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S P A C E  S C I E N C E S

Turbulence in the Sun is suppressed on large scales and 
confined to equatorial regions
Shravan M. Hanasoge1,2*, Hideyuki Hotta3, Katepalli R. Sreenivasan2,4

Convection in the Sun’s outer envelope generates turbulence and drives differential rotation, meridional circula-
tion, and the global magnetic cycle. We develop a greater understanding of these processes by contrasting obser-
vations with simulations of global convection. These comparisons also enhance our comprehension of the physics 
of distant Sun-like stars. Here, we infer toroidal flow power as a function of wave number, frequency, and depth in 
the solar interior through helioseismic analyses of space-based observations. The inferred flows grow with spatial 
wave number and temporal frequency and are confined to low latitudes, supporting the argument that rotation 
induces systematic differences between the poles and equator. In contrast, the simulations used here show the op-
posite trends—power diminishing with increasing wave number and frequency while flow amplitudes become 
weakest at low latitudes. These differences highlight gaps in our understanding of solar convection and point 
to challenges ahead.

INTRODUCTION
Despite several decades of space- and ground-based high-resolution 
observations and substantial theoretical and computational effort, 
fundamental questions on solar dynamics, such as the emergence of 
differential rotation, meridional circulation, and solar magnetism, 
remain unanswered. Convection is thought to be centrally impor-
tant to these phenomena but is among the least understood aspects 
of solar dynamics due to the extreme parameter ranges in which it 
manifests. Gaps in our theoretical appreciation of convection persist. 
The mixing-length theory (1), a widely adopted prescription for mod-
eling stellar convection and evolution (2), is a coarse description and 
does not predict flow details. Numerical simulations and laboratory 
experiments are also unable to access the relevant parameter regime 
(3, 4). Under the circumstances, a fruitful avenue to pursue consists of 
contrasting specific details between simulations and observations, high-
lighting disagreements and resolving them where possible. Although 
comparisons are stymied because it is often the case that simulations 
and observations do not pertain to same quantities, they represent im-
portant steps toward an improved understanding. The first such 
attempt using helioseismology concluded that convective velocity am-
plitudes were small in comparison to numerical simulations (5). This 
result was subsequently challenged (6) by an analysis using a different 
helioseismic technique, which inferred amplitudes to be consistent with 
numerical simulations. The disagreement remains unresolved, as 
a comparison between a multitude of constraints, helioseismic or 
otherwise, and different numerical simulations (7) reveals. A major 
source of this conflict is the lack of consistency in various parame-
ters in the comparisons: differences in the extents of temporal and 
spatial averaging, the type of flow (poloidal or toroidal), etc. These efforts, 
however, were productive, focusing attention on this important ques-
tion and have moved the field forward, leading to the development of 
concrete models and new results on the physics of convection (8).

Solar convection is a multiscale phenomenon, occurring over broad 
ranges in spatial and temporal frequencies. The large scales are very 

interesting since they likely traverse layers deep in the convection 
zone (3, 7) and are therefore very challenging to model, given that 
they encounter vast gradients in density and adiabatic index. A major 
puzzle concerns flows on the largest scales, which are observed at the 
surface to contain the least power. In contrast, classical turbulence 
theory suggests that most of the turbulent power lies in spatial scales 
comparable to the system size. By this definition, the Sun is not a 
classical turbulent system, since velocity power smoothly decays with 
decreasing wave number. Supergranulation, another puzzling fea-
ture of convection, spans the frequency range from 3 to 11 Hz and 
spherical harmonic degrees s dominantly ranging from 80 to 140, 
with a power that goes down to very low wave numbers as well. 
Therefore, the very largest scales of convection are likely to evolve at 
even lower frequencies, i.e., 3 Hz, and wave numbers of 100. On 
the basis of these estimates, in the present analysis, we infer toroidal 
flows within the temporal frequency range of [0,3.05] Hz, for 
wave numbers of [1,50].

MATERIALS AND METHODS
Helioseismology provides a window into the internal dynamics of the 
Sun. Vigorous convective turbulence at the surface generates small- 
amplitude acoustic waves, which propagate in the solar interior and 
re-emerge at the surface, forming resonances in cavities (9). The 
modulation of the solar surface by acoustic waves, measured as 
Doppler shifts in absorption lines, is subjected to seismic analysis. In 
contrast to other helioseismic techniques, measuring normal-mode 
coupling from observations is straightforward (10–13). The additional 
benefit is that interpretation is tightly connected to well-posed semi-
analytical models; the price is that these models are nontrivial to 
evaluate and rely on tedious algebra. Normal modes also provide infor-
mation about the poloidal-toroidal structure of fluid motions.

The method involves first constructing eigenfunctions for a ref-
erence model of the Sun, e.g., model S (9), which, for the linear solar 
wave operator, form an orthonormal and complete basis (14). Since 
the Sun contains convective flows and the reference model does not, the 
“true” eigenfunctions depart from the reference set. Specifically, con-
vection is treated perturbatively since velocity amplitudes on large scales 
are substantially smaller than the local sound speed (3). Completeness 
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of the reference basis allows us to express the true eigenfunctions as 
a weighted linear superposition of reference eigenfunctions. Modes 
of the Sun are thus in a “coupled” state in relation to the reference. 
The weights, termed as coupling coefficients, may be measured from 
observations and related to model perturbations through a straight-
forward inverse problem. The improvement in inferential accuracy 
obtained by including differential rotation in the background model, 
which is known to cause changes to the reference basis (10), is at most 
on the order of a few percent for the modes studied here. However, 
since the computational and technical overhead required to expand 

around the rotationally distorted eigenfunctions is significantly greater, 
we expand around the degenerate eigenfunctions of model S.

A useful aspect of this methodology, compared with other tech-
niques of helioseismology, is that it allows us access to time variations 
of nonaxisymmetric perturbations on a global scale, an appropriate 
formalism for the application to dynamically evolving phenomena 
such as convection and Rossby waves. In addition, it provides a rig-
orous formalism with which to analyze vector flows, enabling a proper 
comparison with simulations, a notable improvement over prior 
work. In particular, we apply the Chandrasekhar-Kendall relation, 
with which vector flows may be decomposed into poloidal (first two 
terms of Eq. 1 below) and toroidal quantities (last term) (15)

   
   

 u   σ (r, θ,  ) =  ∑ 
  st

       u st  
σ  (r )  Y  st  (θ,  )  e  r   +  v st  

σ  (r )  𝛁  h    Y  st  (θ,  ) −
        

 w st  σ  (r )  e  r   ×  𝛁  h    Y  st  (θ, )
    

  
(1)

where Yst is the spherical harmonic of degree s and azimuthal order 
t, er is the radially directed unit vector,  is the temporal frequency 
associated with the flow, and 𝛁h = e∂ + e(sin )−1∂, where  and 
 are colatitude and longitude, respectively. Temporal frequency 
dependence is denoted using a superscript, i.e., f  = f(), where f is 
a function of frequency . By construction, toroidal flows are mass 
conserving, do not have a radial component, and are therefore not 
involved in radial thermal transport, arising rather as a by-product 
of convective turbulence. The anelastic approximation (16) may 
be invoked to express   v st  

    in terms of   u st  
   , thereby reducing the inde-

pendent parameters (13) in Eq. 1 to   u st  
    and   w st  

    (see section S2). The 
importance of toroidal flows in the dynamics of convective trans-
port, despite their seemingly ancillary role, is highlighted in Fig. 1D, 
which graphs numerically simulated (4) poloidal and toroidal flow 
power as a function of solar radius. At every radius, the total flow 
power is split nearly equally between these flow components. Simula-
tions of the classical Rayleigh-Bénard convection (17) reveal that the 
ratio of toroidal to poloidal flow energies may be used to classify 
the regime of turbulence—e.g., buoyancy or rotationally dominated, 
geostrophic, etc. The simulations suggest that toroidal flows are a 
critical component of convective turbulence, and imaging them may 
help shed important insights into solar convection. Regardless of 
whether these simulations are complete, the measurement of these 
flows and categorizing their ratios is an important means of testing 
theories of convection. The similarity in velocity scales suggests that 
constraints on one might be used to infer the other. This indicates 
that, toroidal flows, despite not carrying thermal flux, are critical to 
understanding convection. Although our analysis here is limited to 
toroidal flows, it is still a significant first step toward the larger goal 
of measuring the full range of material motions arising from convec-
tive transport. 

Data analysis and inversion
The Helioseismic and Magnetic Imager (HMI) (18), onboard the So-
lar Dynamics Observatory, has been observing the Sun since 2010. 
We analyze 8 years of HMI global-mode data in the ℓ range of 50 to 
192 (ℓ is harmonic degree) and select modes with resonant frequen-
cies in the range of 1800 Hz ≤ nℓ/(2) ≤ 3600 Hz, where n de-
notes the radial order (19). The upper frequency limit of 3600 Hz 
is placed to exclude modes with known systematics (19). From the 
lower end, we exclude modes with very small linewidths (that 
low-frequency modes have), since characterizing the frequency 

0.75 0.8 0.85 0.9 0.95
100

200

300

400

500

D

B C

A

Fig. 1. Rotational shear obtained from simulations. A snapshot of computed 
convection (A) and simulated and observed differential rotation (B and C) (38). 
Although Taylor-Proudman columns appear at low latitudes in the simulations, the 
amplitudes and contours compare favorably. (D) Numerical simulations of con-

vection (4) show that toroidal  ( √ 
__________________

    ∑ s,t,     s(s + 1) ∣ w st  
  ∣   2   )  and poloidal flow root mean 

square (RMS) velocities  ( √ 
___________________________

     ∑ s,t,      ∣ u st  
  ∣   2  + s(s + 1) ∣ v st  

  ∣   2   ) , where u, v, and w are defined 
in Eq. 1, are comparable at all radii. Poloidal flows are compressible and have both 
radial and lateral components, whereas toroidal flows, by construction, are solely 
lateral and are incompressible. As a consequence, poloidal flows are the carriers of 
thermal flux; the precise role of toroidal flows in this picture is, however, not well 
understood. The similarity in magnitudes between the flows suggests that they likely 
play a critical role in regulating solar convection.
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dependence of convection requires sampling modes off resonance. 
Small linewidths imply that measuring the mode even slightly off 
resonance can lead to background power seeping into inferences. 
The global time series data are further divided into eight segments 
of 360-day-long sets.

These time series are transformed to the temporal Fourier do-
main and denoted by    ℓm      , where m is azimuthal order. We model 
the wavefield as a sum over weighted mode eigenfunctions, with 
each mode excited stochastically (the amplitude and phase are random 
variables). We therefore calculate the ensemble-averaged correlation 
 〈   ℓm+t  
++t    ℓm  *   〉 , where  is the tracking rate of the corotating frame, 

which may be shown to be directly proportional to eigenfunction 
coupling (13). Correlations are measured from 360-day-long data, 
which are therefore averages over a large number of source ensem-
bles (∼105 wave periods). Because convective cells are advected by 
the rotation of the Sun (⊙), we track the data in a corotating frame 
at the rate /(2) = 453 nHz, associated with the equatorial band, 
i.e., at latitudes roughly less than 30∘. Super-rotating (t > 0) and sub-
rotating (t < 0) features are identified with respect to this rate. Note 
that the Sun exhibits differential rotation in both radius and latitude 
and, thus, a variety of different tracking rates may equally be applied 
(see fig. S3 of section S5).

Correlations thus computed contain several independent param-
eters , , t, m, and ℓ and are also noisy, rendering interpretation 
difficult. Consequently, we introduce B coefficients, which condense 
and average the information present in raw correlations. The coef-
ficient   B st  

  (n, ℓ ) =  ∑ ,m      W ℓmst  
      ℓm+t  

++t    ℓm  *   , where W is a theoretically 
derived weight function [see section S2 and (20) for details], is the 
coupling coefficient between modes (ℓ, m, and n) and (ℓ, m + t, 
and n). It is sensitive to the properties of the medium (13) through

   B st  
   =  ∫ 

⊙
     dr   ∑ 

s′,t′
     T st  

s′t′ (r,  )  w s′t′  
   (r)  (2)

The function   T st  
s′t′   may be evaluated on theoretical grounds (see 

section S4, figs. S1 and S2, and table S1). Since we use finite- 
length time series, the summation over frequency in the definition of 
the B coefficient is taken over the discrete temporal frequency grid 
(see section S7 and the Fourier transform convention). We may thus 
infer toroidal flow   w st  

    by solving this inverse problem. The technique of 
mode-coupling cast in this particular form has been validated (21) 
through the measurement of Rossby waves in the Sun (22). Directly 
interpreting B coefficients is challenging since it is a more abstract-
ed quantity than conventional helioseismic measurements such as 
travel times or mode frequencies. Essentially, it captures the extent 
of eigenfunction mixing between (ℓ, m, and n) and (ℓ, m + t, and n): 
Translating the B coefficient, a complex number, into a flow requires 
tedious algebra, much of which is summarized in the Supplementary 
Materials [see section S2 and (13)].

Modes in the Sun are stochastically driven, and the excitation pro-
cess is assumed to be statistically independent for each wave number 
and temporal frequency channel because, at any given time, a very 
large number of isotropically distributed (roughly) granules across 
the surface of the Sun are each exciting waves with random phases 
and amplitudes. This implies that, for reference modes,  〈   ℓm  *     ℓ′m′  

′  〉 =  
P ℓm         ′      ℓ′ℓ      m′m   , where P is the power spectrum. However, finite 
spatial leakage from (ℓ′, m′) to (ℓ, m) results in nonzero values of  
〈  ℓm  *      ℓ ′   m ′    

  ′    〉 . A significant fraction of power in the B coefficient arises 
from the combination of leakage and realization noise and must 

be subtracted to obtain esti mates of the flow power (Fig. 2). To-
roidal power is thus given by   ∣ w st  

  ∣   2  =  ∣ ∑ nℓ        nℓ  ( r  0   )  B st  
  (n, ℓ )∣   2  −  

∑ nℓ       nℓ  
2     st  

  (n, ℓ) , where    st  
  (n, ℓ)  denotes the theoretically expected 

systematic background for this particular channel (see eqs. S23 to 
S25 and section S4). An important assumption in obtaining this 
equation is that the background is independent of the signal and that 
poloidal and toroidal flows are statistically independent. There is 
support for the latter assumption from simulations of the Rayleigh-
Bènard convection (17). Figure 2 shows B-coefficient power and the 
noise background (computed using eqs. S15 and S16 in section S3) 
as a function of s − ∣t∣ for each of the 8 years of HMI data that we 
have analyzed; the fact that the theoretically derived noise back-
ground and B-coefficient power are very close to each other, espe-
cially at higher values of s − ∣t∣, suggests that our noise background 
model is likely reasonable. The coefficients nℓ(r0) are weights de-
termined using the technique of subtractive optimally localized 
averages (20, 23). The spatial mask arising from our partial view 
of the Sun induces systematical bias, resulting in broadening in 
the spectral domain and making it impossible to isolate individual 
spherical harmonics [called leakage (24)]. The consequent amplitude 
aberrations in inferred velocities are modeled using leakage matrices 
(24) and removed from nℓ(r0) (20) (see eq. S22). These leakage 
matrices take into account spatial windowing and line-of-sight pro-
jection. Synthetic tests have also been performed to verify this method 
in the context of Rossby modes (25).

Last, we comment on the trustworthiness of the result. We have 
experimented with different sets of modes; specifically, we studied 
the results using the entire set of modes, i.e., those that have been 
successfully identified by the HMI pipeline from analyses of 360-day 
datasets (26). We found that the inferred amplitudes of prograde and 
retrograde flows are somewhat sensitive to the high-frequency modes 
(>3600 Hz), which are known to be problematic (19). However, 

Fig. 2. B-coefficient power (blue solid lines) at r/R⊙ = 0.995, measured from 
8 years of HMI data (each year provides one inference and this plot therefore 
contains eight curves) and systematic background (red dashed line) computed 
from the model in eqs. S15 and S16. The frequencies and other mode parameter 
fits vary from one 360-day period to another, which is why the noise background 
power shows dispersion. The theoretically computed noise background follows the 
observed B-coefficient power closely except at low s − ∣t∣, where the observed 
B-coefficient power is significantly larger than the model. This additionally gives 
us confidence that our models for the noise are reasonable.
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one feature that is robust to all choices of mode sets is the variation 
of toroidal flow power with s − ∣t∣, i.e., sectoral modes are domi-
nant and there is very little power in tesseral and zonal modes (for 
the spatiotemporal band under consideration here).

Simulation setup and importance of toroidal flows
At the outset, it is important to note that this simulation is merely one 
of innumerable possibilities, with many possible choices for turbu-
lence modeling, boundary conditions, resolutions, numerical schemes, 
etc. The comparisons with simulations here are therefore solely a 
commentary on the setups chosen for this work.

There is simply no means by which simulations will be able to 
reach solar convection parameter regimes in the foreseeable future. 
However, it is within the realm of possibility that there exists an ef-
fective theory of convection, i.e., where all the ingredients required 
to properly recover large-scale properties of these flows are captured 
in the calculations. An instance of this is the simulation of surface 
granulation, which is able to reproduce line formation, granule sizes, 
shapes, correlation functions, etc. [e.g., (27)] despite the very large 
range of scales prevalent in near-surface turbulence. Thus, the ques-
tion is as follows: Are simulations of global convection at a stage 
where we can trust them to accurately reproduce large-scale flows? 
And if not, then can we place observational constraints to eliminate 
or differentiate one calculation from another?

In this effort, we have tried two other numerical setups (not re-
ported here)—the first being a nonrotating high-resolution simula-
tion (1536 × 3072 × 512), with the upper boundary at r/R⊙ = 0.99 
and another with the same boundary and resolution, but with rotation 

included. Neither of these appeared satisfactory to us because the first 
had no rotation and was therefore isotropic across the 2-sphere; the 
second showed antisolar rotation (i.e., with poles spun up relative to 
the equator), and we therefore discarded both. The reason is that high- 
resolution calculations tend to have high Rossby numbers, lower viscos-
ities and thermal diffusivities; the latter two effects introduce large 
(relatively speaking) convection velocities. Further, to obtain solar-like 
(fast equator) differential rotation, the Rossby number must be kept as 
low as is possible (28). Consequently, we settled on a low-resolution 
case with the upper boundary at r/R⊙ = 0.94 and solar-like rotation, 
i.e., equatorial spin up. To reiterate, this is just a small subset of 
the range of simulations that are possible with a variety of different 
codes.

The numerical simulation we use here (29) resolves rotating (Fig. 1, 
A and B) convection using 384 × 192 × 64 points, along the longitude, 
latitude, and radius, respectively, with r/R⊙ ≈ 0.96 serving as the 
upper boundary of the computational domain. The hydrodynamic 
equations in three-dimensional spherical geometry (with the entro-
py equation instead of the total energy equation) are solved using a 
fourth-order central derivative scheme and stepped forward in time 
with the Runge-Kutta method. We also apply a slope-limited artificial 
diffusion to all variables to stabilize the calculation. Explicit diffusion 
is applied for velocity and entropy, whose values at the top boundary 
are 1 × 1013 cm2 s−1 and 2 × 1013 cm2 s−1, respectively, and proportional 
to −1/2 (where  is the density), to reproduce a rotation profile with 
a relatively fast rotating equator in comparison to the pole. In com-
parisons presented here, the static t = 0,  = 0 component of the 
numerical data is removed.

Fig. 3. Toroidal-flow velocity amplitude,   √ 
____________________

    ∑ t,     s(s + 1 )  ∣ w st  
  ( r  0   )∣   2      summed over the range 0 <  ≤ 3.05 Hz (see Fourier convention in eq. S48 of section S6), is 

plotted as a function of harmonic degree s. Shaded areas in (A to C) mark 1- errors in velocity. The legend in (A) applies to (B) as well. In contrast to the simulation, 
where velocity power peaks at s ≈ 15 and continuously decreases in either end, we see in (A to C) that power weakens with decreasing wave number (s), indicating that 
large-scale toroidal flows are suppressed. The comparison in (C) between toroidal flow amplitudes measured directly from surface Doppler measurements (33) and seismic 
inferences at r/R⊙ = 0.995 is favorable; the simulated power does not make an appearance since the upper boundary of the computational domain is r/R⊙ = 0.94. (D to 
E) Inferred RMS velocity compares reasonably with simulations [in contrast to prior estimates (5)]. Horizontal bars denote the width of the averaging kernel in (D to E). 
(F) RMS ratios of simulated-to-observed velocity as functions of harmonic degree s at different depths. Vertical error bars are computed using the variance in the spectra 
obtained from each of the eight 360-day periods analyzed here.
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RESULTS
Figure 3 (A and B) shows that, in contrast to simulations where 
power is largest at low spatial wave numbers and temporal frequen-
cies, observationally inferred velocity monotonically decreases with 
decreasing wave number and frequency. This puzzling trend, in con-
trast to classical turbulence, where small wave numbers are energy 
containing, has been the focus, albeit inconclusive, of a variety of 
theoretical and computational efforts (4, 30–32). While the disparity in 
amplitude is not as significant as suggested by prior time-distance 
methods (5), the two behaviors are markedly different. To bench-
mark the seismic results against independent measurements of the 
surface toroidal-flow spectrum obtained from Doppler data, we com-
pare the inferred power spectrum at r/R⊙ = 0.995 with surface-Doppler 
estimates (33) in Fig. 3C. Specifically, we use figure 12 of (33), mul-
tiplying it by   √ 

_
 s + 1    to make the definition consistent with that used 

here [see equation 14 of (33)]. One important difference is that the 
temporal frequency ranges over which the sums of flow power are 
taken are different, ranging from 0.3 to 11 Hz for the surface Dopp-
ler curve and 0 to 3.05 Hz in the present seismic analysis. Never-
theless, the curve provides an independent confirmation that our 
seismic inferences are possibly in the correct ballpark. Figure 3D 
compares the theoretical and inferred root mean square (RMS) veloc-
ities over this frequency range, finding the discrepancy to be much 
smaller than previously reported, for this frequency and wave number 
range and for these depths. Figure 3E graphs this ratio as a function 
of harmonic degree, indicating that simulations significantly over-
estimate the low wave numbers.

Spectra as a function of s − ∣t∣, which capture the geometry of 
convection, show a dominance of sectoral modes in the Sun, i.e., 

small s − ∣t∣ (Fig. 4, A and B), with prograde (t > 0) and retrograde 
(t < 0) components indistinguishable to within error bars (for the 
tracking frequency of 453 nHz). In contrast, simulations contain a 
much broader set of convective modes. This is more markedly seen 
in Fig. 4 (C and D), which highlight the differences between the 
latitudinal profiles of simulated and observed flow, where we plot 
power as a function latitude for simulations (Fig. 4C) and seismolo-
gy (Fig. 4D). The error bars on the observed curves are invisible on 
this plot, whereas the simulated curve is very noisy: This occurs be-
cause the low spatial and temporal wave numbers are preferentially 
powered in the simulations, thereby requiring a much longer inte-
gration time to achieve convergence. It is interesting that the most 
vigorous toroidal flows are cospatial with the fastest rotating layers, 
i.e., differential rotation and toroidal power peak at the equator. Whether 
anisotropic toroidal flow power induces cospatial rotational shear, 
or the other way around, remains to be investigated. The similarity 
with recent measurements of Rossby waves in purely sectoral chan-
nels [e.g. (21, 22)] tempts one to speculate if there are more general 
underlying processes at play. The absence of nonsectoral modes 
in toroidal flow may be due to multiple reasons: low-amplitude 
excitation, exclusion of tesseral/zonal modes due to specific bound-
ary conditions, or rapid damping (possibly by rotational shear). 
The most vigorous toroidal flows appear to lie within the spherical 
wedge delineated by the intersection of the cylinder tangent to the 
radiative interior with the sphere, especially so in the near-surface 
layers.

Figure 5, a reconstruction of flow images from observations, shows 
that equatorially localized north-south–aligned flows are preferen-
tially powered—these are the high-amplitude sectoral modes, i.e., for 

Fig. 4. Toroidal flow spectra (shaded lines) plotted as a function of s − ∣t∣. The legend in (A) applies to (B) as well. Low s − ∣t∣ correspond to sectoral harmonics, i.e., 
equatorially localized north-south–aligned features, whereas harmonics with large s − ∣t∣ are present at all latitudes. Having obtained flow coefficients   w st  

   , we 
reconstruct the flow in the spatiotemporal domain using Eq. 1, for radii r/R⊙ = 0.87 (A) and r/R⊙ = 0.94 (B). (C) Longitudinally and temporally averaged simulated flow velocity as 
a function of latitude. (D) Corresponding latitudinal distribution power of the Sun at radius r/R⊙ = 0.94. Seismically inferred flows are well confined near the equator, where-
as simulations peak at higher latitudes. The thin vertical lines in (D) mark full widths at half maxima of v and v.
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s − ∣t∣ ≲ 12 in Fig. 4 (A and B). Simulated velocity images qualita-
tively differ from the inferences, with large-scale features distributed 
across all latitudes (Fig. 5, C and D). In contrast, the small scales 
appear to be preferred in the Sun (Fig. 5, A and B), due to the in-
ferred power spectrum increasing continuously as a function of wave 
number. This spectral dependence results in the highest spatial 
frequencies having the most power, whereas the simulated spectra 
peak at low spatial frequencies and decrease with increasing wave 
number.

In Fig. 6 (A and B), we show the dependence of toroidal flow 
power on temporal frequency—the observed velocity scale increases 
continuously with frequency, broadly in line with the idea that con-
vection at higher frequencies is more vigorous than at lower fre-
quencies, in contrast with computation (Fig. 6C). Figures 3 (A to C) 
and 6 (A and B) together indicate that solar flow power is continuously 
increasing as a function of wave number and frequency (over the 
ranges considered here), eventually overtaking and exceeding the 
simulations. Prior comparisons [e.g., (5)], which relied solely on ampli-
tudes, thus miss the point that velocity-amplitude comparisons are 
sensitive to the spatial and temporal frequency bands under consid-
eration and that, even if the comparisons were favorable, simulations 
and inferences could still be capturing intrinsically different physics 
(e.g., classical versus nonclassical turbulent systems, as discussed early 
on in this section). In the present work, we highlight the importance 
of making detailed comparisons with observations to improve faith 
in theoretical and computational models.

Figure 6D tracks “deep” and shallow convective velocities, i.e., 
the inferences at radii r/R⊙ = 0.90,0.99, as a function of the magnetic 

cycle. It is conceivable that these turbulent flows may be weakened 
during periods of high solar activity because magnetism suppresses 
free movement of plasma (34). However, Fig. 6D shows that there is 
no apparent correlation between surface and interior velocities with 
the sunspot cycle (35).

DISCUSSION
In summary, the state-of-the-art numerical simulation used here (29) 
reproduces certain features such as overall amplitudes—to within a 
factor of a few—of the toroidal flow but are not good models of 
solar turbulence, as evidenced by their inherent difference from seismic 
observations: (i) Large-scale flows are preferentially powered in 
simulations, whereas they are suppressed in the Sun, and (ii) simu-
lated flows are weak at the equator and vigorous at high latitudes, in 
contrast to inferences, which show that they are confined to the 
equatorial regions and weak at high latitudes.

Differential rotation is thought to be sustained by a combination 
of a thermal wind and Reynolds stresses (3). A thermal wind could 
be induced by a latitudinal entropy gradient, in turn caused by dif-
ferences in convection between the poles and equator (36), resulting in 
changes to the turbulence. Our inferences here of latitudinally non-
uniform toroidal flow appear to match these symptoms, although 
they do not directly point to the cause. It would be very useful to 
theoretically study the impact of thermal winds on toroidal flows in 
future investigations. Inferences of Reynolds stresses would go a 
substantial distance toward discerning the origin of differential rota-
tion, both in the Sun and stars (37), which state-of-the-art simulations 

Fig. 5.  Instantaneous snapshot of toroidal flow, reconstructed from the inferred (A and B) and simulated (C and D)   w st  
    using the third term of Eq. 1, shown in the Mollweide 

projection. Since we do not have access to the even-s channels here and do not know the phases of the background systematics (we only model the expected power 
spectrum of systematics), we are unable to recover the true toroidal flow field from observations. However, since the signal at low s − ∣t∣ is substantially larger than the 
background noise model, some of the low-latitude features in (A) and (B) that are seen here are possibly real. Equatorially confined, north-south–aligned features are seen 
in both longitudinal [B; v = − ∂w(r, , )] and latitudinal velocity [A; v = (sin )−1 ∂w(r, , )]. Small scales are preferentially enhanced in the inferred velocity image 
because the power spectrum steadily increases with wave number (Fig. 3, A and B). In contrast, the geometry of simulated flows (C and D) shows features of larger scales, 
very different from that of the inferences, because the power spectral shapes are different (Fig. 3). Both inferences and simulations are normalized to facilitate comparison.
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are not successful at identifying. However, these are much more chal-
lenging to measure since they require the complete set of phases and 
amplitudes of toroidal and poloidal flows at all spatial and temporal 
scales (see the Supplementary Materials). Since inferences of toroidal 
flows here are obtained from studies of same-ℓ couplings, issues 
arising from leakage are significantly mitigated. Modes for ℓ < 150 
or so are typically well separated in frequency (on the order of several 
to tens or more of microhertz), and attempts to infer perturbations 
varying on temporal frequencies much smaller than the nominal 
frequency separation between pairs of modes, as used in the analysis 
here, are hindered by the influence of spatial leakage and background 
power on the measurement. As a consequence, cross-ℓ couplings must 
be interpreted much more carefully and are deferred to a future study. 
The penalty for considering only same-ℓ couplings is that we are only 
able to infer odd harmonic degree toroidal flows and have practically 
no sensitivity to poloidal components.

Convection comprises spatially complex and temporally evolv-
ing structures; testing different theories of this process requires build-
ing a framework with which to make consistent comparisons. The 
theory and computation of convection are sensitive to a large variety 
of necessary inputs, e.g., parameters and boundary conditions, and 
eventual solutions may vary substantially. Determining whether a 
simulation is “correct” is for instance a difficult question—would 
the successful recovery of differential rotation and meridional cir-
culation be sufficient cause to declare success or should we seek a greater 
degree of agreement, i.e., turbulence structure functions, Reynolds 
stresses, etc.? We have shown, for example, that convective ampli-

tudes alone, while providing some broad indications of the success 
of a theory, are insufficient for making accurate and meaningful com-
parisons. To eliminate or validate a theory may thus demand agree-
ment with both large-scale circulations (e.g., differential rotation) and 
other constraints, such as provided here. Thus, the present disagree-
ment should be viewed as a significant step toward building a frame-
work with which to make comparisons of theory and computation 
with observation and adding to the range of available measurements 
of convection. One lesson from the direct comparison with simula-
tions here (29) is that high resolution alone is insufficient to achieve 
agreement and that a great distance still remains to be traversed be-
tween computation and observation.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/30/eaba9639/DC1
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