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Abstract: Saccharopolyspora erythraea is considered to be an effective host for erythromycin. However,
little is known about the regulation in terms of its metabolism. To develop an accurate model-driven
strategy for the efficient production of erythromycin, a genome-scale metabolic model (iJL1426) was
reconstructed for the industrial strain. The final model included 1426 genes, 1858 reactions, and
1687 metabolites. The accurate rates of the growth predictions for the 27 carbon and 31 nitrogen
sources available were 92.6% and 100%, respectively. Moreover, the simulation results were consistent
with the physiological observation and 13C metabolic flux analysis obtained from the experimental
data. Furthermore, by comparing the single knockout targets with earlier published results, four
genes coincided within the range of successful knockouts. Finally, iJL1426 was used to guide the
optimal addition strategy of n-propanol during industrial erythromycin fermentation to demonstrate
its ability. The experimental results showed that the highest erythromycin titer was 1442.8 µg/mL
at an n-propanol supplementation rate of 0.05 g/L/h, which was 45.0% higher than that without
n-propanol supplementation, and the erythromycin-specific synthesis rate was also increased by
30.3%. Therefore, iJL1426 will lead to a better understanding of the metabolic capabilities and, thus,
is helpful in a systematic metabolic engineering approach.

Keywords: genome-scale metabolic model; Saccharopolyspora erythraea; iJL1426; erythromycin pro-
duction; n-propanol; process optimization

1. Introduction

Erythromycin, a broad-spectrum macrolide antibiotic, has the advantage of acting
against most Gram-positive, atypical pathogenic bacteria and is suitable for patients allergic
to penicillin [1]. In addition, a series of derivatives of erythromycin, such as azithromycin,
roxithromycin, and clarithromycin, have been sought for their antiparasitic, antitumor,
immunosuppressive, neurotrophic, anti-inflammatory, and gastrointestinal therapeutic
activities [2]. Thus, it has been occupying a crucial position in the antibiotic market.
Saccharopolyspora erythraea (S. erythraea) is recognized as the primary strain of erythromycin
production under the industrial-scale system. Lately, with the application of several tech-
niques, such as random mutations, metabolic engineering modifications, and optimizations
of the process conditions and media, the productivity of S. erythraea in the fermentation
process has been significantly improved [3–7]. However, the industrial production of
erythromycin remains inefficient compared to some other antibiotics, such as penicillin [8].
Moreover, the time spent adapting the optimal process conditions and feeding strategies to
novel industrial recombinant strains is still significant, as time-consuming empirical trials
are the reliable primary strategy used to achieve high-yielding processes. Although many
reports have suggested the success of some rational approaches to regulation strategies,
most of the mechanisms by which industrial S. erythraea increases its yield remain unclear.
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A more comprehensive understanding of cellular metabolism is urgent and necessary to
enhance the erythromycin titer further.

The genome-scale metabolic model (GSMM) is a network representation of an or-
ganism’s metabolic capacity constructed from an annotated genome by using inferred or
proven gene–protein–reaction (GPR) relationships, and transport reactions and estimated
biomass compositions [9]. The network of reactions and metabolites in the GSMM can
be represented by a stoichiometric matrix. Subsequently, the matrix is used as a core
input to predict the phenotype of a specific organism subject to disturbance or its behav-
ior in different growth environments by employing various constraint-based modeling
approaches. A detailed reconstruction protocol was described in a previous report [10].
To enable an efficient and in-depth understanding of metabolic metabolism, several re-
search groups have reconstructed a number of consensus genome-scale models (GSMMs)
of S. erythraea [11,12]. The S. erythraea-specific GSMMs were built based on genomic and
physiological information. Currently, there are two released GSMMs of S. erythraea, iZZ1342
and S. erythraea NRRL23338-GSMR, with the most recent one published in 2018 [12]. The
iZZ1342, an upgraded version of S. erythraea NRRL23338-GSMR, was reconstructed based
on the latest genome annotations, multi-omics databases, and annotations in the literature,
which includes a more comprehensive reconstruction. Compared to the previous S. ery-
thraea NRRL23338-GSMR, the iZZ1342 significantly improves the number and coverage
of reactions, metabolites, and annotated genes. These models describe reaction networks
that account for the conversion of all known specific substrates into biomass, erythromycin,
and other metabolites. By integrating a linear-based programming framework, the GSMMs
can be used to computationally determine enzyme rates under various environmental con-
ditions. Furthermore, the GSMMs not only allow in vitro prediction of the effects of gene
deletion, gene overexpression, or underexpression but can also identify metabolic targets
to reduce by-product formation, and combine multi-omics data types in a computational
framework [13,14].

In this study, a specific genome-scale metabolic network model, iJL1426, was devel-
oped for an industrial S. erythraea E3 as a support tool for interpreting experimental data
to better understand cell growth and erythromycin production pathways. The iJL1426
was a more efficient and comprehensive GSMM for S. erythraea E3, based on the previous
model iZZ1342, and supplemented and modified with knowledge gained from S. erythraea
NRRL23338-GMR, various available databases, and multi-omics data. iJL1426 was writ-
ten in level 3 of the systems biology markup language (SBML) format and is compatible
with the COBRA toolbox (https://opencobra.github.io/cobratoolbox/stable/, accessed
on 28 January 2021) in Matlab (MathWorks Inc., Natick, MA, USA). Then, using iJL1426 as
the basis for constraint-based optimization analysis, an engineering strategy was proposed
that may increase the overproduction of erythromycin due to the increased availability of
the primary precursor, n-propanol. Subsequently, the optimal n-propanol feeding strategy
for erythromycin overproduction in an industrial strain S. erythraea E3-∆sucC was explored.
The insights obtained in this study could serve as an efficient reference and guide further
investigations of S. erythraea metabolism.

2. Results
2.1. Properties of the Constructed GSMM

Detailed information on the comparison results between iJL1426 and the other released
GSMMs of S. erythraea is summarized in Table 1. The reconstructed model iJL1426 of
S. erythraea E3 was upgraded in many aspects compared to iZZ1342. Firstly, the number of
annotated genes was increased from 1342 to 1426 based on the genomic and transcriptomic
data of the industrial strain E3. Secondly, the amounts of metabolic reactions were increased
to 1684 after removing redundant and invalid reactions, and adding novel exchange
reactions and spontaneous reactions to the model. Subsequently, the elemental and charge
conservation in the metabolic reactions were corrected. Additionally, the biomass equations
in iZZ1342 were corrected and upgraded by referring to the relevant literature. Finally,
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some vacant metabolic pathways in iZZ1342 were filled in (such as the gluconeogenesis
pathway and n-propanol utilization pathway). Therefore, the results demonstrated that
iJL1426 had an increase in the total number of reactions and the number of metabolites
compared to iZZ1342 published in 2018, which indicated that the scale of this reconstructed
model was significantly enriched. In addition, the number and proportion of annotated
genes, and the number of reactions with explicit gene annotation, were boosted. The final
model included 1426 genes, 1858 reactions, and 1687 metabolites. Overall, the iJL1426 was
upgraded in all aspects compared to the two published versions of the model.

Table 1. Comparison of the main characteristics of S. erythraea.

Characteristics iJL1426 iZZ1342 [12] NRRL23338-GEMR [11]

Genome size 8.2Mb 8.2 Mb 8.2 Mb
Total genes 7714 7233 7233

Genes assigned 1426 1342 1272
effective genes 1426 1291 1272

Annotation coverage (%) 18.5% 17.9% 17.5%
Total reactions 1858 1684 3985

Unique reactions 1858 1611 1482
Metabolic reactions 1632 1525 3872

Transport and exchange reactions 225 133 113
Metabolites 1687 1614 1546

GPR associations 1492 1441 -
Reactions with genes assigned 1492 1441 1223

Reactions without genes assigned 366 243 2762

2.2. Model Validation
2.2.1. Verification of Carbon and Nitrogen Source Availability

To predict the physiological state of cell growth under different scenarios, the relevant
data related to phenotypic experiments were collected from previous reports and supple-
mentary experiments. In short, 27 carbon sources and 31 nitrogen sources were validated
in total. The flux balance analysis (FBA), with biomass reaction as the objective function,
was employed to simulate the growth of S. erythraea E3 in each carbon or nitrogen source.
The results demonstrated that 25 carbon sources and all nitrogen sources could support the
growth of S. erythraea E3 based on the simulation obtained from iJL1426, which is in good
agreement with the published data reported in the relevant literature and experimental
data. In addition, the accuracy of iJL1426 increased by 22% and 12% compared to the
previous version of the model, respectively. However, when pyruvate and acetate were
applied as the only carbon sources, respectively, the simulation obtained from iZZ1342
and iJL1426 showed false negatives. This might be due to the fact that the pyruvate and
acetate utilization pathway is a cellular ATP-consuming process; meanwhile, the model
has no other energy source supplement. The utilization pathways of pyruvate, acetate, and
several other acids were compared, in addition to the silico simulations and experimental
results. The addition of these compounds might affect the extracellular pH, which, in turn,
triggers changes in the metabolic mechanisms. Therefore, we hypothesize that there may
be some unknown utilization pathways for pyruvate and acetate. These utilization and
conversion processes for pyruvate and acetate can be addressed by subsequent experiments.
For example, 13C-assisted isotope labeling experiments combined with genomic annotation
information to find novel metabolic pathways, which can further improve the accuracy
and prediction of the model. The results related to the growth of S. erythraea E3 on various
carbon and nitrogen sources are summarized in Tables 2 and 3.

2.2.2. Verification of Physiological Metabolic Parameters

Additionally, the physiological metabolic parameters of the high-yielding strain E3
were selected as the criteria for model validation. The results illustrated in Figure 1
demonstrate that the results of the reconstructed model simulations were consistent with
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the in vivo experimental data. However, the simulated value was slightly higher than
the experimental value, which was mainly attributed to the simulation obtained from
the GSMMs under an ideal situation. Briefly, the model could avoid excess by-product
generation during the simulation by optimizing the objective function, which made the
carbon migration in the model more favorable to the target product. Overall, the specific
growth rate of the cell and the specific erythromycin production rate exhibited the same
trend, as shown in Figure 1, which essentially verified the accuracy and reliability of
the model.

Table 2. Prediction of the ability of S. erythraea E3 to utilize different carbon sources (+ represents
growth and – represents non-growth).

Carbon Source Observed in Experiment Predicted in Model Reference

D-Glucose + + [15]
sucrose + + [15]

D-Xylose + + [15]
Mannose + + [12]
Mannitol + + [12]

L-Rhamnose + + [12]
L-Arabinose + + [15]
D-Mannose + + [12]
D-Fructose + + [15]
Raffinose + + [12]

D-Galactose + + [15]
inost + + [12]

Melibiose + + [12]
D-Ribose + + [15]

alpha,alpha-Trehalose + + [15]
Maltose + + [15]
β-Lactose + + [15]
α-Lactose + + [15]
Pyruvate + – [12]

2-Oxoglutarate – – [12]
Succinate – – [12]
Fumarate – – [12]
Acetate + – [12]

Propanoate + + [12]
Citrate + + [12]

(S)-Malate + + [12]
(S)-Lactate – – [12]

Table 3. Prediction of the ability of S. erythraea E3 to utilize different nitrogen sources (+ represents
growth and – represents non-growth).

Nitrogen Source Observed in Experiment Predicted in Model Reference

L-Valine + + [12]
L-Threonine + + [12]
L-Isoleucine + + [12]
L-Leucine + + [12]

L-Methionine + + [12]
L-Aspartate + + [12]
L-Glutamine + + [12]

L-Phenylalanine + + [12]
L-Glutamate + + [12]

L-Serine + + [12]
L-Proline + + [12]
Glycine + + [12]
L-Lysine – – [12]
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Table 3. Cont.

Nitrogen Source Observed in Experiment Predicted in Model Reference

L-Histidine + + [12]
L-Cysteine + + [12]

L-Asparagine + + [12]
L-Alanine + + [12]
L-Arginine + + [12]
L-Tyrosine – – [12]

L-Tryptophan + + [12]
Urea + + [12]

4-Aminobutanoate + + [12]
Xanthine – – [12]

Hypoxanthine – – [12]
Ammonium chloride + + [12]
Ammonium nitrate + + [15]
Ammonium acetate + + [15]
Ammonium oxalate + + [15]

Ammonium carbonate + + [15]
Ammonium sulfate + + [12]

Ammonium dihydrogen phosphate + + [15]
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Figure 1. The result of the predicted and measured µ and specific erythromycin production (qEry)
of S. erythraea E3. (a) The comparison results of the µ under the condition of the optimal syn-
thetic medium; (b) the comparison results of the qEry under the optimal chemical-defined medium
condition. Red represents the simulated results of the GSMM iJL1426, and blue represents the
experimental data.

2.2.3. 13C metabolic Flux Analysis Validation

The GSMMs play a considerable role in quantitatively predicting cellular metabolism
and further exploring the enhanced properties of production strains through metabolic
engineering [16]. However, there might be significant differences between the fluxes calcu-
lated in vivo and those simulated in vitro. Therefore, the fluxes obtained from metabolic
flux analysis were commonly performed for comparison with the simulated results ob-
tained from FBA to further assess the predictive accuracy of iJL1426. Here, the data of some
specific metabolic pathways was obtained by performing 13C-labeled tracing experiments
in this study, and this part of the trials was completed in our laboratory and published [7].
The flux values between the experimental data and simulation are presented in Figure 2a.
The metabolic profiles obtained from the FBA simulations were consistent with those ob-
served in the experimental measurements. Additionally, the correlation coefficient between
the simulated and observed values reached 0.9153 (Figure 2b), indicating the satisfying
performance of iJL1426.
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Figure 2. The distribution of the intracellular central metabolism flux (mmol/gDCW/h). (a) Metabolic
flux profiles of the central metabolism of S. erythraea. The upper number represents the flux acquired
from the 13C metabolic flux analysis, and the lower number represents the flux simulated from our
model iJL1426; (b) consistent changes in fluxes can be found in both the calculated 13C fluxes and the
FBA calculation using iJL1426.

2.2.4. Validation of Knockout Phenotypes

Finally, the accuracy of the model was further validated by comparing the effect of
target gene knockout on the erythromycin production rate. Four metabolic targets ac-
quired from previous reports: SACE_0728 [2], SACE_0731 [17], SACE_5639 [5,18], and
SACE_6669 [19], were used to simulate the single-gene knockout experiment. The compari-
son in Table S1 revealed that the simulations for the four selected inactivation targets were
in good agreement with the previous literature. To sum up, the accuracy and predictive
ability of the model were proved to be reliable and accurate by several reports and avail-
able experimental data, such as the utilization of different carbon and nitrogen sources,
physiological metabolic parameters, 13C metabolic flux analysis results, and specific gene
deletion on erythromycin profiles. Therefore, iJL1426 could be applied to perform various
in silico predictions and applications.

2.3. Model Prediction of Essential Gene Targets In Silico for Strain Design

Compared with conventional random mutagenesis and screening, the high-quality
GSMMs can combine the knowledge of genomic, kinetic, and regulatory information to
locate key gene targets, thereby designing industrial strains that can enhance the pro-
duction of the target metabolite [14,20]. The relationships between genes, proteins, and
reactions (GPRs) established during the reconstruction of the GEM model can be applied to
effectively predict genotypes by the specific desired phenotypes. In this study, the single-
GeneDeletion function in COBRA Toolbox v3.0 was employed to predict essential genes
and dispensable genes, which are provided in the Supplementary Materials. The prediction
results demonstrated that 96 genes were regarded as essential genes and the remaining
ones were dispensable ones. The number of essential genes decreased compared to the
previous version of the model [12], which might be attributed to the optimal chemical-
defined medium used in the simulation with more constraints. As illustrated in Figure 3,
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the simulations showed that the essential genes were mainly distributed in the metabolic
pathways of purine and pyrimidine metabolism, energy synthesis and metabolism, amino
acid synthesis, and pantothenic acid and coenzyme A synthesis.
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2.4. Model Application of Process Optimization for n-Propanol Supplementation
2.4.1. Analysis of n-Propanol Supplementation on Erythromycin Metabolism

As an essential source of erythromycin precursor synthesis, n-propanol needs to
be adequately supplemented in an industrial-scale fermentation system [5,8]. However,
excessive residual n-propanol in the fermentation broth has some toxic effects on cellular
metabolism. Here, the feeding strategy of n-propanol was optimized for an industrial
strain with a rational approach. Firstly, the robustness of n-propanol supplementation was
analyzed on the specific erythromycin synthesis rate using iJL1426. The results showed
that the shadow price was 0.052 when the n-propanol uptake rate was 0 mmol/gDW/h,
indicating that a 1 mmol/gDW/h increase in the uptake rate of n-propanol resulted in a
0.052 mmol/gDW/h enhancement in the specific erythromycin production rate (Figure 4).
When the uptake rate was set to 0.04 and 0.1 mmol/gDW/h, the shadow prices were 0.022
and 0, respectively, and the shadow prices became negative as the uptake rate of n-propanol
increased. Briefly, a trend that first rises and then falls in the erythromycin-specific synthesis
rate was observed with the enhanced n-propanol feeding rate.

Subsequently, the intracellular metabolic flux distribution at different n-propanol
uptake rates was simulated using iJL1426. The results illustrated in Figure S1 demonstrated
that the majority of n-propanol entered the tricarboxylic acid (TCA) cycle from methyl-
malonyl CoA to succinyl CoA when the rate of n-propanol uptake was increased during the
simulation, apart from the conversion into two precursors for the synthesis of erythromycin.
The difference between the two simulations might be due to the fact that the set rate of
glucose uptake does not produce enough ATP for the entire metabolic network. Thus,
n-propanol was selected as a second carbon source to produce more ATP for the metabolic
network by oxidative metabolism. Meanwhile, the carbon flux to the two precursors for
erythromycin synthesis decreased, ultimately leading to a lower erythromycin-specific
synthesis rate. In other words, a linear increase in erythromycin yield is not promoted by
an increase in the n-propanol feeding rate.
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2.4.2. Cellular Physiological Parameters at Different Propanol Feeding Rates

To further analyze the effect of the n-propanol feeding rates on the metabolism and
physiology of the E3-∆sucC, we compared the differences during fermentation under the
three process conditions in a 5-L bioreactor (Figure 5). The cell growth in all three modes
was increased during the erythromycin synthesis phase (Figure 5a), suggesting that the
supplementation of n-propanol promoted the primary cellular metabolism. Moreover, the
erythromycin titers were increased by 15.9%, 45.0%, and 15.2%, respectively (Figure 5b). In
addition, the residual amount of n-propanol in mode 1 and mode 2 gradually decreased
after 84 h, indicating that the utilization of n-propanol was higher compared to mode 3
(Figure 5c).

Subsequently, to gain insight into the effect of different n-propanol feeding rates on
the metabolism of S. erythraea E3-∆sucC, the specific glucose, n-propanol consumption,
and erythromycin synthesis rates were calculated after n-propanol supplementation in
the 5-L bioreactor (Figure 5d–f). The results demonstrated that the erythromycin-specific
synthesis rates changed significantly after switching the n-propanol feeding rates during
the fermentation process. Specifically, although the trends of the erythromycin-specific
synthesis rates were the same for the four groups of fermentation modes, it was worth
noting that the erythromycin synthesis rate of mode 2 was higher than the other three modes
from 60–120 h of n-propanol supplementation. Then, the erythromycin synthesis rate in
the four modes showed a decreasing trend at 120 h, which might be attributed to autolysis
during the late stage of fermentation. From the perspective of glucose consumption, the
changes showed a similar trend between the four experimental modes. However, the
specific glucose consumption rate in mode 2 was slightly higher than in the other three
modes after the supplementation of n-propanol in the stationary phase, indicating that the
cellular physiological metabolic capacity of mode 2 was in a higher state.

Additionally, the oxygen uptake rates (OURs) were significantly higher in mode 2 and
mode 3 than in mode 1 during the cell growth phase (0–40 h) (Figure 5g). The increased
OUR indicated that the cellular respiration levels of mode 2 and mode 3 were elevated
during the early fermentation phase. Once the cells enter secondary metabolism, the major
cellular physiological activities transition to metabolic maintenance and erythromycin
synthesis [21]. The carbon dioxide evolution rate (CER) of mode 2 was higher than that of
the rest mode after 60 h (Figure 5h). In addition, the respiratory quotient (RQ) was used to
characterize the cellular utilization capability of reduced carbon sources. Meanwhile, the
levels of RQ were relatively low in all three supplementation modes (Figure 5i), indicating
that the cells might have metabolized more reducing components [8,21]. The high uptake
rates of n-propanol were in good agreement with the trends of CER during the rapid
erythromycin formation state in model 2. Therefore, it can be concluded that the depletion
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of n-propanol leads to the fluctuation in CER, and more n-propanol is involved in the
erythromycin synthesis pathway in model 2.
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erythromycin fermentation process. (a) DCW (g/L); (b) titer of erythromycin (µg/mL); (c) resid-
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(mmol/gDCW/h); (g) OUR (mmol/L/h); (h) CER (mmol/L/h); (i) RQ.

2.4.3. Metabolic Flux Analysis

Although the effect of the strain on erythromycin synthesis in different modes can
be analyzed by the differences in physiological metabolic rates, the detailed intracellular
metabolic responses to perturbations at different n-propanol feeding rates were unclear. To
analyze the effect on erythromycin synthesis in various modes of n-propanol addition in
depth and provide a scientific basis for further metabolic modification and fermentation
regulation, metabolic flux analysis was utilized to investigate the cellular metabolism. The
rapid erythromycin synthesis phase (96–108 h) of the strain in different modes was chosen
for metabolic flux analysis. In addition, the carbon recoveries were calculated in this period
and ranged from 95.4–101.3%, respectively, which met the criteria for further metabolic flux
analysis (Table 4).

The results of the metabolic flux distributions are presented in Figure 6. From the per-
spective of substrate consumption, the specific n-propanol uptake rates gradually increased
for the three feeding modes. Specifically, mode 2 had the highest uptake rate of glucose,
and the rate of succinyl CoA synthesis was similar in all four modes. In terms of the central
carbon metabolism, the reaction fluxes of the pentose phosphate (PP) pathway increased
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by 3.8%, 23.1%, and 15.4%, respectively, compared to the control group. In addition, the
fluxes of the TCA cycle in mode 2 increased by 4.7% while they reduced by 4.2% and 18.1%
in mode 1 and mode 3, respectively. Meanwhile, the metabolic fluxes decreased in the three
modes for the glycolysis pathway. The glycolysis pathway and TCA cycle mainly provide
precursors for the synthesis of the cell and ATP for cellular maintenance. Here, the cellular
metabolic levels in mode 2 were higher than in the other modes, thereby causing a more
significant improvement in erythromycin synthesis by increasing the energy supplement.
The above results demonstrated that the experimental values of the erythromycin-specific
synthesis rate were in good agreement with the simulations, which, in turn, indicated that
iJL1426 had a satisfactory accuracy and predictive capability.

Table 4. Variation rate and carbon recovery rate of each group of engineered strains E3-∆sucC during
96–108 h.

CK Mode 1 Mode 2 Mode 3

qGlucose (mmol/gDCW/h) 0.219 ± 0.003 0.184 ± 0.002 0.194 ± 0.002 0.150 ± 0.001
qpropanol (mmol/gDCW/h) 0 0.073 ± 0.003 0.105 ± 0.005 0.115 ± 0.005

qCO2 (mmol/gDCW/h) 0.826 ± 0.004 0.837 ± 0.003 0.968 ± 0.005 0.701 ± 0.005
qEry (mmol/gDCW/h) 0.002 ± 0.001 0.003 ± 0.001 0.003 ± 0.001 0.003 ± 0.001

qsuc-coA (mmol/gDCW/h) 0.013 ± 0.001 0.012 ± 0.001 0.012 ± 0.002 0.014 ± 0.001
µ(h-1) 0.001 ± 0.001 0.001 ± 0.001 0.002 ± 0.001 0.001 ± 0.001

Carbon recoveries (%) * 95.5 96.6 97.4 95.8

* Carbon recoveries = [(qCO2 ∗ 1 + qEry ∗ 37 + qsuc-coA ∗ 25 + µ ∗ 1000/32.75)/(qGlucose ∗ 6 + qpropanol ∗ 3)] ∗ 100%.
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The numbers near the metabolic reaction in the figure represent the metabolic flux value of the
reaction; the unit is mmol/gDCW/h. The values in the figure from top to bottom are the response
flux of the control group, mode 1, mode 2, and mode 3.

3. Discussion

With the development of the antibiotic industry, S. erythraea has been considered a
unique and attractive strain for the industrial production of erythromycin. Here, we recon-
structed and evaluated the GSMM of an industrial strain S. erythraea E3, named iJL1426,
which contains the latest gene annotation information and can be used in constraint-based
analysis. The reconstruction was based on homology with the previously reported model
iZZ1342 and intensive and comprehensive manual curation of the model by complement-
ing the model reconstruction using the automated tool modelSEED web service. We
significantly expanded the metabolic scope and coverage compared to the template recon-
struction of iZZ1342 and performed the reconstruction to identify the metabolic properties
of S. erythraea E3. In addition, the connectivity of the metabolic network was dramatically
improved, significantly reducing the number of blocked reactions and associated dead-end
and orphan metabolites. The final version of the model represents the most comprehensive
GSM reconstruction developed for this strain. Moreover, an understanding of the role of
n-propanol degradation in the accumulation of coenzyme A-like precursors is critical when
attempting to discern the metabolic properties of erythromycin production in S. erythraea.
To validate the predictions of the model, the rate of n-propanol addition was optimized
in this study for the pre-obtained genetically engineered strain E3-∆sucC using iJL1426 at
the most suitable level of the adult medium. Thus, the reconstructed model provides a
valuable tool as a starting point for model-driven generation of genetic engineering and
culture strategies to increase erythromycin synthesis in S. erythraea.

In this study, we performed labor-intensive re-annotation and comprehensive manual
curation and model refinement during the model reconstruction process. Specifically, the
genomic and transcriptomic data of the high-yielding strain E3 obtained from sequencing
were first compared with the model strain NRRL23338 for comprehensive analysis. The
incorrect gene annotation information and GPR relationship in iZZ1342 were corrected.
There were 73 corrected genes, among which 51 genes without a corresponding GPR
relationship in the database were deleted. After remedying the incorrect gene information,
the 409 annotated genes with EC numbers that were missing after comparison with E3
were supplemented to the novel model. However, some false positives may exist. For
instance, proteins involved in DNA methylation or rRNA modification also have EC
numbers, but their functions are usually considered ineffective responses for metabolic
network models. In total, 135 genes with valid GPR relationships were obtained and
77 GPRs relationships. Meanwhile, the curation processes were strictly followed according
to the Methods and Materials sections in terms of the metabolites and reactions. Overall,
the reconstructed model iJL1426 involved 1426 annotated genes, 1687 metabolites, and
1858 metabolic reactions. Compared with the previous version of the model iZZ1342,
the numbers were improved by 10.5%, 2.8%, and 10.3%, respectively. Subsequently, the
validation steps of the model applied data obtained from batch cultures and 13C-labeling
experiments, making a valuable contribution to a better understanding of its physiological
characteristics, as little is known about the regulation of the phenotype of S. erythraea E3.
Specifically, the model was accessed by measuring the availability of different carbon and
nitrogen sources. A remarkable enhancement in the prediction accuracy was observed at
22% and 12% compared to the iZZ1342 when using different carbon and nitrogen sources,
respectively. Then, the simulation showed good agreement with the experimental data
acquired from the physiological growth parameters and in vivo 13C metabolic flux analysis,
respectively. Moreover, the predicted results showed that the inactivation of four genes
increased the rate of erythromycin synthesis, which is consistent with the published studies.

The consistency, metabolic connectivity, and mass and charge balance of the recon-
structions were greatly improved due to the extensive curation of the individual model
components. Then, to demonstrate the application capability of the model, the iJL1426 was
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used to guide the optimization of the n-propanol supplementation experiments. The simu-
lations showed that the erythromycin-specific synthesis rate was proportional to the uptake
rate of n-propanol when the uptake rate of n-propanol was about 0~0.1 mmol/gDW/h. The
specific synthesis rate of erythromycin was then maintained at a stable stage, and decreased
as the uptake rate of n-propanol was more significant than 0.11 mmol/gDW/h. Therefore,
it is vital to optimize the reasonable feeding rate of n-propanol for the erythromycin fer-
mentation process in an industrial-scale system. As an essential precursor and key node for
erythromycin synthesis, six molecules of methylmalonyl-CoA and one molecule of malonyl-
CoA can synthesize one molecule of erythromycin A [22,23]. A previous study suggested
that a 50% improvement in erythromycin titers could be observed by enhancing the copy
number of the methylmalonic acid variant enzyme operon in wild-type strains. Therefore,
it could be speculated that the synthesis rate of methylmalonyl-CoA is the rate-limiting
step in erythromycin biosynthesis. Here, the flux distributions from the succinyl-CoA
node to the methylmalonyl-CoA node in the four modes were 0.014, 0.012, 0.013, and 0.010
mmol/gDCW/h, respectively. Compared to the three modes of n-propanol supplemen-
tation, a higher yield of methylmalonyl-CoA, which is metabolized via the succinyl-CoA
node, in mode 2 was observed. There are two ways to supply methylmalonyl-CoA to
the erythromycin synthesis pathway in S. erythraea: namely, reversible isomerization of
succinyl-CoA and carboxylation of malonyl-CoA [24,25]. In addition, the enhancement of
the n-propanol feeding rate increased the rate of intracellular propionyl-CoA production
by 40.5–50.0% compared to mode 1 based on the metabolic flow analysis. The metabolic
flow rate to erythromycin under mode 2 increased by 33.3% compared to modes 1 and 3.
It can be seen that the improvement in the erythromycin precursor concentration makes
an essential contribution to the increase in erythromycin production. Moreover, it was
noteworthy that the PP pathway had a significantly higher reaction flux in mode 2. Since
the primary role of the PP pathway was to provide precursors for cellular growth and
NADPH formation, and erythromycin was mainly synthesized during the stationary phase,
in which the growth was practically stagnant, the PP pathway was used primarily to
provide NADPH during erythromycin fermentation. Meanwhile, the synthesis process of
erythromycin needed to consume NADPH, and the improvement in the PP pathway was
beneficial as it promoted the synthesis of erythromycin [5,8,21,23]. Therefore, the results
demonstrated that n-propanol at 0.05 g/L/h was the optimal feeding rate for the S. ery-
thraea E3-∆sucC in a 5-L bioreactor in this study, which was in good agreement with the
observation obtained from the model simulation. Overall, the above results demonstrated
that the iJL1426 model had satisfying accuracy and predictive ability, which provides a
powerful tool and lays a solid foundation for metabolic characterization and fermentation
process optimization of S. erythraea.

4. Materials and Methods
4.1. Microorganism, Media, and Culture Conditions

The industrial S. erythraea strains E3 and E3-∆sucC were mainly used in this study.
The culture conditions and the medium for microbial fermentation culture were the same
as previously described [6,7]. Briefly, an industrial strain for erythromycin production was
cultured in a 5-L bioreactor and monitored by the multi-fermenter control system Biostar
(Shanghai Guoqiang Bioengineering Equipment Co., Ltd., Shanghai, China). The pH was
fixed at 7.0 and controlled by 1 M NaOH solution, allowing for a variation of 0.2. The
dissolved oxygen was maintained at a saturation concentration of 30%. Three feeding
batches of n-propanol supplementation experiments were conducted independently in
triplicate, starting with continuous feeding of n-propanol at a predetermined rate 60 h after
inoculation. Specifically, the control group was supplemented with ammonium sulfate at a
rate of 0.02 g/L/h until 144 h of fermentation up to 60 h, followed by mode 1, mode 2, and
mode 3, all supplemented with ammonium sulfate at this flow rate. In addition, mode 1
was supplemented with n-propanol at 0.025 g/L/h; mode 2 was supplemented with
n-propanol at 0.05 g/L/h; and mode 3 was supplemented with n-propanol at 0.075 g/L/h.
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4.2. Analytical Methods

Samples were taken every 12 h from the bioreactor to determine the biomass, glucose,
n-propanol consumption, and erythromycin production. Briefly, biomass was determined
as the dried cell weight (DCW). Gas chromatography 7820 was used to analyze the con-
centration of residual n-propanol in the fermentation broth [5]. Residual glucose and
erythromycin concentrations were analyzed by high-performance liquid chromatography
(HPLC) as described previously [19]. Online measurements of pH, DO, OUR, and CER were
achieved using dedicated custom electrodes (Mettler Toledo Co., Ltd., Zurich, Switzerland)
and a process mass spectrometer (MAX300-LG, Extrel, Waltham, MA, USA), respectively.

4.3. iJL1426 Model Reconstruction

The reconstruction process strictly followed the protocol recommended by Thiele
and Palsson [10]. In this study, the iJL1426 was improved and upgraded in four aspects
compared to the previous version of the model. Firstly, the reactions were re-annotated
with the latest genomic annotation information (JABNNH000000000) specified for the
high-yielding strain S. erythraea E3 to ensure the model was more suitable for industrial
production. Then, the newest transcriptomics data (GSE134767) measured for S. erythraea E3
was used to perform preliminary manual curation and refinement of the model, including
unifying the metabolite names and removing invalid and duplicate metabolic reactions.
Subsequently, the charge and mass conservation of metabolites in the iZZ1342 model were
checked in combination with several databases. Moreover, the biomass synthesis reactions
were modified by referring to the relevant literature [7].

4.3.1. Draft Model Reconstruction

The genome-scale metabolic network reconstruction for S. erythraea E3 was based on
the latest published genome annotation and carried out using the ModelSEED (https://
modelseed.org/, accessed on 16 January 2021) [26], which was a semi-automatic and open-
source application based on the Rapid Annotation of microbial genomes using Subsystems
Technology (RAST) for reconstructing, exploring, comparing, and analyzing metabolic
models [27]. By uploading the latest gene annotation results to the ModelSEED program,
the system returns an automatically constructed draft model.

4.3.2. Gap-Filling

Subsequently, the model was then imported into MATLAB for manual curation using
the COBRA toolbox [28]. Gap-filling was performed to yield a reliable and functional
model using the fastGapFill function. Since some metabolites were not fully utilized, the
accumulation of these metabolites can block the pathways and make the model inoperable.
Therefore, it was necessary to provide the corresponding exchange reactions. In addition,
a class of reactions existed in cells that did not require enzyme catalysis but could pro-
ceed spontaneously, named spontaneous reactions. After referring to the literature and
databases, some of these reactions were missing in the iZZ1342 model and were manually
supplemented in the reconstructed model. These reactions were not explicitly annotated
with genes; thus, the corresponding GPR relationships might be missing but were essential
for the integrity of the model. Some spontaneous reactions were accordingly incorporated
based on the gaps presented in the model, which avoided the generation of new gaps
due to the addition of spontaneous reactions, and then referred to multiple databases to
annotate the added spontaneous reactions.

4.3.3. Curation of Directionality and Reversibility

Since a wrong direction may lead to a severe decrease in the accuracy of the model, we
then corrected the directionality and reversibility of the metabolic reactions after construct-
ing a draft model. Here, the eQuilibrator was employed to calculate changes in the Gibbs
free energy under standard conditions to infer the directionality of the reactions [29]. Specif-
ically, we assumed that most reactions were reversible unless the eQuilibrator predicted a

https://modelseed.org/
https://modelseed.org/
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significant change in the Gibbs free energy (>30 kJ/mol) under standard conditions (25 ◦C,
1 bar), pH 7.0, and 1mM concentration of reactants [30,31]. Meanwhile, an alternative
approach was to combine the thermodynamic information with network topology and
heuristic rules to assign the directionality of the reaction [32]. Additionally, various practi-
cal and feasible rules were applied to check or correct the directionality of the reactions in
the model [33].

4.3.4. Manual Refinement

A large number of invalid and redundant reactions in the draft model were checked
and evaluated. These reactions were divided into three prominent cases: first, the bias of
the original gene annotation information led to the deletion of GPRs with inappropriate
relationships; second, the correction of cofactors in the reactions led to the omission of
redundant reactions; third, the crossover phenomenon of two different metabolic pathways
led to the deletion, for instance, the same reaction appears in both metabolic pathways. The
presence of these reactions means the model did not work correctly or fell into an infinite
loop, so it was identified and deleted in time during the model refinement stage.

Additionally, the elemental and charge conservation in the metabolic reaction was
checked by the relevant scripts in MATLAB, which were available on the GitHub repository
(https://github.com/FengxuSysbio/Sery-GEM, accessed on 16 May 2022). If the element
or charge in the reaction is not conserved, two cases should be considered: first, the charge
or molecular formula of the metabolite is wrong, in which case multiple databases should
be searched for confirmation, and the proton [H] should be added on both sides of the
reaction to ensure balance; second, the stoichiometric coefficients of the metabolic reaction
itself are not balanced. In such cases, it may be necessary to add protons [H] or water
to the reaction and then perform stoichiometric coefficients’ equilibrium to satisfy the
reaction balance. Therefore, each element and charge should be balanced on both sides of
the reaction.

4.3.5. Biomass Reactions

Defining the biomass composition is essential for optimal metabolic network perfor-
mance of the target organism. The biomass reaction in iZZ1342 was mainly referred to
and taken from iMK1208 and iJO1366 [34,35]. However, the differences in the biomass
composition between various strains could decrease the accuracy of the model. Here, the
components of the cellular biomass (DNA, RNA, carbohydrates, proteins, and lipids) were
obtained from the published data by our group [7]. The biomass synthesis reactions are
presented in the supporting information.

4.4. In Silico Computation Using Flux Balance Analysis

The constraint-based FBA was performed using the COBRA toolbox and Gurobi®

Optimizer version 9.1.1 as an optimization solver for linear programming, in which the
stoichiometric matrix inside the metabolic network was the source of constraints. The
optimal solution of the system in the space of feasible flux solutions was computed and
obtained using linear programming algorithms. The biological phenotype of the opti-
mal solution in this paper was the maximization of the cell growth or specific product
synthesis rate. This problem was represented using the matrix notation and is stated as
Equations (1)–(3) [36,37]:

maximize : cT ·v (1)

Constraints : S·v = 0 (2)

vmin ≤ v ≤ vmax (3)

where S refers to a stoichiometric matrix representing the matrix composed of the stoi-
chiometric coefficients of metabolites in the metabolic reactions; v represents the vector
composed of the metabolic reactions’ fluxes; vmin and vmax are the minimum and maximum
constraints, which are defined as the maximum enzymatic reaction rate and the reversibility

https://github.com/FengxuSysbio/Sery-GEM
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of metabolic reactions, respectively; and cT refers to a weight vector, indicating the contribu-
tion of each reaction (such as the biomass reaction at the simulated maximum growth rate)
to the objective function. Glucose was chosen as the sole carbon source in the simulations.
Other extracellular metabolites, such as H2O, O2, CO2, PO4

3−, NH4+, and SO4
2−, were

set to be transported freely across the membrane intracellularly and extracellularly. All
simulations were performed on the MATLAB 2019b platform.

4.5. Model Validation

The results of the model simulation and several experiments were utilized to fully
assess the predictive accuracy of iJL1426. The physiological data and 13C metabolic flux anal-
ysis results were obtained from previous publications and experiments in this study [12,15].
Briefly, the specific substrate was considered to support growth if the predicted solution
was significantly higher than zero. In addition, the simulated value of 10−5 h−1 was used
to determine whether the cell could grow or not.

Moreover, the accuracy and reliability of the model were visually assessed by com-
paring the experimental values of the cellular-specific growth rate and the erythromycin-
specific synthesis rate with the model simulation data. When simulating the specific growth
rate, it was necessary to ensure that the substrates and other parameters required for the
growth were consistent with those under experimental conditions, such as water, hydrogen
ion, sulfate ion, ammonium ion, phosphate ion, specific oxygen consumption rate, and
specific carbon dioxide synthesis rate. When simulating the specific synthesis rate of ery-
thromycin, in addition to constraining the required essential nutrients and specific oxygen
consumption rate and specific carbon dioxide synthesis rate, it was also vital to set the
specific growth rate to be consistent with the experimental conditions; that is, to simulate
the specific synthesis rate of erythromycin at the same specific growth rate.

4.6. Model Simulation and Analysis

The essential and dispensable genes were predicted using the singleGeneDeletion
function based on the COBRA toolbox [12,28]. The flux of the reaction containing the
gene of interest was set to zero during the essential gene analysis according to the matrix of
GPR and the definition of the Boolean rule. In contrast, the bounds of the other reactions
were kept constant. Genes were classified into two groups (essential genes and dispensable
genes) based on the magnitude of the specific growth rate calculated when knocking out a
gene. An optimized chemically defined media was used to analyze these genes [6].

5. Conclusions

In this study, we developed and constructed a high-quality GSM of the S. erythraea
E3, called iJL1426. The novel model contains 1426 genes, 1687 metabolites, and 1858 reac-
tions. The model provides the most comprehensive knowledge base on the biochemistry
of S. erythraea to date, with a particular emphasis on n-propanol metabolism. By manu-
ally organizing the model on a large scale, we greatly improved the coverage and scope
of metabolism based on previously published GSMMs. With the reformulated biomass
composition, the model was able to qualitatively reproduce growth phenotypes on mul-
tiple experimentally tested nutrient sources and accurately predict and identify some
engineering targets for improved erythromycin productivity. In addition, the effect of
n-propanol on the erythromycin-specific synthesis rate was analyzed under the guidance
of the reconstructed GSMM to optimize the existing n-propanol supplementation process
for the genetically engineered strain E3-∆sucC. We strongly believe that the reconstructed
model will form a solid framework to explore and understand the metabolic properties of
S. erythraea E3 and help generate metabolic engineering and culture strategies in vitro to
improve erythromycin productivity. Furthermore, the model contains a quality control and
assurance scaffold for future reconstruction of strain-specific S. erythraea GSMs important
for biotechnology and industrial applications.
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Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/metabo12060509/s1, Figure S1: Visualization diagram of n-propanol
utilization pathway in metabolic network model iJL1426. The red line in (a) is the utilization pathway
of low-concentration n-propanol feeding rate and (b) the utilization pathway of high-concentration
n-propanol feeding rate; Table S1: The protein and biomass reaction for the S. erythraea E3; Table S2.
Information on 96 essential genes was obtained from model simulations.
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