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Abstract

DNA variants that alter gene expression contribute to variation in many phenotypic traits. In

particular, trans-acting variants, which are often located on different chromosomes from the

genes they affect, are an important source of heritable gene expression variation. However,

our knowledge about the identity and mechanism of causal trans-acting variants remains

limited. Here, we developed a fine-mapping strategy called CRISPR-Swap and dissected

three expression quantitative trait locus (eQTL) hotspots known to alter the expression of

numerous genes in trans in the yeast Saccharomyces cerevisiae. Causal variants were

identified by engineering recombinant alleles and quantifying the effects of these alleles on

the expression of a green fluorescent protein-tagged gene affected by the given locus in

trans. We validated the effect of each variant on the expression of multiple genes by RNA-

sequencing. The three variants differed in their molecular mechanism, the type of genes

they reside in, and their distribution in natural populations. While a missense leucine-to-ser-

ine variant at position 63 in the transcription factor Oaf1 (L63S) was almost exclusively pres-

ent in the reference laboratory strain, the two other variants were frequent among S.

cerevisiae isolates. A causal missense variant in the glucose receptor Rgt2 (V539I)

occurred at a poorly conserved amino acid residue and its effect was strongly dependent on

the concentration of glucose in the culture medium. A noncoding variant in the conserved

fatty acid regulated (FAR) element of the OLE1 promoter influenced the expression of the

fatty acid desaturase Ole1 in cis and, by modulating the level of this essential enzyme, other

genes in trans. The OAF1 and OLE1 variants showed a non-additive genetic interaction,

and affected cellular lipid metabolism. These results demonstrate that the molecular basis

of trans-regulatory variation is diverse, highlighting the challenges in predicting which natu-

ral genetic variants affect gene expression.
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Author summary

Differences in the DNA sequence of individual genomes contribute to differences in

many traits, such as appearance, physiology, and the risk for common diseases. An impor-

tant group of these DNA variants influences how individual genes across the genome are

turned on or off. In this paper, we describe a strategy for identifying such “trans-acting”

variants in different strains of baker’s yeast. We used this strategy to reveal three single

DNA base changes that each influences the expression of dozens of genes. These three

DNA variants were very different from each other. Two of them changed the protein

sequence, one in a transcription factor and the other in a sugar sensor. The third changed

the expression of an enzyme, a change that in turn caused other genes to alter their expres-

sion. One variant existed in only a few yeast isolates, while the other two existed in many

isolates collected from around the world. This diversity of DNA variants that influence

the expression of many other genes illustrates how difficult it is to predict which DNA var-

iants in an individual’s genome will have effects on the organism.

Introduction

DNA variants that alter gene expression are an important source of genetic variation for many

traits [1], including common disease in humans [2], agricultural yield [3,4] and evolutionary

change [5]. To map gene expression variation in the genome, expression levels are measured

in a population of individuals and related to the genotype of each individual. This approach

identifies expression quantitative trait loci (eQTLs)–genomic regions that each contain one or

more variants that affect gene expression.

eQTLs can be classified into two types based on their mechanism of action. Cis eQTLs arise

from variants that alter the expression of genes on the same DNA molecule, for example by

changing the sequence of a regulatory element in a promoter. Most cis-acting variants are

located close to or within the genes they influence, such that cis eQTLs can be detected as

“local” eQTLs that overlap the given gene. By contrast, trans eQTLs arise from variants that

change the activity and/or abundance of a diffusible factor which in turn alter the expression

of other genes. Trans eQTLs can be located anywhere in the genome relative to the genes they

affect. While they can be local (e.g., if a gene encoding a transcription factor resides next to a

gene targeted by that factor), most trans eQTLs are “distant” from the genes they affect, usually

on different chromosomes.

As in genetic mapping of other traits, identifying the specific DNA variants that have causal

effects in eQTL regions is challenging. Recent studies have made progress in identifying cis act-

ing variants (e.g. [6–10]). However, few trans-eQTLs have been resolved to single variants.

This is although most of the heritable contribution to gene expression variation arises from

trans rather than cis eQTLs [11–16], and although trans acting variation is likely to play pivotal

roles in shaping diseases and phenotypes within species [11,17]. Identifying the molecular

nature of trans-acting variants and the mechanisms by which they alter gene expression is key

to understanding the connection between genotypic and phenotypic variation. In particular,

knowledge of causal variants will allow us to examine their population frequency, distribution

and plausible evolutionary histories, ask if and how the same variants influence phenotypes

other than gene expression, and ultimately improve attempts to predict the consequences of

genome sequence variation on the organism.

Natural isolates of the yeast Saccharomyces cerevisiae have provided fundamental insights

into the genetics of gene expression variation ([12,18–34], reviewed in [35]). Particularly
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intensive efforts have been directed at the comparison between a laboratory strain (the genome

reference strain S288C, or “BY”) and a wine strain (RM11a, “RM”), whose genomes differ at

about 40,000 variants. eQTL mapping in recombinant progeny from a cross between these

strains revealed the existence of eQTL hotspots that each influence the expression of numerous

genes in trans [18]. Many of these hotspots also affect protein levels [22,36,37].

Recently, an analysis of mRNA levels in an expanded set of 1,012 BY/RM progeny provided

a more comprehensive view of regulatory variation in this cross [12]. Specifically, the 5,643

genes that were expressed in standard growth conditions were affected by more than 36,000

eQTLs, which together accounted for the majority of genetic variation in mRNA levels in this

cross. The vast majority of eQTLs (92%) acted in trans, and more than 90% of these trans-
eQTLs were co-located at 102 hotspots (Fig 1A). Some hotspots affected the expression of

thousands of genes. Their predominance makes these trans-eQTL hotspots a promising reser-

voir for understanding the molecular basis of trans-acting variation. Indeed, a small number

of hotspots in this and other yeast crosses have been resolved to their causal genes and nucleo-

tide variants [18,20,23,30,31,34,38–41]. However, progress towards a more complete view of

hotspot variants has been hampered by the challenges of engineering and measuring the

expression effects of candidate variants.

Here, we describe a strategy for the identification of causal eQTL hotspot variants that com-

bines a genome engineering approach with high-throughput quantification of fluorescently

tagged protein expression as a phenotypic readout. We used this strategy to identify causal var-

iants underlying three trans-acting eQTL hotspots in the BY and RM strains: a common mis-

sense variant in the glucose receptor Rgt2, a rare missense variant in the oleate-activated

transcription factor Oaf1, and a common variant in the promoter of OLE1 that alters the

expression of this essential fatty acid desaturase gene. We studied the effects of these variants

in more detail and discovered that the effect of the RGT2 variant is influenced by the environ-

ment, and that the OAF1 and OLE1 variants interact in a non-additive fashion and lead to

changes in cellular lipids. These results show that variants underlying trans-acting hotspots are

highly diverse. They can be common or rare in the population, different in their evolutionary

conservation, and located in the coding or noncoding region of genes encoding functionally

diverse proteins.

Results

The CRISPR-Swap strategy for engineering allelic series

To assist fine-mapping of hotspot intervals, we devised “CRISPR-Swap” (Fig 1B), a strategy for

efficient allele exchange that combines advantages of “insert-then-replace” methods [42,43] with

CRISPR/Cas9 engineering [44–46]. First, a given locus is replaced with a selectable marker cas-

sette. Second, the strain is transformed with a plasmid that expresses Cas9 and a guide RNA

(gRNA) that targets the cassette, along with a DNA repair template containing terminal homology

to sequences flanking the cassette in the genome. We designed the “gCASS5a” gRNA to specifi-

cally target a sequence shared by several selectable marker cassettes used for gene deletions in the

popular pFA6a series (e.g., KanMX6, natMX4 and hphMX4; [47–50]; S1 Fig) such that the same

gRNA can be used to replace each of these cassettes. By inserting two different cassettes flanking a

genomic region, this gRNA can be used to exchange both cassettes along with the intervening

sequence. This “double-cut” CRISPR-Swap method enables allele exchange even when the region

contains sequences essential for survival (Fig 1B). Additionally, we designed a gRNA, “gGFP”,

that specifically targets cassettes used for C-terminal tagging of open reading frames with GFP.

The gRNA/Cas9 complex is constitutively expressed from the CRISPR-Swap plasmid and

will continue to cleave at the cassette(s) in the genome until a repair is made that abolishes the

Causal variants in trans-eQTL hotspots

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008375 November 18, 2019 3 / 36

https://doi.org/10.1371/journal.pgen.1008375


gRNA recognition sequence or the cell dies. Consequently, after transformation, all colonies

that form on media lacking leucine have undergone a repair that blocks further cleavage by the

gRNA/Cas9 complex. We designed the gCASS5a and gGFP gRNAs to cleave in the cassette

but outside of the selectable marker gene, such that marker expression should be maintained if

repair occurs without exchange of the selectable marker (S1 Fig). Thus, transformants with the

Fig 1. Hotspot fine mapping strategy. A. Illustration of the possible cis and trans effects at an eQTL hotspot. A genomic region, shown in blue with several

genes depicted as wide arrows, harbors multiple variants (stars). Of these, one causal variant (red star) alters the activity and/or abundance of a gene product

(blue circle with red star), which alters the expression of multiple genes (gray arrows) in trans. Another variant is shown affecting a neighboring gene in cis, but

has no trans effect. B. A schematic showing two examples of engineering a BY allele (blue) to an RM allele (red) using CRISPR-Swap. First, a non-essential gene

is replaced by the G418 resistance cassette (KanMX) or an essential gene is flanked by the hygromycin resistance (hphMX) and KanMX cassettes. Second, the

strain is transformed with the CRISPR-Swap plasmid pFA0055 that expresses Cas9 and the guide RNA gCASS5a and the auxotrophic marker LEU2; and a

PCR-generated repair template containing the desired RM allele. The gCASS5a/Cas9 complex directs cleavage (scissors) of the cassettes. Either a single-cut or a

double-cut occurs depending on the number of cassettes present. Selection of transformants for leucine prototrophy and loss of G418, or hygromycin and

G418, resistance identifies strains with the desired RM allele replacement. C. Quantifying the expression of a representative gene affected in trans by a hotspot.

Fluorescence of the protein expressed from the GFP-tagged gene and optical density (OD600) of the culture are measured in 15 minute intervals during growth

in a plate reader. The inflection point, the point where the culture exits logarithmic growth, and two flanking points are used to determine the GFP/OD600 ratio

for phenotyping the effect of the engineered alleles.

https://doi.org/10.1371/journal.pgen.1008375.g001
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desired allele swap can be easily identified by screening for the loss of the resistance or proto-

trophy conferred by the cassette.

We analyzed the results of 40 independent allele exchanges we performed to determine the

efficiency of CRISPR-Swap. After transformation with the CRISPR-Swap plasmid expressing

either gCASS5a or gGFP and a PCR-generated repair template, a median of 87.5% of the trans-

formants no longer expressed the cassette selectable marker. We screened over 100 of these

transformants for integration of the desired allele by colony PCR, restriction digestion or

sequencing and found that all had the correct allele exchange. We also sequenced the guide

RNA recognition site in 13 transformants that remained G418 resistant and found that 2 had

the hallmarks of repair by non-homologous end-joining, while the remaining 11 were repaired

using the homologous sequence present in the GFP-His3MX cassette in these strains (see

below) to repair the locus. We observed no difference in CRISPR-Swap efficiency among the

two strain backgrounds (BY and RM), the genomic loci we targeted, or the gCASS5a and gGFP

gRNAs. In summary, CRISPR-Swap readily creates allele replacements with high efficiency.

Fine-mapping of hotspot regions using GFP-tagged proteins to measure

trans-gene expression

We leveraged the ability of CRISPR-Swap to rapidly engineer allelic series at a given locus to

dissect three trans-acting hotspot regions to the causal variant. Earlier computational fine-

mapping had narrowed 26 hotspots in the BY/RM cross to three or fewer genes [12]. From

among these 26 hotspots, we selected three for experimental dissection based on the availabil-

ity of 1) a likely candidate gene given the enriched functions of the genes affected by the locus

(see details below) and 2) an abundantly expressed gene that was strongly affected by the hot-

spot in trans and that showed a clear functional relationship to the other genes affected by this

locus in trans. At each hotspot, we used the respective gene to monitor the effects of our

genome edits on gene expression (Fig 1C). We C-terminally tagged the open reading frame of

this gene with GFP, engineered the hotspot locus with CRISPR-Swap, and measured GFP fluo-

rescence in each engineered strain during growth on a 96-well plate reader (Methods). This

approach provided high-throughput measurements of gene expression for the statistically

powerful dissection of the hotspot loci.

A missense variant in RGT2 influences expression of HXT1 in trans

A hotspot locus on chromosome IV affects the expression of many genes at the mRNA and

protein levels in crosses between BY and RM [12]. In the expanded BY/RM segregant panel,

this locus had been mapped to a region containing three genes: RGT2, ARF2, and RPL35-B
(Fig 2A). The mRNA levels of 1,400 genes are affected by this hotspot in trans, and these genes

are enriched for roles in ATP synthesis and carbohydrate derivative metabolism. The strongest

trans effect was onHXT1 mRNA (LOD = 182), which encodes a low affinity glucose trans-

porter whose expression is affected by Rgt2 [51], suggesting RGT2 is likely the causal gene at

this hotspot. In support of this, genetic variation within the RGT2 coding region was previ-

ously shown to influence protein levels of the high affinity glucose transporter Hxt2p [29].

RGT2 encodes a low affinity glucose sensor located in the plasma membrane (Fig 2B; reviewed

in [52]). The BY and RM alleles of RGT2 differ at five missense single nucleotide variant

(SNVs). Three of these SNVs are located in the long cytoplasmic-facing C-terminal tail

required for glucose signaling, and the remaining two are within the 12 predicted transmem-

brane helices (Fig 2B). RGT2, as well as ARF2, is also influenced by a local eQTL.

To determine if RGT2 is the causal gene at this hotspot and identify the responsible variant,

we C-terminally tagged Hxt1 with GFP and created a series of allele replacements at the RGT2

Causal variants in trans-eQTL hotspots
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Fig 2. Fine mapping the causal variant in RGT2. A. Schematic of the eQTL hotspot on Chromosome IV. From top to bottom, the figure shows the

hotspot location on the chromosome and the number of genes it affects, the positions of the BY and RM sequence variants (gray lines mark synonymous

and intergenic variants and orange lines mark missense variants), the genes and their positions in the hotspot (large gray arrows; red outlines denote genes

with a local eQTL) The 90% confidence interval (light blue), 95% confidence interval (medium blue) and the position of markers perfectly linked to the

hotspot peak marker (dark blue). Modified from Supplementary File 5 in [12]. B. Schematic of the Rgt2 protein in the plasma membrane. BY / RM

missense variants are indicated by stars, with the identified causal variant in red. The missense variant amino acid positions, their resulting amino acid

change and their PROVEAN scores [53] are shown. The synonymous variants are not depicted. C. On the left are schematics of RGT2 alleles with BY

sequences in blue and RM sequences in red. Positions of SNVs are marked with a straight line and INDELs are marked with two diagonal lines. The

Causal variants in trans-eQTL hotspots
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locus using CRISPR-Swap. In both BY and RM backgrounds, deletion of RGT2 drastically

reduced Hxt1-GFP levels, confirming that RGT2 is required for proper Hxt1-GFP expression.

Replacing the BY RGT2 promoter region with the RM allele had no measurable effect on

Hxt1-GFP. Reciprocal allele replacement of the entire RGT2 coding region showed that the

RGT2 RM allele resulted in lower Hxt1-GFP expression compared to the BY allele (Fig 2C),

which is the direction of effect expected from eQTL data [12].

By engineering a series of chimeric RGT2 alleles spanning the coding region we systemati-

cally narrowed the causal region to two missense variants, neither of which were predicted to

be deleterious (Fig 2C; S1 Table). Of these, a G-to-A SNV at 241,965 bp, resulting in a valine to

isoleucine change at amino acid position 539 (V539I), recapitulated the effect of swapping the

entire coding region. In a strain that carried all RGT2 RM coding variants except V539I,

Hxt1-GFP expression was indistinguishable from the BY wildtype, suggesting that V539I is the

single causal variant in this gene. The effect of V539I on Hxt1-GFP expression was present in

both BY and RM (Fig 2C), with no evidence that the strain background influences the effect of

this variant (interaction p-value = 0.1). The variant caused a minor effect on growth rate in the

RM background, but no effect in the BY background (Table 1).

The RGT2(V539I) variant affects Hxt1-GFP expression in a glucose-

dependent manner

Increasing glucose concentrations results in an increase in the expression of Hxt1 [51]. Given

that the V539I variant lies within one of the predicted transmembrane helices that likely form

the pocket necessary for glucose sensing by Rgt2 [54], we hypothesized that the effect of the

V539I variant may change depending on the concentration of glucose in the culture medium.

To test this idea, we measured Hxt1-GFP expression in BY and RM strains with their native

RGT2 alleles as well as with engineered V539I alleles in a range of glucose concentrations

(Fig 3).

In both BY and RM, higher glucose concentrations increased expression of Hxt1-GFP

regardless of which V539I allele was present. However, the difference in Hxt1-GFP expression

between the V539I alleles showed a clear dependence on glucose levels (ANOVA test for inter-

action between allele effect and glucose concentration: p = 7e-13). The BY allele drove nearly

2-fold higher Hxt1-GFP expression than the RM allele at 1% glucose, while the difference

between alleles became almost indistinguishable at 12% glucose. The RGT2 hotspot had been

mapped in YNB medium with 2% glucose [12], which was among the concentrations at which

the V539I variant showed a large effect (Fig 3). Thus, the effect size of the V539I variant

variants in the RGT2 3’UTR and synonymous variants are not depicted. On the right are the corresponding Hxt1-GFP fluorescence levels for each allele.

The direction of the expected effect on Hxt1-GFP from [12] is shown. P-values are for tests comparing each allele to its respective wildtype. Significant p-

values are outlined. Blue boxplots indicate alleles in the BY background and red boxplots and gray background shading indicate alleles in the RM

background. Lines group measurements of the same clone. Different symbols (circles, squares, etc.) denote different plate reader runs. Small dots next to a

clone indicate a 5’UTR indel with an allele that does not match the one indicated in the allele schematics (see Methods).

https://doi.org/10.1371/journal.pgen.1008375.g002

Table 1. Effects of causal hotspot variants on growth rates.

Variant Growth rate in BY (RM allele relative to BY wildtype

allele)

p-value in BY Growth rate in RM (BY allele relative to RM wildtype

allele)

p-value in RM

RGT2
(V539I)

98% 0.5 93% 0.02

OAF1(S63L) 96% 0.09 100% >0.99

OLE1(FAR) 92% 0.3 92% 0.005

https://doi.org/10.1371/journal.pgen.1008375.t001
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underlying the RGT2 eQTL hotspot strongly depends on the environment, and the initial dis-

covery of this hotspot may have been aided by common yeast media conditions that result in a

large effect at this locus.

A missense variant in OAF1 alters expression of FAA4 in trans

Several of the eQTL hotspots identified in the BY/RM cross affect the expression of genes

involved in fatty acid metabolism. They include a hotspot on chromosome I, which affects the

mRNA and protein levels of 450 genes in trans. The locus was previously mapped to a region

containing the genes FLC2 and OAF1 [12] (Fig 4A). Neither FLC2 nor OAF1 are influenced by

a local eQTL, suggesting the causal variant is likely coding. OAF1 encodes a transcription fac-

tor that activates expression of genes involved in peroxisome related functions including the β-

oxidation of fatty acids [55–57], making it a promising candidate causal gene [58]. The BY and

RM alleles of OAF1 differ at three missense SNVs (Fig 4B).

We engineered a series of OAF1 alleles and measured Faa4-GFP expression in trans. FAA4
mRNA abundance was shown to be strongly affected by this locus (LOD score = 102, [12]),

and FAA4 encodes a long chain fatty acyl-CoA synthetase, a protein with clear phenotypic

connection to fatty acid metabolism. We found that a single T-to-C missense variant in OAF1
at 48,751 bp resulted in a decrease in Faa4-GFP expression in agreement with the direction of

effect observed in the eQTL data (Fig 4C, S2 Fig, S1 Table). The variant encodes a leucine at

position 63 in BY and a serine in RM (L63S). In the Oaf1 protein, the L63S variant is located

next to the Zn(2)Cys(6) DNA binding domain (Fig 4B) where it may alter Oaf1 binding to its

regulatory targets. The effect of L63S on gene expression was consistent in both strain

Fig 3. Effect of the RGT2(I539V) variant on Hxt1-GFP expression in different glucose concentrations. Hxt1-GFP fluorescence levels in the

four different genotypes in increasing glucose concentrations are shown. The asterisk indicates the glucose concentration used when identifying

this eQTL. Blue boxplots indicate alleles in the BY background and red boxplots and gray background shading indicate alleles in the RM

background. Lines group measurements of the same clone. Different symbols (circles, squares, etc.) denote different plate reader runs. The inset

graph shows fitted effect sizes as a function of glucose concentration. Error bars show standard errors of the mean. P-values are shown for

ANOVA models examining the various main and interaction terms.

https://doi.org/10.1371/journal.pgen.1008375.g003
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backgrounds (interaction p-value = 0.4; Fig 4C), and L63S had no detectable effects on growth

rate (Table 1).

A noncoding promoter variant influences OLE1 expression in cis and FAA4
in trans
A second fatty-acid related hotspot resides on chromosome VII and affects the mRNA levels of

977 genes, which are enriched for functions in lipid biosynthetic processes as well as the response

to endoplasmic reticulum stress. The confidence interval of this locus spans ~1 kb centered in the

noncoding region between the SDS23 andOLE1 genes (Fig 5A).OLE1 encodes the ER-bound

Δ9-fatty acid desaturase, the only yeast enzyme capable of desaturating fatty acids [60,61]. SDS23
is likely involved in regulation of the metaphase to anaphase transition of the cell cycle [62]. Given

the enrichment of target genes of this hotspot involved in lipid metabolism, we reasoned that

OLE1 is the more likely causal gene. The BY and RM alleles ofOLE1 differ at one missense SNV

and four non-coding variants (2 indels and 2 SNVs) in the SDS23 andOLE1 intergenic region.

We engineered the essential OLE1 locus using double-cut CRISPR-Swap, by flanking the

region with the HphMX and KanMX cassettes and replacing both cassettes along with the

intervening region with a series of alleles (Fig 1B). We again measured Faa4-GFP expression

in the engineered strains, given FAA4mRNA levels are strongly affected by this locus

(LOD = 78). We identified a noncoding A-to-G SNV at 398,081 bp in the intergenic region

between SDS23 and OLE1 that affected Faa4-GFP expression in the expected direction based

on the eQTL data (S3 Fig, S1 Table). This effect was consistent in both strain backgrounds

(interaction p-value = 0.8). While the BY allele of this variant decreased growth rate in the RM

background, the variant had no effect in the BY background (Table 1).

Fig 4. The OAF1 causal variant. A. Schematic of the eQTL hotspot on Chromosome IV. From top to bottom, the figure shows the hotspot location on the

chromosome and the number of genes it affects, the positions of the BY and RM sequence variants (gray lines mark synonymous and intergenic variants and

orange lines mark missense variants), the genes and their positions in the hotspot (large gray arrows), the 95% confidence intervals (medium blue) and the

position of markers perfectly linked to the hotspot peak marker (dark blue). For this locus, the 95% and 90% confidence intervals were identical. Modified

from Supplementary File 5 in [12]. B. Schematic of the Oaf1 protein domains and variants. The conserved zinc-finger domain and the ligand-binding

domain [59] are in orange. BY / RM missense variants are indicated by stars, with the identified causal variant in red. The missense variant amino acid

positions, their resulting amino acid change and their PROVEAN scores [53] are shown. The synonymous variants are not depicted. C. The figure shows

Faa4-GFP fluorescence levels for strains with the indicatedOAF1(L63S) alleles. The direction of the expected effect on Faa4-GFP from [12] is shown. P-

values are for tests comparing the allele to its respective wildtype. Blue boxplots indicate alleles in the BY background and red boxplots indicate alleles in the

RM background. Lines group measurements of the same clone. Different symbols (circles, squares, etc.) denote different plate reader runs.

https://doi.org/10.1371/journal.pgen.1008375.g004
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The causal variant is located in the fatty-acid regulated (FAR) promoter element, a region

known to be important for transcriptional activation and fatty acid regulation ofOLE1 expression

[63] (Fig 5B). BothOLE1 and SDS23 are strongly affected by local eQTLs with higher mRNA

expression linked to the BY allele, suggesting thatOLE1 and/or SDS23 expression may be affected

by the FAR variant. To test the effect of the FAR variant onOLE1 expression, we created BY

strains withOLE1 tagged with mCherry in addition to FAA4 tagged withGFP. In these strains,

the RM FAR allele significantly decreased Ole1-mCherry levels in cis and increased Faa4-GFP lev-
els in trans (Fig 5C), which are the directions of effect expected based on the eQTL results [12].

Fig 5. The OLE1 causal variant. A. Schematic of the eQTL hotspot on Chromosome VII. From top to bottom, the

figure shows the hotspot location on the chromosome and the number of genes it affects, the positions of the BY and

RM sequence variants (gray lines mark synonymous and intergenic variants and orange lines mark missense variants),

the genes and their positions in the hotspot (large gray arrows; red outlines denote genes with a local eQTL) The 95%

confidence interval (medium blue) and the position of markers perfectly linked to the hotspot peak marker (dark

blue). For this locus, the 95% and 90% confidence intervals were identical. Modified from Supplementary File 5 in [12].

B. Schematic of the SDS23 / OLE1 region. BY / RM variants in the intergenic region and missense variants in the genes

are indicated by stars, with the identified causal variant in the FAR element (peach box) in red. The missense variant

amino acid positions, their resulting amino acid change and their PROVEAN scores [53] are shown. The synonymous

variants are not depicted. C. Fluorescence levels of Ole1-mCherry (left panel) and Faa4-GFP (right panel). The BY

strains harbor both Ole1-mCherry and Faa4-GFP and the indicatedOLE1 alleles. The direction of the expected effects

on Ole1-mCherry and Faa4-GFP from [12] are shown. Lines group measurements of the same clone. Different

symbols (circles, squares, etc.) denote different plate reader runs.

https://doi.org/10.1371/journal.pgen.1008375.g005
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To further examine the cis-regulatory activity of the FAR variant, we created reporter plas-

mids with multiple alleles of the SDS23/OLE1 intergenic region driving expression of yeVenus.

When the intergenic region drove expression of yeVenus in the direction of SDS23, the pro-

moter alleles all drove similar yeVenus expression (S4 Fig). In sharp contrast, when the inter-

genic region drove expression of yeVenus in the direction of OLE1, the FAR-BY allele drove

significantly higher yeVenus expression than the RM allele, fully recapitulating the difference

between the all-BY and all-RM promoter alleles (S4 Fig). The effect did not depend on whether

the yeVenus plasmids were expressed in the BY or RM background (interaction p> 0.29).

Together, these results suggest that the FAR variant influences OLE1 in cis, as well as FAA4 in

trans.

Small changes in OLE1 expression from wildtype levels are sufficient to

affect FAA4 gene expression in trans
To explore the effect of OLE1 and SDS23 abundance on gene expression in trans, we added an

additional copy of OLE1, SDS23 or the intergenic sequence on a low-copy plasmid in a BY

FAA4-GFP strain. The presence of an extra copy of OLE1 resulted in significant reduction of

Faa4-GFP levels, consistent with eQTL data (S5 Fig). By contrast, an extra copy of SDS23
resulted in an increase in Faa4-GFP levels. An extra copy of the intergenic sequence alone did

not change Faa4-GFP levels (S5 Fig). These results further support that it is a change in OLE1
and not SDS23 expression that is responsible for the trans-effect of the hotspot on FAA4
expression.

While changes in Ole1 levels appear to be the primary cause for the trans effect on

Faa4-GFP, the noncoding FAR variant alters OLE1 expression by only about 15% (Fig 5B). To

understand the relationship between OLE1 and FAA4 over a range of expression levels, we

inserted a synthetic, inducible Z3EV promoter upstream of OLE1. This promoter can be acti-

vated precisely and quantitatively by addition of estradiol to the culture medium [64]. We

measured both Ole1-mCherry and Faa4-GFP as a function of estradiol concentration and

observed a clear anticorrelation between Ole1-mCherry and Faa4-GFP levels (Fig 6). At an

estradiol dose of 4–5 nM, the Z3EV strain expressed Ole1-mCherry and Faa4-GFP at levels

comparable to BY strains expressing OLE1-mCherry from its native promoter with either the

wildtype or FAR-RM allele. Higher doses of estradiol continued to increase Ole1-mCherry lev-

els, while Faa4-GFP dropped rapidly and reached a plateau at levels well below the native BY

strains. As expected for the essential OLE1 gene, low levels of induction resulted in poor

growth (S6 Fig). Taken together, our results indicate that the BY strain expresses OLE1 at a

level at which even slight alterations in OLE1 expression, like that caused by the FAR variant,

are sufficient to change FAA4 expression in trans.

A non-additive interaction between the OAF1 and OLE1 variants

The Oaf1 transcription factor binds throughout the OLE1 promoter including in the close

vicinity of the FAR variant [65]. This raises the possibility that the effects of OAF1(L63S) and

the FAR variant may interact with each other genetically. While neither variant had shown sig-

nificant interactions with the genetic background as a whole (see above), a specific interaction

between these two variants could have been obscured by the thousands of other sequence dif-

ferences between the BY and RM backgrounds. Indeed, the previous eQTL data contained a

non-additive interaction affecting FAA4 mRNA levels between two trans eQTLs that con-

tained OAF1 and OLE1, respectively (Fig 7A). To test if this trans-by-trans interaction could

be explained by the specific causal variants we identified here, we constructed a BY strain that

carried the RM alleles at both OAF1 and the FAR variant and compared its Faa4-GFP

Causal variants in trans-eQTL hotspots
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expression to strains that carried one or the other of these edits. The combined alleles resulted

in Faa4-GFP expression that differed from an additive allele combination (interaction

p = 0.002) in a manner that mirrored the detected eQTL interaction (Fig 7B). Specifically, in

the presence of the more active RM OAF1 allele, the FAR variant showed a greater effect than

in the presence of the less active BY OAF1 allele. As with the majority of epistatic interactions

Fig 6. Expression modulation of Ole1. Fluorescence levels of Ole1-mCherry (solid red lines) under control of the estradiol-inducible Z3EV

promoter and Faa4-GFP (solid green lines) under its native promoter at various estradiol doses. For comparison, fluorescence levels of strains with

the native OLE1 promoter with the FAR-BY or FAR-RM allele are shown as dotted and dashed lines, respectively. All strains harbor both the

mCherry tag on Ole1 and the GFP tag on Faa4. Measurements are shown as mean (dots) and standard deviations (vertical lines).

https://doi.org/10.1371/journal.pgen.1008375.g006

Fig 7. Nonadditive genetic interaction between the OAF1 and OLE1 causal variants. A. Data from [12] show levels of FAA4mRNA in 1,012 BY/RM

segregants, divided into four groups depending on their genotypes at OAF1 andOLE1. Note the slightly larger difference betweenOLE1 alleles in segregants

that carry the RM allele compared to the BY allele atOAF1. B. Faa4-GFP fluorescence levels in strains in the BY background engineered to carry the BY or RM

allele atOAF1(L63S) andOLE1(FAR). C. yeVenus fluorescence levels for strains in the BY background engineered to carry the BY or RM allele at OAF1(L63S)
and theOLE1(FAR) promoter driving yeVenus expression on a plasmid. The difference betweenOLE1 alleles in segregants (in A) or strains (in B and C) that

carry the RM allele compared to the BY allele at OAF1 are highlighted by gray arrows.

https://doi.org/10.1371/journal.pgen.1008375.g007
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identified in this cross [66], the deviation from additivity caused by this interaction is detect-

able but subtle.

To test if this trans-by-trans interaction affecting FAA4 could be mediated by a cis-by-trans
interaction between the same two variants, we introduced our yeVenus plasmids with the two

FAR alleles into BY strains with either the BY or RMOAF1(L63S) alleles. We again found a sig-

nificant interaction between the FAR and OAF1 variants (Fig 7C). In the presence of the OAF1
(L63S)-RM allele, the FAR variant resulted in a larger difference in yeVenus expression than in

the presence of the OAF1(L63S)-BY allele (p = 1.5 e-7). The OAF1 RM allele also resulted in

overall higher expression of the yeVenus construct (p = 1.6 e-6). Taken together, these results

show that the OAF1(L63S) variant and the OLE1 FAR variant interact genetically such that

their effects on gene expression in cis as well as trans are not simply additive.

The OAF1 and OLE1 variants alter lipid profiles

To test if the two causal variants in the fatty acid metabolism genes OAF1 and OLE1 alter cellu-

lar phenotypes other than gene expression, we measured overall lipid composition as well as

non-esterified (“free”) fatty acids (NEFAs) in the RM and BY strains, as well as in BY strains

with OAF1(L63S)-RM, OLE1(FAR)-RM, or both of these alleles (Fig 8 & S7 Fig). The BY and

RM strains differed in multiple metabolites (S7 Fig, S2 Table, S3 Table), and the presence of

either of the two variant alleles in the BY background also resulted in significant differences in

lipid metabolites. The BY OAF1 allele decreased the fraction of longer-chain (C18) lipids (Fig

8A) and also caused a decrease in the amount of C18 NEFAs (S7 Fig). This change resembles

the effect of an OAF1 deletion on lipid metabolism [65], consistent with the BY OAF1 allele

having reduced function (S2 Fig). The OLE1(FAR)-RM allele resulted in a significant increase

in the amount of saturated NEFAs (Fig 8B), as expected if reduced expression of the Ole1 desa-

turase caused by the FAR-RM allele results in reduced Ole1 activity. Conversely, there was not

a significant reduction in the amount of desaturated NEFAs, suggesting that their cellular

Fig 8. Lipid and fatty acid measurements. A. The fraction of C18 lipids in BY strains with wildtype or RM alleles atOAF1
(L63S) orOLE1(FAR) or a combination of both. B. The concentration of saturated and unsaturated non-esterified fatty

acids (NEFA) in the same strains. For each strain, the figure shows values for each replicate (smaller points) along with the

mean (larger points) and standard deviation (vertical lines). See S7 Fig for all measurements.

https://doi.org/10.1371/journal.pgen.1008375.g008
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levels are not solely dependent on Ole1 levels. We did not detect changes in overall lipid com-

position due to the OLE1(FAR)-RM allele (S7 Fig). Taken together, our results show that the

variants affecting OLE1 expression and Oaf1 activity translate to changes in cellular lipids.

The fine-mapped variants are the cause of the hotspot effects on mRNA

levels

We have shown that each of the variants in RGT2, OAF1, and the OLE1 FAR element affect the

protein expression of a representative gene in trans. If these variants underlie the trans-acting

hotspots, we expect them to alter the transcript levels of many genes, and that these expression

changes will correlate with the known effects of the hotspots we sought to fine-map. To test

this, we quantified transcript levels in BY strains edited at each variant (S4 Table–S6 Table).

Each of the three variants altered the transcript levels of dozens of genes including the rep-

resentative gene we used for fine-mapping (HXT1 or FAA4) with the expected direction of

effect (Fig 9, Table 2). In addition, the FAR variant caused a nominally significant (p = 0.03)

effect on OLE1 but not on SDS23 (p = 0.7), in agreement with our yeVenus reporter assay (S4

Fig). Crucially, the magnitude of expression change caused by the three variants was signifi-

cantly and positively correlated with the respective hotspot effects (Fig 9) when considering all

expressed genes. Like the vast majority of trans eQTLs [12], the three hotspots dissected here

have small effects on most genes, typically explaining only a few percent of variance in mRNA

levels. Our RNA-Seq experiment was not designed to detect such small effects at statistical sig-

nificance, which would require dozens to hundreds of replicates. When we used a lenient sig-

nificance cutoff (uncorrected p< 0.05) to restrict our analysis to genes with some evidence for

differential expression, the correlations with hotspot effects increased at each hotspot

(Table 2). These strong correlations were reflected in high directional concordance. For exam-

ple, at a more stringent threshold (false discovery rate = 10%), every differentially expressed

gene with a hotspot effect had concordant direction of effect with the given hotspot for RGT2
and OLE1, and there was just a single discordant gene (out of 30) for OAF1 (Fig 9). This strong

Fig 9. Comparison of the differential gene expression caused by each causal variant and the eQTL hotspot effects. The differential expression of an edited vs

wildtype strain is on the x-axis and the previously determined hotspot effects are on the y-axis. Hotspot effects are coefficients from a regularized linear regression

of expression values on the genotype at the respective hotspot marker [12]. Genes with non-zero hotspot effects are shown. Red points are genes with differential

expression p-value< 0.05. Purple points are genes with differential expression at FDR< 0.1. The larger red circles mark the genes used for fine-mapping. The blue

circles are genes we investigated in the confidence interval of each hotspot. The correlation between differential expression and hotspot effects is given in each

panel. For RGT2, orange circles show adenine-metabolism related genes that are described in the text.

https://doi.org/10.1371/journal.pgen.1008375.g009
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agreement between expression changes caused by the three variants and known hotspot effects

shows that these variants are causal variants at their respective hotspots.

If a hotspot is caused by multiple causal variants in the same or neighboring genes, our sin-

gle variant edit might not account for all the effects of the hotspot. Therefore, we examined

genes with transcript levels strongly affected by the hotspot that are unaffected by our variant

edits. Genes strongly affected by the hotspot at RGT2 but not by the RGT2(V539I) variant

showed a significant enrichment for “de novo IMP biosynthetic process” (corrected p = 9e-9)

and related terms in purine metabolism. This enrichment is driven by seven ADE genes with

large hotspot effects that were all non-significant in our experiment (Fig 9). We suspect that a

second variant in this region is responsible for these effects.

Population distribution and conservation of causal variants

To explore the evolutionary history of the three causal hotspot variants, we examined their dis-

tribution across a worldwide panel of 1,011 S. cerevisiae isolates with genomic sequence [67].

The BY allele at OAF1(L63S) is rare among yeast isolates (Fig 10). It is carried only by BY and

a few close relatives while the RM allele is present in all other isolates as well as related species.

Reflecting this pattern, the Protein Variation Effect Analyzer (PROVEAN) tool [53] assigned a

“deleterious” score of -5.4 to the BY allele at this variant. In our experiments, the BY OAF1
allele increased Faa4-GFP expression, which was the same direction caused by the OAF1
knockout (S2 Fig). Thus, theOAF1 hotspot is caused by a rare, derived missense variant almost

exclusive to the BY laboratory strain that probably reduces function of the Oaf1 transcription

factor.

The RGT2 and OLE1 variants show very different patterns compared toOAF1(L63S). At

RGT2(V539I), both the valine in BY and the isoleucine in RM are also encoded by related yeast

species (Fig 10). Evidently, the V539I variant can be tolerated without severe fitness conse-

quences, as reflected in a “neutral” PROVEAN score of 0.12. Within S. cerevisiae, the highly

divergent and likely ancestral group of Chinese isolates [67–69] carry the valine found in BY,

suggesting that the isoleucine in RM is derived. This derived allele has ~25% frequency in the

S. cerevisiae population, where it is predominantly found in isolates from the European wine

clade, as well as in a second group of isolates with mixed origin (Fig 10). Both the derived RM

variant and an RGT2 deletion resulted in reduced induction of HXT1 expression (Fig 2C).

At the OLE1(FAR) variant, the alanine found in BY is present in the ancestral Chinese iso-

lates, suggesting that the guanine in RM is derived (Fig 10). Indeed, the nucleotide sequence of

Table 2. RNA Seq results.

Variant Number of DE

genes

(10% FDR)

Number of DE

genes

(p < 0.05)

Correlation1 between DE2 and hotspot effect3:

genes with DE p < 0.05

Percent of DE genes (FDR <10%) with a hotspot effect;

odds ratio4 and p-value4

RGT2
(V539I)

45 183 Rho = 0.64, p� 0 86%; OR = 24, p<2.2e-16

OAF1
(L63S)

45 147 Rho = 0.80, p = 6e-15 71%; OR = 31, p<2.2e-16

OLE1
(FAR)

18 95 Rho = 0.48, p = 0.0015 50%; OR = 7, p = 0.0001

1These correlations exclude genes without a hotspot effect detected in [12].
2log2 fold change
3Hotspot effects are coefficients from a regularized linear regression of expression values on the genotype at the respective hotspot marker [12].
4Fisher’s exact test for association between differential expression and a non-zero hotspot effect

https://doi.org/10.1371/journal.pgen.1008375.t002
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the noncoding region surrounding the FAR variant is conserved among Saccharomyces sensu
stricto species, and all other species carry the alanine found in BY at this position. The RM

allele has high frequency (46%) among yeast isolates, predominantly due to near fixation

among the many isolates in the European wine clade. The allele is also present in isolates from

dairy, ale beer, and other origins. The RM allele increased FAA4 expression in trans. This is

the same direction of effect we observed when inserting the kanMX cassette immediately

downstream of OLE1. Such engineered alleles are commonly called “Decreased Abundance by

mRNA Perturbation” (DAmP) alleles and are expected to decrease gene function by lowering

mRNA transcript levels ([70]; S3 Fig).

Thus, the three causal variants identified here have diverse population genetic characteris-

tics. They include a rare, lab-specific allele and two common alleles found in a quarter or

more of the sequenced yeast isolates. At all three variants, we observed that the likely derived

allele altered gene expression in the same direction as alleles that eliminate or reduce gene

function.

Fig 10. Population genetic features of the causal variants. Neighbor joining tree of the 1,011 S. cerevisiae strains sequenced in [67]. For each causal variant,

the presence of the BY (blue), RM (red), BY and RM (purple), or other (black) allele is shown across the tree. For theOAF1 and RGT2missense variants,

amino-acid alignments with the indicated species are shown. For the intergenic FAR variant, we show nucleotide alignments as well as PhastCons conservation

scores for the depicted SDS23 / OLE1 region from the UCSC Genome Browser. In alignments, species names are abbreviated: S.c., Saccharomyces cerevisiae; S.

p., S. paradoxus; S.m., S.mikatae; S.k., S. krudriavzevii; S.b., S. bayanus; S.pa., S. pastorianus; S.e., S. eubaynus; S.a., S. arboricola; S.j., S. jurei; K.c., Kluyveromyces
lactis; D.h.,Debaryomyces hansenii; S.po., Schizosaccharomyces pombe.

https://doi.org/10.1371/journal.pgen.1008375.g010
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Discussion

We fine-mapped natural DNA variants that each result in expression changes at many genes

in trans using CRISPR-Swap, a strategy that facilitates rapid engineering of allelic series at a

given locus. CRISPR-Swap is similar to other recently developed two-step engineering

approaches (e.g. [71–74]) and has multiple advantages: 1) The great majority of clones that are

transformed with the CRISPR-Swap plasmid and repair template incorporate the desired allele

and clones without the desired allele are easily identified by screening for maintained expres-

sion of the cassette selectable marker. 2) gRNAs do not need to be designed and tested for each

region due to the use of a common gRNA. 3) Regions without a nearby PAM site can be engi-

neered because the gRNAs target integrated cassettes rather than the genomic region directly.

4) Larger regions, including those that contain essential genes can be engineered by flanking

the region with two cassettes and using a single gRNA to cut and swap both cassettes and the

intervening region. 5) Our gRNAs can be directly used to engineer existing strains that already

contain cassettes e.g., strains in the S. cerevisiae deletion and GFP collections [75,76].

While we successfully used GFP-tagged protein abundance as phenotypic readouts amena-

ble to high-throughput measurement, the hotspots we dissected had been identified via their

effects on mRNA levels. The effects of the locus on the mRNA and protein of the gene used for

phenotyping cannot always be assumed to be consistent [22,37]. Further, fine-mapping using

the expression of a single focal gene can only detect variants that influence this focal gene.

Additional variants in the same region that specifically affect other genes would be missed.

Indeed, while our RNA-Seq results were consistent with single causal variants at OAF1 and

OLE1, they suggested the presence of a second causal variant close to RGT2, which acts on

genes involved in purine metabolism. Evidently, even such narrowly mapped hotspot loci as

those we dissected here can be due to multiple causal variants with distinct effects but in close

proximity to each other, as has been observed for QTLs for other traits in yeast [77,78].

A key result from this work is that the three causal variants we identified differ from each

other in several aspects. First, the variants include two coding missense variants (in RGT2 and

OAF1), along with the cis-acting noncoding FAR variant at OLE1. In yeast, 10 additional natu-

ral variants have been experimentally demonstrated to affect gene expression in trans, and

there are 5 additional hotspots for which the gene but not the causal variant is known (S7

Table, [18,20,23,30,31,34,38–41], see also [79]) Coding variation underlies at least 13 of these

18 cases, including missense, frameshift and transposon insertion variants. In species other

than yeast, information about causal trans eQTL variants remains extremely limited [80–83].

In human genetics, searches for trans eQTLs often assume a model in which noncoding vari-

ants alter the expression of a regulator gene in cis, which in turn alters the expression of other

genes in trans [84–88]. The FAR variant at OLE1 discovered here is an example of such a

mechanism. While the predominance of causal coding variants in yeast may in part reflect the

density of coding regions in the yeast genome, it seems likely that trans eQTLs caused by cod-

ing variants may also exist in other species.

Second, the genes affected by the three variants encode different types of proteins: a glucose

sensor (Rgt2), a transcription factor (Oaf1), and the essential enzyme Ole1. While genes

encoding transcription factors are enriched in hotspot regions [12], hotspots clearly also arise

from other gene classes (S7 Table). Among these, enzymes are a particularly interesting group.

Because most enzymes do not directly regulate gene expression, metabolic changes caused by

differential enzyme activity or expression must trigger trans changes in gene expression indi-

rectly [89,90]. The FAR variant atOLE1 illustrates the indirect mechanisms that could underlie

such indirect trans effects. Its RM allele reduced Ole1 expression and increased saturated

NEFAs. Higher lipid saturation decreases membrane fluidity [91–93] which is sensed by
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membrane-bound dimers of Mga2 or Spt23 [91,94–96]. In our data, the FAR RM allele

increased MGA2 expression in trans, and some of the genes most strongly affected by the FAR

variant are known Mga2 targets (including FAA4 as well as IZH2 and IZH4; Fig 9; [97]).

Apparently, this noncoding variant perturbs mechanisms involved in membrane homeostasis,

which may ultimately alter gene expression via the transcriptional regulator MGA2.

The trans effects of the FAR variant were caused by a decrease in Ole1 levels of only about

15% (Figs 5B & 6). Such sensitivity to small expression changes may be unusual among genes.

While the BY and RM strains carry thousands of local eQTLs affecting at least half of the genes

in the genome, most of these local eQTLs do not result in detectable expression changes at

other genes in trans [12]. Little is known about whether, when, and how small expression

changes at one gene influence other genes in trans, and how some of these changes go on to

influence the organism. Pioneering studies have shown that even relatively small reductions in

the expression of the enzyme genes TDH3 [98] and LCB2 [99] can reduce fitness, and that the

relationship between gene expression and fitness is specific to each gene [100], the environ-

ment [100], and the strain background [99]. Future work will explore the causal relationships

among fitness and gene expression changes in trans.
Finally, the three causal variants we discovered also differed in their population genetic

characteristics. The OAF1(S63L) variant is rare, while the RGT2 and OLE1 variants are found

in many isolates. These two common variants differ in the degree of evolutionary conservation

of their site, with poor conservation at RGT2(V539I) and high conservation at the noncoding

FAR variant. At least in the case of RGT2, simple evolutionary conservation alone would not

have been sufficient to predict the causal variant.

At all three variants, the derived alleles affected trans gene expression in the same direction

as loss of function or reduced function alleles. While this suggests that the derived alleles are

detrimental, the high frequency in the population of the RGT2 and OLE1 alleles argues against

strong negative fitness consequences. While these two variants could potentially be beneficial

in some backgrounds or conditions, they could also be sufficiently mildly deleterious to have

drifted to high frequency, as has been proposed to be the case for many trans-acting polymor-

phisms [101,102]. Indeed, none of the three variants resulted in consistent growth differences

in both backgrounds in our culture medium (Table 1), suggesting that any fitness effects they

may have are minor or occur in other environments. For example, at RGT2, the effect of the

V539I variant onHXT1 expression was reduced dramatically simply by altering the amount of

glucose in the medium, suggesting that the long-term evolutionary consequences of this vari-

ant could be highly dependent on the environment.

With the arrival of population-scale genome sequencing [103], the functional interpretation

of individual DNA variants has become a major goal of genetics, and numerous experimental

and computational approaches aiming to predict phenotypic consequences of variants have

been developed [53,104–111]. The diverse nature of variants that cause trans-eQTLs revealed

here will make prediction of trans effects challenging. More data on the effects of variants on

gene expression in trans will be important to understand trans-regulatory variation, both from

high throughput approaches [112–118], and focused dissection of individual hotspots.

Materials and methods

Strains, plasmids, primers and media

Experiments were performed in haploid S. cerevisiae strains derived from S288C (BY4741

(MATa, his3Δ1 leu2Δ0 met15Δ0 ura3Δ0), referred to as “BY” in the text) and RM-11a, (RM

HO(BY) (MATa, his3Δ1::CloNAT, leu2Δ0, ura3Δ0 HO(BY allele) AMN1(BY allele), referred

to as “RM”). All strains used in this study can be found in S8 Table. The HO(BY) allele was
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introduced into this RM strain by replacing the hphMX cassette at HO with the BY allele in

YLK2442 (a gift from L. Kruglyak) by CRISPR-Swap. Importantly, the CloNAT resistance

gene at theHIS3 locus in RM HO(BY) is not recognized by the gCASS5a. All plasmids used in

this study are in S9 Table. All primers/oligonucleotides are in S10 Table.

We used the following media (recipes are for 1L):

YNB+2% Glu +all (6.7 g yeast nitrogen base with ammonium sulfate and without amino

acids, 20 g glucose, 50 mg histidine, 100 mg leucine, 50 mg methionine, 200 mg uracil and ster-

ilized by filtration)

YNB+2% Glu -Leu (YNB+2% Glu+all (without leucine)

YPD (10 g yeast extract, 20 g peptone, 20 g glucose)

SDC-Leu (1.66 g SC -His -Leu -Ura, 50 mg histidine, 200 mg uracil, 20 g glucose)

SDC-His (1.66 g SC -His -Leu -Ura, 100 mg leucine, 200 mg uracil, 20 g glucose)

LB (10 g tryptone, 10 g NaCl, 5 g yeast extract)

Media for selection of resistance gene expression was supplemented at the following con-

centrations: ampicillin (100 μg/ml), nourseothricin sulfate (100 μg/ml), G418 sulfate (200 μg/

ml), hygromycin B (300 μg/ml). For solid media, 20 g/L agar was added prior to autoclaving.

Yeast were grown at 30˚C. Bacteria were grown at 37˚C.

Plasmid construction

To construct the CRISPR-Swap plasmids we annealed oligos OFA0185 and OFA0186 for

gCASS5a (pFA0055) and OFA0552 and OFA0553 for gGFP (pFA0057), and ligated them into

the BclI and SwaI sites of pML107, a gift of John Wyrick (Addgene #67639) as described in

[45].

We have deposited pFA0055 and pFA0057 at Addgene under #131774 and #131784,

respectively.

The yeVenus reporter plasmids were created by PCR fusion of the OLE1 (-1 to -936) or

SDS23 (-1 to -1090) promoter fragment with the open reading frame of yeVenus, a gift of Kurt

Thorn (Addgene plasmid #8714) [119]. To create plasmids pRS415-pOLE1(BY)-yeVenus and

pRS415-pOLE1(RM)-yeVenus, theOLE1 promoter and yeVenus PCR fragments were digested

with HindIII and BglII and ligated into pRS415 [120] digested with HindIII and BamHI. To

create pRS415-pOLE1(BY-FAR-RM)-yeVenus and pRS415-pOLE1(RM-FAR-BY)-yeVenus

the OLE1 promoter PCR fragment was digested with HindIII and PstI and ligated into the

same sites of pRS415-OLE1(BY)-yeVenus_1. To create pRS415-SDS23(BY)pVenus, the SDS23
promoter and yeVenus PCR fragment was digested with SalI and NdeI and cloned into the

same sites of pRS415-pOLE1(BY)-yeVenus_1. For details on the creation of the PCR fusions

see S11 Table.

pRS415-OLE1(BY) was created by ligating the OLE1(BY) gene (-936 to+373) after PCR

amplification and digestion with HindIII (native in OLE1) and BamHI (on OFA0641 primer)

into the same sites of pRS415. pRS415-SDS23(BY) was created by ligating the SDS23(BY) gene

(-1033, +4730) after PCR amplification and digestion with BamHI and SacI into the same sites

of pRS415. pRS415-SDS23-OLE1p(BY) was created by ligating the 1009-bp intergenic region

between SDS23 and OLE1 after PCR amplification and digestion with BamHI and HindIII

into the same sites of pRS415.

Tagging genes and cassette insertion

Insertions of cassettes for genome modification were performed using a standard PCR-based

one-step method [50]. Selection markers used were HIS3MX6, which allows growth of his3-
mutants without exogenous histidine, KanMX4, which allows growth with G418, natMX6,
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which allows growth with nourseothricin sulfate/CloNAT and hphMX4 or hphNT1, which

allows growth with hygromycin B. For C-terminal tagging of HXT1, we used the

GFP-HIS3MX6 cassette for tagging of HXT1, and the mCherry-hphNT1 cassette, a gift of Jiřı́
Hašek (Addgene plasmid #74635) [121] for tagging of OLE1. For the first step of CRISPR-S-

wap, we used KanMX4 and hphMX cassettes for gene deletion or for cassette insertion without

deletion. After selection for these markers, the transformants were single colony purified and

insertion of the cassette in the correct location and absence of the wild-type allele were verified

by PCR.

Construction of repair templates for CRISPR-Swap

Repair templates were PCR amplified from BY and RM genomic DNA with primers designed

to create products with termini homologous (ranging from 84–338 bp) to the region flanking

the targeted cassette and, when possible, to be free of BY/RM sequence variants. To create

hybrid BY and RM repair templates, we used PCR SOEing techniques [122]. See S11 Table for

details on construction of each template.

CRISPR-Swap

Strains were transformed with the gCASS5a or gGFP plasmid and a PCR-generated repair

template using a standard lithium acetate procedure [123]. For each transformation, we used

25 ml of cells at OD600 = 0.4–0.8. To prepare 50 ml of cells for transformation, the cells were

pelleted by centrifugation at 3,000 g for 3 min, the supernatant removed and the cells were

resuspended in 1 ml water and transferred to a 1.7 ml microfuge tube. The cells were pelleted

at 2,500 g for 2 min, the supernatant removed, and the cells were resuspended in 1 ml of Solu-

tion 1 (0.1M LiAc, 1X TE buffer). The cells were pelleted once again, supernatant removed,

and then resuspended in 200 μl of Solution 1. For each transformation, ~125 μl of the cell mix-

ture was transferred to a 1.7 ml microfuge tube containing 100 ng of the guide RNA plasmid,

1000 ng of PCR-generated repair template and 5 μl (10 μg/μl) of salmon sperm carrier DNA

(Sigma #D7656) and the tube was incubated on a turning wheel at 30˚C for 30 min. After

which, 700 μl of Solution 2 (0.1M LiAc, 1X TE and 40% PEG 3350) was added and the mixture

was returned to the turning wheel and incubated at 30˚C for 30 min. Next, the mixture was

incubated at 42˚C for 15 min and then 500 μl of water was added. To wash the cells prior to

plating, the cells were pelleted at 2,500 g for 2 min, the supernatant removed, and the cells

were resuspended in 1 ml of water. The cells were pelleted once again at 2,500 g for 2 min, the

supernatant removed, and the cells resuspended in 200 μl of water, plated onto two SDC-Leu

plates, and incubated at 30˚C for 3–4 days. The median number of colonies growing on

SDC-Leu after single-cut CRISPR-Swap was 38 for BY and 3 for RM strains. After double-cut

CRISPR-Swap there were ~50% fewer transformants in each background. The resultant leu-

cine prototrophic colonies were single-colony purified on SDC-Leu plates and then assayed

for loss of the selectable marker cassette by identifying strains that could no longer grow on

YPD with G418, or, for OLE1 allele exchanges, YPD with G418 and/or YPD with hygromycin.

We did not cure the strains of the CRISPR-Swap plasmid with the exception of the strains

used for RNA sequencing and the RM HO(BY) strain YFA0254. In our experience, the plas-

mid is rapidly lost and therefore was likely not present during phenotyping of the strains. To

cure the strains of the plasmid, the strains were single-colony streaked and then replica plated

to SC-Leu to identify leucine auxotrophic colonies. We preserved a minimum of three inde-

pendently derived strains for each allele swap in glycerol (15% final concentration) stored at

-80˚C.

Causal variants in trans-eQTL hotspots

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008375 November 18, 2019 20 / 36

https://doi.org/10.1371/journal.pgen.1008375


Verification of allele exchange

We performed colony PCR to verify the absence of the selectable marker cassette(s) and pres-

ence of the desired allele. Further verification of variant incorporation was in some cases per-

formed by sequencing or by restriction enzyme digestion. To verify variants by enzyme

digestion, we screened for the presence of an SspI site created by the OAF1(L63S)-BY allele

and an NcoI site created by the OLE1(L304M)-RM allele. We did not always verify the allele

exchange since we found that 100% of the colonies that no longer expressed the selectable

marker had the desired allele. Special cases of allele exchange verification are described

below.

The RGT2 repair templates in some allele swaps contained a single indel variant within the

5’ homologous flanking region. In these strains, the variant was sequenced and only strains

with the desired variant were preserved when possible. In other cases, the mismatched variant

is indicated in Fig 2 and S8 Table. We found this variant to have no effect on expression of

Hxt1-GFP.

The BY FAA4-GFP OLE1(L304M) strains were created using single-cut CRISPR-Swap of

the KanMX cassette in BY FAA4-GFP DAmP(OLE1) (YFA0547) and a repair template ampli-

fied from BY genomic DNA with OFA0519, which carries the RM variant at L304M, and

OFA0120. Because the site of homologous recombination can initiate anywhere along the

OLE1 gene present in the genome, the L304M variant was verified by restriction digestion and

sequencing and 4 of 10 allele swaps successfully incorporated the RM variant at L304M.

When performing double-cut CRISPR-Swap at the OLE1 locus, we observed incorporation

of unexpected BY/RM chimeric alleles in 2/36 strains in which we genotyped at least one vari-

ant. We believe this can occur because the OLE1 repair template is homologous to the

sequence between the two cassettes, allowing recombination to occur between the repair tem-

plate and the intervening sequence. Thus, we recommend verifying all variants along the

length of the exchanged allele after performing double-cut CRISPR-Swap to ensure complete

incorporation of the desired allele.

Phenotyping of engineered strains

Precultures were inoculated with cells from strains freshly growing on YPD plates or from

glycerol stocks and grown overnight in 800–1000 μl of YNB+2% Glu+all medium in a 2-ml

deep-96-well-plate on an Eppendorf Mixmate shaker set at 1100 rpm at 30˚C. The precultures

were diluted to an OD600 = 0.05 in 100 μl of the same medium in a 96-well flat bottom plate

(Costar) and the plates were sealed with a Breathe Easy membrane (Diversified Biotech). Each

strain was measured in multiple technical replicates (different wells of the same clone), and

most strains were additionally measured as multiple biological replicates (different clones

picked from the same transformation). These replicates were distributed across different sec-

tors of the plates, to guard against potential edge effects. All plate layouts are available with the

plate reader data (see link below). The strains were phenotyped in a BioTek Synergy H1 (Bio-

Tek Instruments) plate reader at 30˚C with readings taken every 15 min for 97 cycles with 10

sec of orbital shaking between reads and 11–13 min between cycles. Cell growth was character-

ized using absorbance readings at 600 nm and protein expression was measured using fluores-

cence readings taken from the bottom of the plate with the following parameters: GFP

(excitation 488, emission 520 nm) and yeVenus (excitation 502, emission 532 nm) with an

average of 10 reads per well and gain set on extended; and mCherry (excitation 588 nm, emis-

sion 620 nm) with an average of 50 reads per well and gain set at 150.

All plate reader measurements are available at our code repository at https://github.com/

frankwalbert/threeHotspots.
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Growth of RGT2 strains in different glucose concentrations

HXT1-GFP tagged strains, BY (YFA0276-8), BY RGT2(V539I) (YFA0489-91), RM (YFA0279-

81) and RM RGT2(I539V) (YFA0492-95) were precultured overnight in 1 ml of YNB+all with

the indicated glucose concentration (1%-12% glucose w/vol.) The cultures were diluted in

100 μl of the same media and phenotyped as described above. We removed one strain

(YFA0275, a BY wild type strain present on one plate) from the analyses because it showed

highly unusual HXT1-GFP expression at high glucose.

yeVenus reporter expression

Strains BY (YFA0993), RM (YFA0254), or BY OAF1(L63S) (YFA0907) were transformed with

pRS415-based plasmids containing OLE1 / SDS23 intergenic fragments driving expression of

the yeVenus reporter. Phenotyping was performed as described above in YNB+2% Glu -Leu to

maintain the plasmids. Precultures were inoculated with transformants that were single colony

purified on SDC-Leu plates or using pools of transformants (~5–10 colonies) taken directly

from the SDC-Leu transformation plates and grown overnight, diluted, and phenotyped as

described above.

Modulation of OLE1 expression using Z3EV

The BY FAA4-GFP strain expressing the estradiol responsive transcription activator was cre-

ated by inserting pACT1-Z3EV-NATMX [64] at theHO locus, S11 Table for more details. The

OLE1 gene was then modified to have the Z3EV responsive promoter cassette (KANMX-

pZ3EV and a C-terminal fusion with mCherry-hphNT1. Cells of BY FAA4-GFP OLE1-m-
Cherry (YFA1105), BY FAA4-GFP OLE1(FAR-RM)-mCherry (YFA1140) and BY HO::

pACT1_Z3EV FAA4-GFP Z3EVpOLE1-mCherry (YFA1110; glycerol stock prepared from a cul-

ture grown in 8 nM estradiol) were precultured overnight in 250 μl of YNB+2% Glu+all with

4, 5, 6, 8, 10, 15, 20, 30 or 40 nM of estradiol (Sigma E1024: 10 μM stock solution in ethanol),

diluted in 100 μl of the same media, and phenotyped as described above.

Extraction and sequencing of mRNA

Strains BY(YFA1130), BY RGT2 back to WT(YFA1131), BY OAF1(L63S) (YFA1132), BY

OLE1(FAR-RM) (YFA1133) and BY RGT2(V539I) (YFA1134) were precultured (7 precultures

of each strain) in 1 ml of YNB+2% Glu+all as described above. After ~18 hours of growth, the

precultures were diluted to OD600 = 0.05 in 1 ml of the same media. After ~7 hours of growth,

the optical density of the cultures was measured in the plate reader and growth was continued

until an average plate OD600 = 0.37, at which time the plate was centrifuged for 3 min at 2,100

g, the supernatant removed, and each cell pellet was resuspended in 1 ml of H2O and trans-

ferred to a 1.7 ml microfuge tube. The tubes were centrifuged for 2 min at 16,000g, the super-

natant removed, and the cell pellets were immediately frozen by immersion of the tube in

liquid nitrogen and stored at -80˚C.

Five cell pellets from each strain were chosen for RNA isolation so that the average OD600

within and between strains were as uniform as possible, with an average OD600 = 0.37 (range

of 0.34 to 0.40). Total RNA was isolated from cell pellets in 5 batches (each batch contained

one of each of the 5 strains) using the ZR Fungal/Bacterial RNA mini-prep kit including the

DNase I on-column digestion step (Zymo Research). Each cell pellet was resuspended in lysis

buffer and transferred to screw-capped tubes containing glass beads and the cells were broken

open using a mini-beadbeater (Biospec Products) in 5 cycles of 2 min bead beating followed by

2 min at -80˚C. The total RNA was eluted in 50 μl of DNAse/RNAse free water and the RNA
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Integrity and concentration was measured using an Agilent 2200 Tape Station. RINe scores

ranged from 9.8–10, with an average RNA concentration of 137 ng/μl.

Poly-A RNA was extracted from 550 ng of total RNA using NEBNext Poly(A) mRNA Mag-

netic Isolation Module (NEB) and used as input into the NEB Ultra II Directional RNA library

kit for Illumina (NEB E7760) in two batches. NEBNext Multiplex Oligos for Illumina (Dual

Index Primers Set1) were used to amplify and barcode the libraries using the following cycling

conditions: Initial Denaturation at 98˚C for 30 s and 10 cycles of: 98˚C for 10 s and 65˚C for

75 s, followed by a 65˚C extension for 5 min.

The amplified DNA was quantified using Qubit DNA HS. Sample concentrations ranged

from 47–102 ng/μl. An equal concentration of each of the 25 barcoded libraries was pooled

and the average fragment size of the library was 350 bp, as determined using an Agilent High

Sensitivity chip. High-output sequencing of 76-bp single-end reads was performed on an Illu-

mina NextSeq 550 at the University of Minnesota Genomics Core. An average of 14 million

reads were obtained for each sample.

Sequencing reads are available at GEO as series GSE134169.

Lipid measurements

Strains BY (YFA0897), RM HO(BY) (YFA0254), BY OAF1(L63S) (YFA0907), BY OLE1
(FAR-RM) (YFA0914) and BY OLE1(FAR-RM)OAF1(L63S) (YFA1096) were precultured (6

precultures of each strain) for ~18 hours in 1 ml of YNB+2% Glu+all and then diluted in 7 ml

of the same media to an OD600 = 0.002 in a loosely capped 16 X 150 mm culture tube and

grown at 30˚C on a turning wheel until an approximate OD600 = 0.34 (measured in plate

reader). Samples were centrifuged for 3 min at 2,100g, the supernatant was removed and the

cell pellets were resuspended in 1 ml of water and transferred to 1.7 ml microfuge tubes. The

cells were pelleted for 2 min at 16,000g, the supernatant removed, and the cell pellets were

immediately frozen by immersion of the tube in liquid nitrogen and stored at -80˚C.

Cell pellets were shipped on dry ice to The Mayo Clinic Metabolomics Core (Rochester,

MN) for analysis. Five replicate cell pellets from each strain were resuspended in 1X PBS and

sonicated. Fatty acids and total lipid composition were measured against a standard curve on a

triple quadrupole mass spectrometer coupled with an Ultra Pressure Liquid Chromatography

system (LC/MS) as previously described [124]. Briefly, the cell pellets were spiked with internal

standard prior to extraction with tert-Butyl Methyl Ether (MTBE). Roughly 25% of the sample

was dried down, hydrolyzed, re-extracted and brought up in running buffer for the analysis of

total fatty acid composition. The remaining portion of the extract was dried down and brought

up in running buffer prior to injecting on the LC/MS for the NEFA measurement. Data acqui-

sition was performed under negative electrospray ionization condition.

Allele frequencies of the variants in the population

The phylogenetic tree used to describe the evolution of the causal variants was obtained from [67]

(personal communication). Briefly, the tree was formed from the analysis of 1,544,489 biallelic sites

across 1,011 S. cerevisiae strains using the R package “ape” [125] with the ’unrooted’ method to dis-

play the tree. For each of the three variants, the matrix of variants from [67] was used to define

which of the 1,011 strains carry the RM allele, the BY allele, both the BY and RM allele, or another

allele. The edges of the tree were colored based on the alleles each strain carries. The absence of

color continuity as seen withOLE1 and RGT2 can indicate multiple independent mutation events,

but is more likely to arise from out-crossing events leading to mosaic genomes [126].

Alignments were performed using Clustal Omega (www.ebi.ac.uk/Tools/msa/clustalo/)

with default settings. Sequences for alignment were retrieved from the NCBI nucleotide
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database. Predictions of variant effect on the function of the Rgt2, Oaf1, Sds23, and Ole1 pro-

teins were calculated using Provean (Protein Variation Effect Analyzer) (http://provean.jcvi.

org).

Computational and statistical analyses

All analyses described below were conducted in R (www.r-project.org), with individual pack-

ages indicated throughout. Figures were generated using base R and ggplot2 [127]. Analysis

code is available at https://github.com/frankwalbert/threeHotspots.

Quantification of gene expression from plate reader data

We used the ‘growthcurver’ R package [128] to fit a logistic growth curve to the OD600 read-

ings in each well. Every plate had several blank wells that contained medium but no yeast, and

we used these blank wells to correct for the optical density of the medium. We visually con-

firmed successful fit of the growth curve for every well, and additionally excluded any wells for

which growthcurver indicated poor model fit. From the fitted growth model, we extracted

growth rates as well as the “inflection point” of the growth curve, i.e. the time point at which

the population reached half its maximum capacity. We chose this time point for our measure

of expression because in practice it closely matches the OD600 values used to map the hotspots

[12], and because while cultures are still growing exponentially at this time point, they have

reached a high enough density to allow accurate quantification of fluorescence.

To obtain expression values for downstream analyses, we subtracted the mean OD600 and

mean fluorescence of the blank wells included on each plate from all other wells on the plate.

We calculated the mean of three background-subtracted time points centered on the inflection

point (Fig 1C) for OD600 and fluorescence. Downstream analyses of gene expression used the

ratio of this mean fluorescence divided by the mean OD600.

Prior to statistical analysis, we log2-transformed these fluorescence ratios. Every plate that

carried strains with the BY and RM backgrounds also carried untagged wild type control

strains without any fluorescent markers. We subtracted the average log2(fluorescence ratio)

values from these untagged strains from those of the tagged strains. Thus, the fluorescent phe-

notypes used in statistical analyses and displayed in the figures are in units of log2-fold change

compared to untagged strains with matched genetic background.

Statistical analyses of plate reader data

For fine-mapping, we used pairwise comparisons of genotypes to determine whether the

expression associated with a given edited allele differed significantly from the wild type or

other alleles. These pairwise tests were computed using mixed linear models whose random

effect terms depended on the structure of the data available for each comparison. Specifically,

two random terms were included where appropriate:

Plate identity. As fine-mapping progressed, most genotypes were measured on several

plate runs, usually along with different sets of other genotypes. This resulted in a complex data

structure in which genotypes were sometimes but not always included on the same plates, and

were run over a span of several months. To account for this structure, the model included

plate identity as a random term. To ensure that plate effects were properly accounted for in

both genotypes in a given pairwise comparison, each comparison was computed using only

data from plates that carried both genotypes under consideration. For example, while wildtype

strains were run on multiple plates, a given edited strain may only have been present on one of

these plates. In this scenario, only this one plate would be used in the statistical comparison.

Note that data in figures in the paper that display plate reader data from multiple plates were
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not corrected for plate effects. We chose to not correct for plate effects in the plots because we

wished to present a raw view of the data, and because there is no good way to apply a common

visual correction for plate identity when different genotype comparisons require different

plate corrections, depending on which genotypes were present on each plate. In the figures,

plate identity is indicated with different symbols (dots, squares, triangles, etc.). Position of the

well within the plate (e.g. edge vs center) was not considered in our models.

Clone identity. During strain engineering, we created at least three independent clones of

each strain. Clone identity was included in the model as a random effect to control for any sys-

tematic differences among these clones. In the figures, we visually grouped data from different

wells for a clone by connecting these wells with a line. For the yeVenus reporter experiments,

we collected data from individual transformed colonies as well as from small transformant

pools that each contained (and effectively averaged) multiple colonies. For statistical analyses,

we treated each small transformant pool as if it were a colony.

In the equations below, we denote random effects in parentheses. For each genotype, we

used the “lmer” function in the lme4 package [129] to fit a model of the phenotype y with the

above random effect terms as appropriate:

H0: y = (plate) + (clone) + ε
where ε is the residual error. We fit a second model that includes a fixed effect term for

genotype identity:

H1: y = (plate) + (clone) + genotype + ε
We tested for significance of the genotype term using ANOVA comparing H0 andH1.

Note that for a few comparisons in which only a single clone was run in replicate on a single

plate, we did not include random effects terms. We fit these models using the “lm” function.

P-values in plate reader analyses during fine mapping were not corrected for multiple

testing.

Tests for non-additive genetic interactions

To test for non-additive interactions of a given allele (i.e., the BY or RM allele at a given causal

variant) with the strain background (BY or RM), we fit a model with a fixed effect term for

strain background, in addition to a term for the allele at the variant of interest:

H0: y = (plate) + (clone) + strain + allele + ε
and a second model that adds an interaction term between allele and strain background:

H1: y = (plate) + (clone) + strain + allele + strain:allele + ε
We used ANOVA to test if the inclusion of the strain:allele interaction term in H1 signifi-

cantly improved model fit. These interaction tests only considered plates that contained both

alleles for the given variant in both strain backgrounds. We used the same models to test for

interactions between FAR alleles and OAF1 alleles by replacing the “RM” factor level in strain
with “BY (OAF1-RM)”.

To compare the OAF1/OLE1 allele interaction to that observed earlier in eQTL data (Source

Data 14 in [12]), we obtained expression values (Source Data 1 from [12]) and used a linear

model to regress out effects of collection batch and OD600 for these data (Source Data 2 from

[12]). We then used genotypes (Source Data 3 from [12]) at the marker positions correspond-

ing to the two interacting loci at OAF1 and OLE1 to divide the segregants in [12] into four

two-locus genotype classes and plot their FAA4mRNA levels in Fig 7A.

Dependence of the RGT2(V539I) effect on glucose concentration

To test if the effect of the causal variant in RGT2 depended on glucose concentration in the

medium, we extended our modeling framework to include glucose (log2(glucose concentration))
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as a numeric covariate. We fit a model that included all possible pairwise interactions between

strain, allele, and glucose:

H1: y = (plate) + (clone) + strain + allele + glucose + strain:allele + strain:glucose + allele:glucose
+ ε

and compared this model to simpler models from which we dropped the respective interac-

tion term of interest. For example, to test for the interaction between glucose and the allele effect:

H0: y = (plate) + (clone) + strain + allele + glucose + strain:allele + strain:glucose + ε
We computed p-values comparing these models using ANOVA.

RNASeq data handling

We used trimmomatic [130] version 0.38 to trim Illumina adapters, filter out reads shorter

than 36 bp, trim bases with a quality score of less than 3 from the start and end of each mole-

cule, and perform sliding window trimming to remove bases with an average quality of less

than 15 in a window of four bases. This filtering retained�97% of reads. We used kallisto

[131] to pseudoalign these trimmed and filtered reads to the S. cerevisiae transcriptome

obtained from Ensembl [132] build 93 based on genome version sacCer3 [133]. Following rec-

ommendations in [134], we used FastQC [135] and RSeQC [136] to examine the quality of our

25 samples and found them to all be of high quality and, importantly, highly similar to each

other. We retained all 25 samples for downstream analysis.

As a measure of gene expression, we used “estimated counts” in the kallisto output for each

gene in each sample. To exclude genes with poor alignment characteristics, we used RSeQC to

calculate Transcript Integrity Numbers (TINs) per gene and sample, and also considered

“effective gene length” produced by kallisto. We retained genes in which no sample had a

count of zero, no sample had a TIN of zero, and with effective length larger than zero. This fil-

tering retained 5,400 genes (out of 6,713 annotated) for further analysis.

RNASeq statistical analyses

Statistical analyses were conducted using the DESeq2 R package [137]. During RNA isolation

and sequencing library generation, we had collected a number of covariates and batch identities:

Bioanalyzer-based RNA Integrity Number (RIN), Bioanalyzer-based RNA concentration, Qubit-

based RNA concentration, OD600 of the culture at time of flash freezing, as well as batch for cell

harvest, RNA isolation, and library generation. Samples from our 5 genotypes had been distrib-

uted equally among these three batches. We examined the influence of these technical covariates

by comparing them to principal components computed on variance-stabilized data [137] and

found that the three batches (in particular cell harvest) appeared to influence the results. We thus

included these three batches as covariates in all further analyses. We used surrogate variable anal-

ysis (SVA) [138] to further account for unexplained technical variation and included two SVs in

our statistical model. While choices about which specific technical covariates and SVs to include

in the model did slightly alter the significance tests for individual genes, our main result of posi-

tive correlations between hotspot effects and differential expression was robust to these choices.

We fit the DESeq2 model to all 25 samples and conducted pairwise tests for differential

expression between genotypes. Specifically, we compared the edited OAF1 and OLE1 alleles to

a BY wildtype strain (YFA1130) engineered by CRISPR-Swap with gGFP to remove the GFP

tag from FAA4. We compared the edited RGT2 variant to a BY wild type strain (YFA1131)

engineered by CRISPR-Swap with gCASS5a to replace rgt2Δ::kanMX6 with the RGT2 BY

allele. The main text describes differential expression results based on either nominal p-values

(p< 0.05), or based on a multiple-testing corrected threshold computed via false discovery

rate estimation using the Benjamini-Hochberg method [139] as reported by DESeq2.
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To compare differential expression to hotspot effects, we used log2-fold changes estimated

by DESeq2 and hotspot effects that had been estimated by fitting a lasso model to all expressed

genes and all 102 hotspots, as described in [12]. These hotspot effects were obtained from

Source Data 9 in [12]. We used nonparametric Spearman rank correlation to compare differ-

ential expression with the hotspot lasso coefficients. We excluded genes with a hotspot effect of

zero. While inclusion of these genes slightly degraded the magnitude of the correlations

between hotspot effects and differential expression, all correlations remained significant and

positive. We computed two-sided Fisher’s exact tests to test if genes with significant differential

expression are more likely than expected to have nonzero hotspot effects.

Gene ontology enrichment analysis for genes with strong hotspot effects but no differential

expression was conducted using the “Gene Ontology Term Finder” tool on SGD [140]. As the

background set, we used all genes present in both the hotspot effect matrix and our RNASeq

data. As the test set, we used genes with an absolute hotspot effect of at least 0.3 and a differen-

tial expression p-value larger than 0.3.

Statistical analyses of lipid data

To correct for possible technical confounders from lipid composition and NEFAs, we used a

linear model to regress out effects of acquisition order and sample grouping. For NEFAs, we

also regressed out total protein, which had been measured from the same samples. The residu-

als from these regression were used in the statistical analyses below. To obtain total saturated,

unsaturated, C18, and C16 measures, we summed the measures for the respective individual

lipid species in these groups.

To analyze the effects of the OAF1 and OLE1 alleles in the BY background, we jointly con-

sidered the measures from the four genotypes (BY, BY(OAF1-L63S), BY(FAR-RM), and BY

with both RM alleles) by fitting a linear model to each lipid compound y that models the effects

of the OAF1 and the FAR allele at OLE1:

y = OAF1 + OLE1 + OAF1:OLE1 + ε
where ε is the residual error. We analyzed this model using ANOVA to test for main effects of

each allele as well as for the interaction term. P-values were not corrected for multiple testing.

The BY and RM backgrounds we compared using T-tests.
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S1 Fig. Guide RNA recognition sequences. A. Schematic of a cassette typically used for gene

deletions. The gCASS5a recognition sequence is marked with a bracket and the PAM site is

underlined. Start of the TEF promoter sequence driving expression of the selectable marker is in

red letters. B. Schematic of a cassette used for C-terminally tagging open reading frames with

GFP. The location of the gGFP recognition sequence is marked with a bracket and the PAM site

is underlined. The start of the GFP sequence is in neon green. The recognition sites for SalI (pink)

and PacI (purple) and the Cas9 cleavage sites (scissors) are shown to allow easy comparison of the

gRNA recognition sequences, which are specific to each cassette. Designated with arrows are the

universal primer sequences, S1 or U2 and F1, used for amplification of common cassettes.
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S2 Fig. OAF1 fine mapping. On the left are schematics of OAF1 alleles with BY sequences in

blue and RM sequences in red. Missense variants are marked with a straight line. For clarity,

synonymous and non-coding variants are not depicted. On the right are the corresponding

Faa4-GFP fluorescence levels for each allele. P-values are for tests comparing each allele to its

respective wildtype. Significant p-values are outlined. Blue boxplots indicate alleles in the BY
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denote different plate reader runs.
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S3 Fig. OLE1 fine mapping. On the left are schematics of OLE1 alleles with BY sequences in

blue and RM sequences in red. Only the one missense variant and none of the synonymous

variants in the open reading frame are marked. Variants in the non-coding region are maked
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sponding Faa4-GFP fluorescence levels for each allele. P-values are for tests comparing each

allele to its respective wildtype. Significant p-values are outlined. Blue boxplots indicate alleles

in the BY background and red boxplots and background gray shading indicate alleles in the

RM background. Lines group measurements of the same clone. Different symbols (circles,

squares, etc.) denote different plate reader runs.
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S4 Fig. yeVenus reporter expression. On the top are schematics of the SDS23/OLE1 locus

and the two orientations of the yeVenus reporter constructs. The bottom panel shows yeVenus

fluorescence levels for the indicated yeVenus reporter constructs. Blue boxplots indicate alleles

in the BY background and red boxplots indicate alleles in the RM background. Lines group

measurements of the same clone. Different symbols (circles, squares, etc.) denote different

plate reader runs.
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S5 Fig. Effects of plasmid overexpression of SDS23/OLE1 sequences on Faa4-GFP expres-

sion. Faa4-GFP fluorescence levels of strains transformed with a LEU2-CEN plasmid contain-

ing the indicated sequence. Lines group measurements of the same clone.
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S6 Fig. Growth rates as a function of estradiol dose. Error bars show standard deviations.
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S7 Fig. Lipid and fatty acid measurements. All individual measurements are shown. For each
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