrelin has been recognized to influence feeding

behavior, energy homeostasis and also gastrointestinal
functions [62]. Various reports showed that body weight
loss was accompanied with the increase in concentration
of ghrelin [63, 64]. Our results showed that treatment
with EECCL not only increases adiponectin levels, but
also that of ghrelin levels. The observation that EECCL
supplementation to the obese rats resulted in the increase
of plasma ghrelin and adiponectin were consistent with
the results of Hsu et al. [65] that reported the effects of
green tea extracts in increasing the concentration of
ghrelin and adiponectin in obese women.
The observed effects of EECCL on lipid profiles, per-

centage of visceral fats, hormones related to obesity,
fecal fat excretion and suppression of body weight gain
in our study were in compliance with the results
reported by Nukitrangsan et al. [66] and Kishino et al.
[67]. Study by Nukitrangsan et al. [66] showed that
Peucedanum japonicum Thunb intake significantly
prevented body weight gain, reduced abdominal fat,
serum TG, leptin and increased fecal fat excretion in
mice fed with HFD. Treatment with mixture consisted
of Salacia reticulate extract and cyclodextrin also
significantly suppressed body weight gain, plasma
leptin, visceral fat mass and TG levels of rats fed
with HFD [67].
Researchers have reported the presence of quercetin,

catechin, proanthocyanidin, epicatechin, rutin, myricetin,
naringenin, vitamin C and chlorogenic acid (crypto-
chlorogenic acid, neo-chlorogenic acid, chlorogenic acid)
in Cosmos caudatus leaves [10, 33, 68]. Quercetin has
been reported to exhibit antioxidant and anti-obesity
effects in animal studies [69, 70]. In addition, quercetin
is also known to inhibit adipogenesis and apoptosis by
activating monophosphate-activated protein kinase
(AMPK) signal pathway in 3T3-L1 preadipocytes [71]. In
another study, chlorogenic acid significantly reduced
body weight, visceral fat mass, triglycerides, cholesterol,
plasma leptin and insulin levels, whereas increased
plasma adiponectin level, suggesting the multiple effects
of chlorogenic acid in improving body weight, lipid me-
tabolism and obesity related hormone levels in in obese
mice [72]. It is likely that these bioactive components

may influence the fat, lipid profiles and obesity related
hormones dynamics and further prevents the treated
rats from developing obesity.
As the metabolic patterns in rats are very much simi-

lar to that of human beings, employing this model using
rats is rational in examining the ultimate impact of
EECCL in preventing body weight. Even though rodents
such as rats and mice are described as predominant
model reflecting human obesity, there are still few
physiological differences exist between rats and human
such as absence of gall bladder, and vomit reflex in rats.
Furthermore, the controlled environment and condition
of rats in the study is not analogous to the human situ-
ation, whereby rats are housed in small cages that
restrict physical activity and social interaction. Besides,
the food and water also were accessible ad libitum. This
situation does not normally happen in human. This
study measure the effect of EECCL in preventing body
weight gain in lean rats fed a HFD. Although positive
effects can be seen in the results, the effects of the same
extract on obese rats have not been evaluated. Therefore
future study should be conducted to evaluate the ability
of EECCL in reducing weight of obese rats model. Add-
itional group such as physically active and physically
active with EECCL treatment group should be included
to evaluate not only the direct effects of EECCL but also
combination effects of EECCL and active lifestyle on
obese rats model.
Global epidemic of obesity is now considered as the

leading cause of morbidity and mortality across the
world. The prevalence of this disorder needed to be
reversed and further prevented for protection of future
generations. Despite the short term benefits of drug
treatment in obesity, it also often associated with re-
bound in weight and negatife side effects [73]. Only few
drugs have been registered for the treatment of obesity,
which include orlistat (Xenical), dexfenfluramine (Redux),
and rimonabant (Acomplia). However due to side effects
and safety reason, only Orlistat were approved for long-
term treatment of obesity [74]. To date, pharmacological
treatments do not appear to be effective in producing sus-
tained long-term weight loss [75, 76]. As research on
obesity and the use of pharmaceutical drugs in manage-
ment of obesity is highly controversial and often does not
provide effective long-term solution, the role of medicinal
herbs for prevention and amelioration of obesity has
gained much interest.
In this study, EECCL showed to be able to significantly

prevent weight gain even at lower dose and that the
weight gain was not different compared to the rats fed
with ND. It is also interesting to see that there was no
indication of diarrhea or other abnormal discomfort or
bowel activities in the treated rats, suggesting that
EECCL has lesser side effects as opposed to the standard
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drug of Orlistat, whereby diarrhea and abdominal
discomfort has been reported previously [77]. Most im-
portantly, supplementation of EECCL at both dosages
did not affect liver and kidney functions, indicating that
the dosages used not only effective but also safe for the
treatment. This results was supported by acute oral tox-
icity study on ethanolic extract of Cosmos caudatus that
showed no visible signs of toxicity or death up to
5000 mg/kg body weight for 14 days of study [78]. In
addition, histopathological observations in both acute
and subacute toxicity studies also showed no detectable
inflammation on the gross examination of internal or-
gans without any necrosis, fatty infiltration, or alteration
in cell structures [78]. However, further comprehensive
toxicity studies should be conducted to ascertain the
lack of chronic toxicity effects of EECCL intake in vivo.

Conclusion
The present study revealed that EECCL was effective in
preventing the increase in body weight gain, visceral fat
mass, plasma TC, TG, LDL-c, insulin and leptin levels.
Moreover, treatment with EECCL resulted in significant
increase of ghrelin, adiponectin and fecal fat output in
lean rats fed a HFD. Kidney and liver function test
showed no signs of toxicity induced by 11 weeks treat-
ment of EECCL on rats. The observed anti-obesity
effects of EECCL in HFD-fed rats are likely to be caused
by complex mixture of bioactive compounds (catechin,
chlorogenic acid, epicatechin, kaempferol, rutin and
quercetin derivatives) and modulation of obesity bio-
markers measured. Results of this study highlights the
basis for future investigations of EECCL as a source of
natural product that has the potential to be developed as
medicinal ingredients for prevention and treatment of
obesity and other metabolic diseases in human.
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