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Abstract

Halophyte Tamarix ramosissima. Lcdcb (T. ramosissima) are known as the representative

of Tamarix plants that are widely planted in salinized soil. However, molecular mechanisms

towards salt tolerance and adaptation are largely rare. In this study, we carried out RNA-

sequence and transcriptome analysis of T. ramosissima in response to NaCl stress,

screened differentially expressed genes (DEGs) and further verified by qRT-PCR. Results

showed that 105702 unigenes were spliced from the raw data of transcriptome sequencing,

where 54238 unigenes were retrieved from KEGG, KOG, NR, and SwissProt. After 48

hours of NaCl treatment, the expression levels of 6374 genes were increased, and 5380

genes were decreased in leaves. After 168 hours, the expression levels of 3837 genes were

up-regulated and 7808 genes were down-regulated. In particular, 8 transcription factors

annotated to the KEGG Pathway were obtained, involving the WRKY and bZIP transcription

family. In addition, KEGG pathway annotation showed that expression of 39 genes involved

in ROS scavenging mechanisms were significantly changed, in which 21 genes were up-

regulated and 18 genes were down-regulated after 48 hours as well as 15 genes were up-

regulated and 24 genes were down-regulated after 168h. Simultaneously, the enzyme activ-

ities of SOD and POD were significantly enhanced under NaCl treatment, but the enzyme

activity of CAT was not significantly enhanced. Moreover, WRKY, MYB and bZIP may par-

ticipate in the process of salt resistance in T. ramosissima. This study provides gene

resources and a theoretical basis for further molecular mechanisms of salt tolerance in T.

ramosissima.
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1. Introduction

Salinized soil has high salt content and poor soil physical and chemical properties, which seri-

ously hindered the growth and development of plants [1]. Salinized soil contains a lot of Na+

type salt which can destroy the stability of protein and membrane, and produces osmotic stress

and ion poisoning to initiate reactive oxygen ROS (reactive oxygen species) signals in the cell,

make dysfunction of the cell, affect the growth of plants, and causes plant death in severe cases

[2]. In the past decades, the area of salinized soil has continued to expand due to global human

activities and climate changes. Favorably, it is becoming a hotspot to carry out afforestation,

restore salinized soil and improve the ecological environment in salinized soil areas.

In recent years, RNA-Seq technology has been widely used to study molecular mechanisms

of plant resistance to adverse stresses, including salt stress [3, 4]. Previous studies showed that

reactive oxygen species (ROS) would be produced in multiple cell compartments, including

chloroplasts [5], mitochondria [6], and peroxisomes [7] under salt stress conditions. A rela-

tively low concentration of ROS is known as an important signal molecule to regulate the nor-

mal plant growth and responses to abiotic stresses [8, 9]. However, excessive accumulation of

ROS can adversely cause cell oxidative damage [10]. To adapt to ROS damage, higher plants

have evolved corresponding regulatory mechanisms to maintain the stability of life activities.

Notably, ROS scavenging enzymatic systems, such as superoxide dismutase (SOD), peroxidase

(POD), catalase (CAT), ascorbate peroxidase (APX), and glutathione peroxidase (GPX), are

prone to play important roles to adapt to undesired abiotic stresses [11]. In addition, plants

can also take advantage of the ascorbic acid- reduced glutathione (AsA-GSH) cycle, which

contains APX, glutathione reductase (GR) and AsA, and GSH, and so on, to eliminate the

damage of ROS [12].

In particular, transcription factors are the most important regulators for plants to respond

to various abiotic stresses [13]. In details, reports are focused on the involvement of tran-

scription factors of WRKY [14], bHLH [15], bZIP [16] NAC [17], MYB [18], AP2/ERF [19]

under salt stress. In cotton, the WRKY transcription factor gene GhWRKY34 was induced by

salt stress in transgenic Arabidopsis [20]. In Paspalum notatum, the WRKY transcription fac-

tor genes are involved in regulating the expression of SOD and related oxidoreductase genes

to adapt to salt stress [21]. Notably, Tamarix plants have evolved a complex regulatory net-

work for a long time to adapt to the adverse abiotic stresses [22]. T. hispida is often used as a

biological material to explore the molecular mechanisms towards salt stress tolerance. Over-

expression of the T. hispida ThCOL2 gene can regulate the activity of protective enzymes and

reduce the accumulation of O2− and H2O2 that enhanced the ROS scavenging ability and

improved the adaptability of transgenic T. hispida under salt stress [23]. Overexpression of

ThbZIP1 enhanced the activity of POD and SOD, increased the content of soluble sugar and

soluble protein that further improved salt tolerance in transgenic T. hispida [24]. T. ramosis-
sima usually grows in arid and semi-arid regions with high salt content [25]. Moreover, low

concentration (<100mM) NaCl promoted while high concentration (�200mM) NaCl stress

inhibited the growth of T. Ramosissima [26]. Liu and her colleagues found that T. ramosis-
sima exhibited the strongest salt tolerance among 3 Tamarix species, including Tamarix gan-
suensis H.Z.Zhang, Tamarix leptostachys Bunge, and Tamarix ramosissima. Lcdcb, and T.

ramosissima were chosen as the representative species of Tamarix plants for further mecha-

nisms studies.

In this study, we performed high-throughput transcriptome sequencing in T. ramosissima
under NaCl stress and screened and verified DEGS at the transcriptional level. This study lays

a theoretical basis to reveal molecular mechanisms towards salt tolerance in Tamarix plants,

and provides gene resources for further variety breeding of salt-tolerant Tamarix plants.
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2. Materials and methods

2.1. Plant materials

T. ramosissima seedlings were provided by the Dongying Experimental Station of Shan-

dong Academy of Forestry Sciences. Experiments were completed at the Key Laboratory of

Forest Tree Genetic Breeding and Biotechnology of the Ministry of Education of Nanjing

Forestry University from October 2019 to March 2021. 5-month-old T. ramosissima seed-

lings with uniform growth were transferred to a 24-well hydroponic box (size:

40cm�30cm�16cm), supplemented with 1/2 Hoagland nutrient solution, and then placed in

a greenhouse that was maintained at 26 ± 2˚C (day) whose relative humidity stays between

40% and 55% for 1 month after training before treatment. The culture solution was changed

every 3rd day.

2.2 NaCl treatment

In the control group (CK), seedlings were suffered with 1/2 Hoagland nutrient solution. In the

treatment group, seedlings were cultured in 1/2 Hoagland nutrient solution, supplemented

with 200 mM NaCl. 8 plants were used in each group, and the experiments were repeated 3

times. The culture solution was changed every 3rd day. The leaf samples were collected at 0h,

48h, and 168h, respectively, and immediately frozen in liquid nitrogen, and then moved to a

-80˚C refrigerator for storage.

2.3 Phenotype and antioxidative enzyme activity analysis in T. ramosissima
leaves

Leaves of T. ramosissima were collected after 0h, 48h and 168h of NaCl treatment, respectively,

and the distribution of salt secretion on the leaf surface was observed using a JSZ6S stereo

microscope (Jiangnan, China). The activities of SOD [27], POD [28] and CAT [29] were deter-

mined and analyzed, according to the description of the commercial Extraction Kits (Jian-

cheng Limit Co., Nanjing, China).

2.4 Transcriptome sequencing

The frozen leaf samples were used for 3-generation high-throughput transcriptome sequenc-

ing, using Illumina HiSeq™4000, in Guangzhou GENE Denovo Company. The purified PCR

products were analyzed by pair-end sequencing (PE150) on the platform according to stan-

dard operations, and then fastp was used for quality control [30]. The original data was first fil-

tered to obtain clean reads, then assembled [31]. These assembled fragments without N

terminal obtained by reading overlap are used as the assembled Unigene, and then use Blast2

GO [32] and KOBAS [33] to obtain Gene Ontology (GO) function and Kyoto Encyclopedia of

Genes and Genomes (KEGG) annotation. The Illumina raw sequencing data were submitted

to the National Center for Biotechnology Information (NCBI) Short Reads Archive (SRA)

database under accession number SRP356215.

2.5 Screening methods for differentially expressed genes

DESeq2 software was used to analyze the reads count data to obtain the final correct FDR

value (FDR value means BH corrected p value) [34]. A corrected p value of<0.05 is considered

to be significantly enriched. Based on the results of the difference analysis, genes with FDR

value <0.05 and |log2FC| > 1 are considered to be significantly different genes.
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2.6 Quantitative Real-Time PCR (qRT-PCR) validation of DEGs

Eight putative genes (Unigene0104732, Unigene0028215, Unigene0083695, Unigene0069097,

Unigene0090596, Unigene0024962, Unigene0007135 and Unigene0088781) were randomly

selected to verify the accuracy of the RNA-Seq results by the qRT-PCR technique. The total

RNA was extracted with Omega RNA Extraction Kit (Shanghai, China), and then reverse-tran-

scribed the 1-strand cDNA by using the PrimerScript™ RT Master Mix Kit (TaKaRa, Dalian,

China). Specific primers of DEGs are designed via the Primer-BLAST server (S1 Table).

qRT-PCR samples were labelled with PowerUp™ SYBR Green Master mix reagent (Thermo

Fisher, China) and then performed on ABI ViiA™ 7 Real-time PCR system (ABI, USA). A total

of 3 biological repeats were performed, each with 4 technical repetitions. Actin was used as the

internal reference gene, and the relative expression level was calculated by the 2−ΔΔCt method.

3 Results

3.1 Phenotype and antioxidative enzyme activity analysis in T. ramosissima
leaves

In the CK group, there was no salt secretion in the leaves of T. ramosissima at 0h, 48h and

168h. However, leaves began to excrete a small amount of salt at 48h under 200 mM NaCl

treatment, and the salt secretion reached the maximum amount at 168h under NaCl treatment

(Fig 1). These findings showed that the amount of salt secretion in leaves increased along with

the prolongation of NaCl treatment time.

The activities of SOD, POD and CAT in the leaves of T. ramosissima showed an increasing

trend under 200mM NaCl for 48h and 168h, compared with the control group. In particular,

the activities of SOD and POD were significantly higher than those of the control group after

either 48h or 168h. The CAT activity increased slightly but had no significant change, com-

pared with the control group (Fig 2). These results showed that SOD and POD activities under

salt stress in the leaves of T. ramosissima.

3.2 Sequencing quality analysis

Using IlluminaHiSeq™4000, obtained multiple high-quality bases at 0h, 48h and 168h were

obtained in T. ramosissima leaves under 200mM NaCl stress, and Q20 reached more than

95%, and Q30 reached more than 90% and the GC content is above 44% (Table 1), indicating

that the quality of the transcriptome sequencing is relatively high, which is reliable for further

analysis.

3.3 Unigene basic notes

Results showed that a total of 105,702 Unigenes were spliced in this study. There are 53,385,

46062, 31587, and 36087 Unigenes with gene annotations in the Nr, KEGG, KOG, and Swis-

sProt databases, respectively, and a total of 27,670 Unigenes were simultaneously screened

with annotations in the four major databases (Fig 3).

3.4 Quantitative expression analysis of DEGs

Taking the CK group as the control, the transcription data of T. ramosissima under NaCl stress

treatment at 0h, 48h and 168h were compared and analyzed, respectively. DEGs were screened

with the standard of FDR value <0.05, p value <0.05 and |log2FC| > 1 after correction. In the

CK-0h v.s. NaCl-48h comparison group, a total of 11,754 gene expression levels were detected,

in which 6374 genes were up-regulated and 5380 genes were down-regulated under NaCl
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treatment. In the CK-0h v.s. NaCl-168h comparison group, a total of 7768 gene expression

changes were detected, in which 2542 genes were induced and 5226 genes were reduced under

NaCl treatment (Fig 4).

3.5 GO analysis of DEGs

Through GO annotation analysis, the above-mentioned DEGs can be divided into 3 categories:

biological processes, cellular components, and molecular functions, and a total of 51 different

classification groups were observed (Fig 5). In detail, in the CK-0h v.s. NaCl-48h comparison

group, the up-regulated genes were slightly more than the down-regulated genes, while in the

CK-0h v.s. NaCl-168h comparison group, the down-regulated genes were significantly more

than the up-regulated genes. In the broad category of biological process, DEGs are mainly con-

centrated in cellular process, metabolic process, single-organism process and response to stim-

ulus (Table 2). In the molecular function category, DEGs are mainly concentrated in catalytic

activity, binding, transporter activity and structural molecule activity (Table 3). Among the

major categories of cell components, DEGs are mainly enriched in cell, cell part, organelle and

membrane (Table 4). In addition, the number of up-regulated DEGs was significantly lower

Fig 1. Salt secretion from T. ramosissima leaves under NaCl stress. [Leaf salt secretion are checked in the leaves of T.

ramosissima at 0h, 48h and 168h under 200mM NaCl treatment (The red labels indicate the salt secretion products)].

https://doi.org/10.1371/journal.pone.0265653.g001
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and the overall number of DEGs decreased, along with the time of NaCl treatment. We specu-

late that T. ramosissima leaves may respond to high NaCl stress by affecting the expression

level of related DEGs at the transcription level.

3.6 KEGG pathway analysis of DEGs in T. ramosissima leaves under NaCl stress KEGG

pathway analysis showed that 1762 and 1366 DEGs were annotated in the comparison group

Fig 2. Changes of SOD, POD and CAT enzyme activities in leaves of T. ramosissima under salt stress. (Note: The different

letters indicate significant differences at the p value< 0.05. The graph illustrates the changes of enzyme activities in SOD, POD

and CAT compared with CK group at 48h and 168h after 200mM NaCl treatment).

https://doi.org/10.1371/journal.pone.0265653.g002

Table 1. Filtered reads quality statistics.

Sample Raw data (bp) Clean data (bp) Q20 (%) Q30 (%) GC (%)

CK1-0h 6341519400 6017997220 97.34% 92.65% 45.15%

CK2-0h 6216526200 6057604903 97.54% 93.11% 45.12%

CK3-0h 6627399900 6507140412 97.77% 93.55% 45.24%

NaCl1-48h 6654895800 6541177895 98.78% 95.93% 45.04%

NaCl2-48h 6888168900 6782061623 98.72% 95.71% 44.94%

NaCl3-48h 6720560700 6605897734 98.79% 95.94% 44.90%

NaCl1-168h 6691086000 6551036697 98.85% 96.17% 45.42%

NaCl2-168h 6181114500 6032346218 98.83% 96.16% 45.44%

NaCl3-168h 6396633600 6256461214 98.93% 96.43% 45.35%

https://doi.org/10.1371/journal.pone.0265653.t001
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of CK-0h v.s. NaCl-48h and CK-0h v.s. NaCl-168h, respectively (Fig 6), which directly

reflected the changes of gene expression in leaves of T. ramosissima under NaCl stress. Among

the top 10 KEGG pathways from the CK-0h v.s. NaCl-48h comparison group, Ribosome

(ko03010) annotated to 435 DEGs, accounting for 24.69%, followed by biosynthesis of second-

ary metabolites (ko01110), phytopathogen interaction (ko04626), phenylpropane biosynthesis

(ko00940), plant hormone signal transduction (ko04075) and plant MAPK signaling pathway

(ko04016), respectively, annotated to 416 (23.61%), 88 (4.99%), 69 (3.92%), 69 (3.92%) and 59

Fig 3. Annotation diagrams obtained form 4 major databases. (Distribution map of 4 major databases annotated to

genes).

https://doi.org/10.1371/journal.pone.0265653.g003

Fig 4. Analysis of DEGs. (The differentially expressed genes were up-regulated and down-regulated in the

comparison groups of CK-0h v.s. NaCl-48h and CK-0h v.s. NaCl-168h).

https://doi.org/10.1371/journal.pone.0265653.g004
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Fig 5. GO enrichment analysis of DEGs. (The first and outer circle: the top 20 GO terms are enriched, outside the

circle is the scale of the number of genes. Different colors represent different Ontologies. The second circle: the

number of the GO term in the background gene and the Q value. The more genes, the better the bars. Long, the

smaller the Q value, the darker the color. The third circle: the bar graph of the ratio of up-regulated genes, the dark

color represents the proportion of up-regulated genes, and the light color represents the proportion of down-regulated

genes. The specific value is displayed below. The fourth and inner circle: the ratio of each GO term Rich Factor value

(number of differential genes in this GO term divided by all numbers), background grid lines, each grid represents

0.1).

https://doi.org/10.1371/journal.pone.0265653.g005
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3.35% DEGs. Among the top 20 pathways from the CK-0h v.s. NaCl-168h comparison group,

the metabolic pathway (ko1100) was annotated to 614 DEGs, accounting for 44.95%, followed

by the Biosynthesis of secondary metabolites (ko01110), Ribosomes (ko03010), Oxidative

phosphorylation (ko00190), Plant hormone signal transduction (ko04075) and Plant pathogen

interaction (ko04626), respectively, annotated to 351 (25.70%), 296 (21.67%), 104(7.61%), 72

Table 2. GO enrichment analysis of the biological process of DEGs.

GO ID GO Term CK-0hv.s.NaCl-48h (DEGs) CK-0hv.s.NaCl-168h (DEGs)

Up Down Up Down

GO:0023052 signaling 168 268 98 262

GO:0065007 biological regulation 659 563 269 728

GO:0050789 regulation of biological process 584 514 240 655

GO:0002376 immune system process 73 124 29 130

GO:0032501 multicellular organismal process 398 276 150 394

GO:0050896 response to stimulus 796 875 411 962

GO:0051704 multi-organism process 178 242 95 261

GO:0032502 developmental process 519 373 201 511

GO:0044699 single-organism process 1269 1222 592 1400

GO:0048511 rhythmic process 18 15 15 13

GO:0048519 negative regulation of biological process 90 37 22 70

GO:0048518 positive regulation of biological process 48 61 23 75

GO:0000003 reproduction 222 156 93 226

GO:0040011 locomotion 1 4 1 0

GO:0022414 reproductive process 220 152 91 223

GO:0098754 detoxification 4 0 1 2

GO:0051179 localization 457 436 197 498

GO:0001906 cell killing 0 1 0 4

GO:0040007 growth 83 68 46 102

GO:0022610 biological adhesion 2 4 4 10

GO:0009987 cellular process 1395 1456 659 1638

GO:0008152 metabolic process 1420 1479 659 1630

GO:0071840 cellular component organization or biogenesis 499 417 217 495

https://doi.org/10.1371/journal.pone.0265653.t002

Table 3. GO enrichment analysis of molecular function of DEGs.

GO ID GO Term CK-0hv.s.NaCl-48h (DEGs) CK-0hv.s.NaCl-168h (DEGs)

Up Down Up Down

GO:0001071 nucleic acid binding transcription factor activity 79 63 33 102

GO:0004871 signal transducer activity 11 26 3 30

GO:0005215 transporter activity 146 117 57 152

GO:0016209 antioxidant activity 12 23 6 18

GO:0009055 electron carrier activity 6 9 5 7

GO:0060089 molecular transducer activity 14 19 4 18

GO:0005198 structural molecule activity 119 165 52 130

GO:0003824 catalytic activity 999 1062 458 1212

GO:0098772 molecular function regulator 16 8 8 17

GO:0000988 transcription factor activity, protein binding 1 1 1 2

GO:0005488 binding 939 967 415 1104

GO:0045182 translation regulator activity 0 0 0 0

https://doi.org/10.1371/journal.pone.0265653.t003
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(5.27%) and 63 (4.61%) DEGs. In summary, DEGs are significantly enriched on the KEGG

pathway, such as metabolic pathways, biosynthesis of secondary metabolites, and plant hor-

mone signal transduction, in T. ramosissima under NaCl treatment.

3.6 Analysis of antioxidant DEGs in T. ramosissima leaves under NaCl

stress

Results showed that the expression of 39 ROS scavenging-related DEGs in the leaves of T.

ramosissima were changed under salt treatment (Table 5). Notably, there were 21 up-regulated

genes and 18 down-regulated genes from the CK-0h v.s. NaCl-48h comparison group. The

largest number of up-regulated genes is GST (7), followed by POD (4), CAT (4), APX (3), GR

(2) and SOD (1). The largest number of down-regulated genes is GST (8), followed by POD

(4), SOD (3), APX (2) and GPX (1). In the CK-0h v.s. NaCl-168h comparison group, there

were 15 up-regulated genes and 24 down-regulated genes. In particular, the largest number of

up-regulated genes are CAT(3), APX(3) and GST(3), followed by SOD(2), POD(2), and GR

(2). The largest number of down-regulated genes is GST(12), followed by POD(6), SOD(2),

APX(2), CAT(1) and GPX(1) (Fig 7). These results showed implying that the antioxidant

mechanism might be initially enhanced in T. ramosissima leaves accompanied with corre-

sponding physiological responses to resist NaCl stress during the first 48 hours. However, the

antioxidant mechanism might be initially inhibited in T. ramosissima leaves under a long time

(168 h) of NaCl treatment, just to adapt to salt stress.

3.7 Analysis of transcription factor DEGs in T. ramosissima leaves under

NaCl stress

Transcription factors play a major role in regulating plant growth and adaptation to adverse

environments, including salt stress. In this study, According to the transcriptome sequencing

of T. ramosissima leaves, many transcription factors were discovered. In this study, we did

Table 4. GO enrichment analysis of cellular component of DEGs.

GO ID GO Term CK-0hv.s.NaCl-48h (DEGs) CK-0hv.s.NaCl-168h (DEGs)

Up Down Up Down

GO:0044425 membrane part 311 296 146 333

GO:0016020 membrane 686 732 342 789

GO:0031012 extracellular matrix 1 2 0 2

GO:0044421 extracellular region part 3 3 8 2

GO:0044420 extracellular matrix component 0 1 0 0

GO:0005576 extracellular region 76 97 49 112

GO:0009295 nucleoid 2 2 0 1

GO:0030054 cell junction 193 226 93 248

GO:0099512 supramolecular fiber 2 0 0 5

GO:0019012 virion 0 3 0 2

GO:0044423 virion part 0 3 0 2

GO:0031974 membrane-enclosed lumen 6 12 8 9

GO:0044422 organelle part 502 506 232 497

GO:0032991 macromolecular complex 327 311 119 298

GO:0043226 organelle 1167 1077 595 1180

GO:0005623 cell 1345 1290 667 1430

GO:0044464 cell part 1340 1284 664 1428

https://doi.org/10.1371/journal.pone.0265653.t004

PLOS ONE Transcriptome analysis of Tamarix ramosissima leaves in response to NaCl stress

PLOS ONE | https://doi.org/10.1371/journal.pone.0265653 March 31, 2022 10 / 20

https://doi.org/10.1371/journal.pone.0265653.t004
https://doi.org/10.1371/journal.pone.0265653


select 8 statically significant DEGs, which were specifically observed and annotated in the

KEGG database. In particular, 5 WRKY (ko04626 and ko04016) annotated genes were respon-

sive to NaCl treatment. In particular, the expression levels of Unigene0010090, Uni-
gene0077293 and Unigene0079542 exhibited a downward trend at 0h, 48h and then an upward

trend at 168h. The expression level of Unigene0014406 and Unigene0024962 continuously

increased until 168h. In addition, 3 bZIP transcription factors were annotated to the KEGG

pathway (ko04016, ko01100, ko01110, ko01200, ko01212, ko04146, ko00071, ko00640,

Fig 6. Top 10 pathway analysis. (Distribution of differentially expressed genes in the top 10 KEGG pathway in the

CK-0hv.s.NaCl-48h and CK-0hv.s.NaCl-168h comparison groups).

https://doi.org/10.1371/journal.pone.0265653.g006
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Table 5. Antioxidant DEGs annotated to the KEGG pathway.

Pathway Gene ID Description Log2FoldChange

CK-0hv.s.

NaCl-48h

CK-0hv.s.

NaCl-168h

SOD

ko04146 Unigene0033269 SOD4 protein, partial -1.01 -0.17

Unigene0049419 superoxide dismutase [Mn] 7.82 9.54

Unigene0050462 superoxide dismutase -1.51 -0.60

Unigene0082550 superoxide dismutase -0.57 0.26

POD

ko01100;ko01110;ko00940 Unigene0009260 peroxidase 20 -0.46 -0.59

Unigene0013825 peroxidase 1.79 -1.76

Unigene0013827 peroxidase 1.17 -0.61

Unigene0014843 peroxidase -2.95 -1.80

Unigene0029752 peroxidase 17 1.51 -0.44

Unigene0049353 peroxidase 5 -4.98 0.70

Unigene0086491 peroxidase 52 0.85 -0.74

Unigene0094375 peroxidase 31 -0.32 1.59

CAT

ko01100;ko01110;ko01200;

ko00630;ko04146;ko04016;

ko00380

Unigene0046159 catalase isozyme 1 0.58 0.73

Unigene0046160 catalase, partial 0.77 1.93

Unigene0087092 leaf catalase 0.07 -0.48

Unigene0103080 catalase isozyme 1 5.74 12.41

APX

ko01100;ko00480 Unigene0008032 L-ascorbate peroxidase 3 -0.45 -0.24

Unigene0008033 L-ascorbate peroxidase 3 0.49 0.60

Unigene0008513 peroxidase domain-

containing

0.59 -0.51

Unigene0048033 cytosolic ascorbate

peroxidase

-0.02 0.08

Unigene0105664 thylakoid ascorbate

peroxidase precursor, partial

0.90 1.55

GPX

ko01100;ko0048; ko00590 Unigene0035407 glutathione peroxidase -0.18 -0.65

GST

(Continued)
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ko00410, ko01040, ko00592 and ko04075). The expression level of Unigene0026888 and Uni-
gene0008868 exhibited a downward trend at 48h and then an upward trend at 168h, while Uni-
gene0010561 showed a downward trend at 48h and then an upward trend at 168h (Table 6).

3.8 Quantitative Real-Time PCR (qRT-PCR) validation of differential

expression

We further randomly selected 8 DEGs involved in salt stress for qRT-PCR verification (S2

Table). Results showed that the expression level of Unigene0104732, Unigene0083695 and Uni-
gene0069097 were induced at 48h but reduced at 168h, while genes of Unigene0090596, Uni-
gene0007135 and Unigene0088781 were decreased at 48h but increased at 168h. Notably,

Unigene0024962 was continuously increased while Unigene0028215 was continuously

decreased under NaCl stress. These qRT-PCR verification results are completely consistent

with the expression trends observed from the transcriptome sequencing analysis (S1 Fig).

Nonetheless, the transcriptome data obtained in this study is accurate and reliable.

4. Discussion

Tamarix plants have evolved a series of complex mechanisms to resist and adapt to salt stress

in the long term. In particular, Tamarix plants have typical multicellular salt glands, which can

Table 5. (Continued)

Pathway Gene ID Description Log2FoldChange

CK-0hv.s.

NaCl-48h

CK-0hv.s.

NaCl-168h

ko01100;ko00480 Unigene0001041 glutathione S-transferase -3.17 -11.56

Unigene0004890 glutathione S-transferase

T1-like

-1.88 -0.68

Unigene0007072 glutathione S-transferase

U17-like

-0.08 0.49

Unigene0012650 glutathione S-transferase Mu

1-like

13.69 7.20

Unigene0015109 glutathione S-transferase

U8-like

0.11 -0.42

Unigene0020552 glutathione S-transferase -0.14 -0.07

Unigene0041633 microsomal glutathione S-

transferase 3-like

0.08 -0.34

Unigene0048538 glutathione S-transferase

U10-like

-3.33 -2.73

Unigene0056773 glutathione S-transferase -0.70 0.14

Unigene0064942 glutathione S-transferase L3 0.28 -0.10

Unigene0069058 glutathione-S-transferase 0.33 0.92

Unigene0069060 glutathione S-transferase

L3-like

-0.03 -2.16

Unigene0081745 glutathione S-transferase

U10-like

0.05 -0.14

Unigene0082147 glutathione S-transferase

F11-like

2.47 -0.45

Unigene0098941 glutathione S-transferase U9 -0.17 -5.91

GR

ko01100;ko00480 Unigene0075696 glutathione reductase 0.47 0.12

Unigene0098587 glutathione reductase-like 8.98 10.52

https://doi.org/10.1371/journal.pone.0265653.t005
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reduce plant damage from ion poisoning, which is one of the important morphological charac-

teristics of Tamarix plants to adapt to the saline environment [25]. In this study, electron

microscopy analysis showed that leaf salt secretion increased with the prolongation of NaCl

treatment, suggesting that T. tamariska may alleviate and respond to the toxicity of salt stress

via the salt secretion pathway, thereby adapting to the adverse long-term salt stresses.

Fig 7. Antioxidant mechanism related genes under NaCl treatment in T. ramosissima. (Notes: GR, glutathione

reductase; GST, glutathione S-transferases; APX, ascorbate peroxidase; GPX, glutathione peroxidase; CAT, Catalases;

POD, peroxidase; SOD, Superoxide dismutase. The number of up-regulated and down-regulated activities of each

enzyme in the reactive oxygen species scavenging mechanism shown in the figure in the comparison of CK V.S. NaCl-

48h and CK V.S. NaCl-168h).

https://doi.org/10.1371/journal.pone.0265653.g007
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The response of plants under salt stress is quite complex that needs multiple gene families

and regulatory mechanisms involved in many biological pathways, including metabolism, sig-

nal transduction, energy production and transportation, ion penetration and transportation

[35]. A comprehensive transcriptome analysis of T. ramosissima plants helps to reveal the

molecular mechanisms of Tamarix plants in response to salt stress.

4.1 Enhanced active oxygen scavenging capacity in T. ramosissima
Plants are usually affected by various unfavorable environmental factors, including salt stress,

that results in a large amount of ROS accumulation. In this present study, 39 ROS scavenging-

related DEGs were significantly regulated under NaCl stress, implying that ROS scavenging

mechanisms were indispensable for T. ramosissima plants under NaCl stress.

SOD, POD and CAT enzymes are involved in ROS scavenging in plant cells. Under abiotic

stresses, expression of SOD, POD and CAT related genes are prone to be up-regulated [36].

Notably, the expression level of the TaSOD1.7 gene in leaves increased significantly, and the

salt tolerance of transgenic wheat was enhanced [37]. In this study, 1 SOD, 4 POD and 4 CAT

related genes were induced, while 3 SOD and 4 POD related genes are down-regulated at 48 h

of NaCl treatment. Even168 hours after finishing NaCl treatment, there are still 2 SOD, 2 POD

and 3 CAT related genes were up-regulated and 2 SOD, 6 POD and 1 CAT related genes were

down-regulated. Together, these genes mentioned above may contribute to the increased

enzyme activities of SOD and POD in T. ramosissima leaves under NaCl treatment.

Both APX and GPX are the key enzymes for enzymatically removing ROS, protecting cells

by catalyzing H2O2, and playing an important role in plant adversity stress. APX family genes

are involved in plant tolerance to drought, heat, salt, oxidation and biological stresses [38]. In

this study, the expression of 3 APX related genes was up-regulated and 2 genes were down-reg-

ulated under NaCl treatment. However, only one GPX related gene was down-regulated. We

guess that APX and GPX genes in T. ramosissima leaves may respond to salt stress in different

ways.

Glutathione S-transferase (GST) is involved in detoxification and antioxidant defence, pro-

tecting plants from different abiotic stresses and adversities, and playing multiple roles in plant

growth and development [39–42]. In particular, GST was involved in salt stress and GST-

related genes are non-sensitive to low and medium NaCl (�100 mM) concentration but are

sensitive to high NaCl (�200 mM) stress [39, 46]. In this study, 3 GST related genes were up-

Table 6. Gene annotation of transcription factors.

Gene ID Description Pathway Log2 fold change

CK-0hv.s.NaCl-

48h

CK-0hv.s.NaCl-

168h

Unigene0010090 Transcription factor

WRKY33

ko04626;ko04016 -0.75 -0.40

Unigene0014406 WRKY DNA-binding

protein 27

ko04626;ko04016 0.46 0.79

Unigene0024962 WRKY transcription factor 1 ko04626 0.64 0.69

Unigene0077293 WRKY transcription factor ko04626;ko04016 -1.96 -2.04

Unigene0079542 WRKY transcription factor

11

ko04626 -0.20. 0.18

Unigene0026888 bZIP4 ko04016 0.67 0.36

Unigene0008868 bZIP2 ko01100;ko01110;ko01200;ko01212;ko04146;ko00071;ko00640;ko00410;

ko01040;ko00592

0.6439 -0.011

Unigene0010561 bZIP10 ko04075 -0.8186 -0.38502

https://doi.org/10.1371/journal.pone.0265653.t006
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regulated and 8 genes were down-regulated in the leaves at 48 h, and 3 genes were up-regulated

and 12 genes were down-regulated at 168 h, implying that there may exist both positive and

negative regulation of GST in T. ramosissima under NaCl stress, and the negative regulation

may be the dominant.

GR is one of the plant antioxidant enzymes and a flavoprotein oxidoreductase, which exists

in eukaryotes and prokaryotes, and plays an important role in the elimination of ROS in the

process of plant oxidative stress [43]. The expression of Oryza sativa GR3 [44] and Jatropha
JcGR [45] are all up-regulated under salt stress. Similar to the previous studies, two GR related

genes were up-regulated in T. ramosissima leaves under NaCl stress. We speculate that GR

might be involved in the adaptation of T. ramosissima to NaCl stress in a positive direction.

4.2 Responsive transcription factors under NaCl treatment ins T.

ramosissima
Transcription factors are indispensable for plants to respond to abiotic stresses [13]. WRKY is

one of the most important transcription factor families, which has been verified to participate

in a variety of metabolic processes and plays an important role in the regulation of transcrip-

tional reprogramming related to plant biological and abiotic stress responses [46–48]. In this

study, Unigene0024962, which encodes a WRKY transcription factor, was up-regulated by

NaCl treatment, while Unigene0079542 was decreased at 48 h but increased at 168 h, which is

consistent with the previous reports in WRKY family genes in soybean [49] and Reaumuria tri-
gyna [50]. The expression of CaWRKY27 in pepper was down-regulated by NaCl stress [51],

which is in contrast to our findings. Notably, Unigene0014406 was continuously induced by

NaCl treatment, suggesting that this gene may be inevitably involved in the response of T.

ramosissima to salt stress. In addition, bZIP transcription factors play an important regulatory

role in plant growth and environmental stress response [52, 53]. The expression of Uni-
gene0008868 was significantly up-regulated by NaCl treatment, which is consistent with that of

Huang’s findings in ramie, implying that the bZIP transcription factor plays an important reg-

ulatory role in response to salt stress [54]. Moreover, MYB is one of the most diversified tran-

scription factor families in plants in terms of quantity and function, which plays important

roles under abiotic stresses [55, 56]. In this study, the expression level of Unigene0088781
decreased in the first 48 hours and then increased in a long time under NaCl treatment, sug-

gesting that this gene may be active, especially during a specific period under salt stress. Similar

findings were also observed in Medicago sativa seedlings [57] and Rosa rugosa petals [58].

5. Conclusions

The raw data of transcriptome sequencing of T. ramosissima leaves in response to NaCl stress

was spliced into 105702 Unigenes, and 54238 annotated Unigenes were retrieved in the 4

major functional databases of KEGG, KOG, NR and SwissProt. The expression profiles of

DEGs are slightly different between short time (48h) and long time (168) treatments. In partic-

ular, ROS scavenging genes and transcription factor encoding genes (including WRKY, MYB

and bZIP family) are sensitive to NaCl treatment with distinct regulatory statuses. This study

provides the theoretical basis and gene resource for further molecular mechanisms towards

salt tolerance in T. ramosissima.
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