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If individuals in a case/control study are subsequently observed as a cohort of cases and a cohort of controls,
weighted regression analyses can be used to estimate the association between the exposures initially recorded
and events occurring during the follow-up of the 2 cohorts. Such analyses can be conceptualized as being
undertaken on a reconstructed source population from which cases and controls stem. To simulate this popu-
lation, the cohort of cases is added to the cohort of controls expanded with the reciprocal of the case disease
incidence odds (the sampling weight) to include all individuals in the source population who did not develop
the case disease. We use a simulated dataset to illustrate how weighted generalized linear model regression
can be used to estimate the association between an exposure captured during the case/control study compo-
nent and an outcome that occurs during follow-up.

By including a larger fraction of individuals in a
source population who develop a disease than of those
who do not, case/control (CC) studies are more effi-
cient than the corresponding cohort studies in obtain-
ing measures of association between exposures and
disease risk [1–3]. With decreasing disease incidence,
this sampling fraction decreases, and the relative effi-
ciency of CC studies increases. In CC studies nested
inside a defined cohort, the sampling fraction can be
calculated directly as the number of controls, that is,
the disease-free individuals in whom exposures are

recorded, divided by the total number of individuals
who did not develop the disease during the course of
the cohort study [2–5].

Even CC studies that are not undertaken within a
defined cohort can be conceptualized as being nested
in a source population [2]. This population, or the un-
derlying, “hypothetical” cohort, is elusive because it is
neither captured in a roster nor followed to record
outcomes. In CC studies that reuse data for measuring
associations between exposures and an outcome other
than that defined by being a case, the occurrence of
the case disease can be used to calculate weights for
appropriate regression analyses [6]. Once the disease
risk is estimated, subsequent follow-up of CC study
participants in a cohort of cases (CoCa) and a cohort
of controls (CoCo) enables us to measure the associa-
tion between exposures recorded at recruitment into
the study and an outcome during follow-up, such as
growth, disease, or death. Provided there is an associa-
tion between an exposure and becoming a case, and
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cases have a higher risk of outcomes measured during follow-
up than controls, CC studies with follow-up (CCF) are more
efficient in identifying an association between the exposure
and such outcomes than the corresponding cohort study,
because the exposure is condensed in the CoCa.

We created an imagined population with a known exposure,
case disease occurrence, and outcome distribution in order to
present a conceptual framework of CCF data analysis using
what we call the reconstructed population method (RPM). We
then show how this framework can be translated into weighted
regression analysis.

DECOMPOSING THE POPULATION AND THEN
RECONSTRUCTING THE UNDERLYING COHORT
FROM THE CASES AND THE CONTROLS

Let us imagine a population with N individuals where we
recruit 1 control per case into a CC study and follow up the
CoCa and the CoCo. The exposure (E) and outcome (O) are
distributed as shown in Figure 1.

Our incident cases are recruited into this CCF study within
a short time window after the onset of a case-defining event
(D); those who do not develop D within that time window are
noncases (NC). The population was generated using functions
(given in the Supplementary Appendix) that describe how E
influences D, and how E and D separately and in combination,
influence O (Figure 2).

Because our study recruits an equal number of cases and
controls, n, the number of NC in the population is N-n.
Because n of all NC are recruited into the CoCo, the sampling

fraction is calculated as n/(N-n), and the sampling weight as
(N-n)/n [7]. In our example, where n = 2400 and N = 100 000,
the sampling fraction is 2400/(100 000–2400) = 0.02459, the
corresponding sampling weight (100 000–2400)/2400 = 40.67.

The relative risk (RR) of experiencing O given E for the
whole population, in the CoCa, among the NC, and in the
CoCo is shown in Table 1, rows A–D. The slight difference in
RR between NC (Table 1, row C) and the CoCo (Table 1, row
D) is an artifact of rounding.

The odds ratio (OR) describing the association between E
and getting D (ie, becoming a case) can be calculated from
Table 1, row E (derived from Table 1, rows B and D), which
distributes E among the cases (D+) and the controls (D−).

We now make a shift to the real world of epidemiology
where only the CCF study represented by the CoCa (Table 1,
row B) and the CoCo (Table 1, row D) is known. It is only
conceptually nested in the source population (Figure 1). When
analyzing the CCF study with the RPM, the exposure-
outcome distributions in the CoCa and the CoCo should be
identical but because they represent samples of our popula-
tion, estimated associations should be provided with confi-
dence intervals (CIs) (Table 1, rows F and G).

As an estimate for the association between E and O in the
source population, it may seem tempting to ignore the CC
sampling scheme and simply calculate RR on the combined
data of the 4800 individuals in CoCa and CoCo (Table 1, row
H). This corresponds to what Jiang et al lists as the first ad
hoc approach to secondary analysis of CC data [8]. However,
this approach assumes that D is conditionally independent of
O given E, ie, when none of the effect of E on O is mediated
by D. When getting D, on the other hand, does change the
risk of O, this approach yields an unbiased estimate of the as-
sociation between E and O only when the ratio of cases to NC
in the source population is 1:1, ie, when D risk is 50%. In
many situations, including in the Global Enteric Multicenter
Study (GEMS) [9, 10], not only may E increase the incidence
risk of D, this risk is usually much lower than 50%, and such

Figure 1. Venn diagram showing the distribution of 2400 cases and
2400 controls in relation to an exposure and an outcome in a population
of 100 000 individuals. The numbers were generated using functions
found in the Supplementary Appendix. Abbreviations: CoCa, cohort of
cases; CoCo, cohort of controls.

Figure 2. Schematic presentation of associations between an exposure
(E), a case disease (D), and an outcome (O) in a population, where
arrows indicate the direction of causality.
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an approach would accordingly overestimate the strength of
the association between E and O (Table 1, row H).

Another approach, which is suggested by Nagelkerke
et al, is to base the estimates only on the 2400 CoCo indi-
viduals (Table 1, row G) [4]. Jiang et al argues that this, in
what they call the second ad hoc approach, may be approx-
imately valid when D is rare [8], but emphasizes, just as do
Reilly et al [6], that it is inefficient because it discards the
case data. If there is an interaction between E and D on O,
ie, when the association between E and O differs between
CoCa and CoCo individuals, the bias may be substantial
and even more unpredictable.

A third approach is to calculate RRs for the CoCa and for
the CoCo, and, if there is no interaction between E and D on
O, report the average of the 2 RRs using Mantel-Haenszel

stratified analysis. This corresponds to Jiang et al’s third ad
hoc approach where the combined analysis of CoCa and
CoCo individuals is adjusted for D [8]. This approach, which
gives an RR estimate of 2.2 (95% CI, 1.4–3.5) in our example,
not only disregards the fact that cases are oversampled (see
Table 1, row H and the first ad hoc approach) but also de
facto removes the effect of E on O that operates through, ie, is
mediated by, D.

To use CCF data to estimate the association between E and
O in a given population, we need to perform the analysis on
the population reconstructed from the CoCa plus the NC. The
sampling fraction needed to estimate NC cannot be calculated
directly, but must be derived from an independent source of D
incidence risk. Thus, if R is the incidence risk of D in the time
window during which cases are recruited, and because we

Table 1. Two-by-Two Tables Showing Distributions of Exposure (E) and Outcome (O) or Disease Defining Case Status (D) as a Basis
for the Conceptual Framework of the Reconstructed Population Method

O

+ − Total Risk RR 95% CI

A Source Population
E + 70 4930 5000 0.014 2.6

− 508 94 492 95 000 0.005

B CoCa
E + 25 475 500 0.050 2.2

− 43 1857 1900 0.023

C NC
E + 45 4455 4500 0.010 2.0

− 465 92 635 93 100 0.005

D CoCo
E + 1 110 111 0.009 1.9

− 11 2278 2289 0.005

D

+ − (Odds) (OR)

E CC study

E + 500 111 4.505 5.4
− 1900 2289 0.83

O

+ −
F CoCa

E + 25 475 500 0.050 2.2 1.4–3.6

− 43 1857 1900 0.023

G CoCo
E + 1 110 111 0.009 1.9 .24–14.4

− 11 2278 2289 0.005
H CoCa + CoCo

E + 26 585 611 0.043 3.3 2.1–5.2

− 54 4135 4189 0.013

Abbreviations: CC, case/control; CI, confidence interval; CoCa, cohort of cases; CoCo, cohort of controls; D, case-defining illness; NC, noncases; OR, odds ratio;
RR, relative risk.
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assume equal numbers of cases and controls, the sampling frac-
tion of controls is proportional to the corresponding incidence
odds, ie, R/(1 – R). If we assign a weight of 1 to the cases, the
sampling weight of the controls is its reciprocal, (1 – R)/R.

In our example, let us assume that the D incidence risk,
derived from a perfectly representative survey in the population,
is 0.024. To reconstruct the population’s NC, we multiply the
number of individuals in the CoCo with the reciprocal of its
corresponding incidence odds, the sampling weight, ie, 40.67,
to obtain the reconstructed number of exposed and unexposed
noncases (rNC) (Table 2, row A). We can then estimate the
association between E and O in our reconstructed population
consisting of the CoCa plus the rNC (Table 2, row B).

The difference in cell numbers between the imagined
(Table 1, row A) and this reconstructed population is an arti-
fact of the rounding we undertook to generate the CoCo

(Table 1, row D). We do not include a 95% CI for this RR
estimate because the sampling error should be derived from
the CoCa and CoCo, not from the reconstructed population.

To explain the difference between the RR in the combined
CoCa and the CoCo (Table 1, row H) and that in the recon-
structed population (Table 2, row B), and to provide a transition
into regression analysis of such data, Figure 3 illustrates how the
weighting of the data influences the estimated effect of E on O.

ANALYSIS OF CCF DATA USING WEIGHTED
REGRESSION ANALYSIS

As a more versatile analytic approach than that depicted in
the previous section, we will now describe a weighted general-
ized linear model (GLM), illustrated graphically in Figure 3B).
It is based on a dataset containing individual records for the

Table 2. Reconstructing the Population

O

+ − Total Risk RR

A rNC
E + 1 × 40.67 = 40.67 110 × 40.67 = 4473.33 4514 0.013 1.9

− 11 × 40.67 = 447.33 2278 × 40.67 = 92 639.67 93 086 0.005

B Reconstructed populationa

E + 40.67 + 25 = 65.67 4473.33 + 475 = 4948.33 5014 0.013 2.5

− 447.33 + 43 = 490.33 92639.67 + 1857 = 94 496.67 94 986 0.005

Two-by-two tables showing distributions of exposure, outcome, and disease that defines case status in the reconstructed noncases and in the reconstructed
source population.

Abbreviations: D, case-defining illness; E, exposure; O, outcome; rNC, reconstructed noncases; RR, relative risk.
a rNC + cohort of cases.

Figure 3. Regression lines reflecting the relative risk for an outcome during follow-up for (A) the cohort of cases (CoCa) + the cohort of controls
(CoCo) and (B) the reconstructed population (CoCa + noncases that have been reconstructed from the CoCo × sampling weight [rNC]). The data underlying
each line corresponds to the 2 × 2 tables in Table 1 and Table 2, so that (T1B) is the 2 × 2 in row B of Table 1, and (T2A) is the 2 × 2 table in row A of
Table 2. Notice that the change in weights, or individuals, between (A) and (B ) alters the end-point positions, and thus the slope of the middle line. (A)
depicts the ill-advised approach to analyze the combined CoCo and CoCa data (Table 1, row H). The area of each circle is proportional to the number of
exposed (Exposure = 1) and unexposed (Exposure = 0) individuals in the CoCa and the CoCo. (B ) depicts the reconstructed population method (Table 2, row
B). The area of each circle is proportional to the number of exposed and unexposed individuals in the CoCa and the rNC. Abbreviations: CoCa, cohort of
cases; CoCo, cohort of controls; rNC, noncases that have been reconstructed from the CoCo × sampling weight; RR, relative risk.

Case/Control Studies With Follow-up • CID 2012:55 (Suppl 4) • S265



4800 individuals in the CCF, with variables indicating E and
O status, as well as the above-mentioned sampling weight.
Our Supplementary Appendix contains instructions for the
use of R-functions and a spreadsheet to generate the data we
have used in this paper and data with other underlying associ-
ations between E, D, and O.

We further address how weighted GLM can be used to
depict interactions between E and D on O, and show how to
estimate the extent to which getting D mediates an effect that
E has on O. We have chosen to use Stata version 12.1 (Stata
Corp) to illustrate the analyses, but other statistical software,
such as R (The R Foundation for Statistical Computing; www.
r-project.org) can also be used for the weighted regression
analysis, notably using survey weights [11, 12].

The 3 above-mentioned ad hoc approaches disregard the
fact that in CC studies where D incidence risk is <50%, the
cases are oversampled [4]. Several of the cited papers advise
weighting the cases and the controls according to their relative
probability of being sampled into the study [4, 6, 8]. For the
analysis of CCF studies where 1 control is included per case,
and the sampling weight for each individual in the CoCa, ie,
for each case, is set to 1, the weight for the controls is then
(1 – R)/R, as described above. If there are n cases and m con-
trols, the weights are 1 for cases and (n/m)(1 – R)/R for con-
trols. Specifying sampling weights (called pweight in Stata, and
hereafter given the variable name Pw) in the regression model
de facto reconstructs the source population while basing the
estimation of the corresponding standard error of the associa-
tion between E and O on the actual observations in (Table 1,
rows B and D), rather than on the reconstructed population in
(Table 2, row B), the latter being an approach that would un-
derestimate the standard error and thereby overestimate the
precision of the RR.

To estimate the RR of outcome O given exposure E using a
GLM of the binomial family with a log link and with sampling
weight = Pw requires the following command in Stata:

glm O E ½ pweight ¼ Pw�; familyðbinomial 1Þ linkðlogÞ eform:

eform directs Stata to yield RR instead of ln(RR), which is
the default. In our example, the RR is 2.5 with a 95% CI span-
ning .67 to 9.6. This RR corresponds to the RR point estimate
derived from the reconstructed population (Table 2, row B).

Failing to account for the fact that the cases are over-
sampled, by omitting the sampling weights, as in

glm O E; family ðbinomialÞ linkðlogÞ eform

depicted graphically in Figure 3A, yields an RR identical to
that derived from the exposure-outcome distribution in the

combination of the CoCa and the CoCo (Table 1, row H), ie, a
substantial overestimation.

Regression analyses carry several other benefits, including
the ease of adjusting estimates of associations between E and
O for both categorical and continuous confounders. By in-
cluding an interaction term, they enable us to effectively iden-
tify and estimate the size and statistical precision of any effect
measure modification between E and D on O. An interaction
means that RRCoCa and RRCoCo are different; ie, that getting D
changes the risk of getting O given E. Simply adjusting for D
would under such circumstances not only violate regression
model assumptions, but also iron out any differential effect of
E on O between those getting D and the NC.

When estimating the effect of E on O in the underlying
cohort, one should refrain from adjusting for D, so that the
resulting RR incorporates any effect of E on O mediated
through D as well as any interaction between E and D on
O. There are, however, situations where adjustment for D is
warranted. For instance, to advise public health action, it may
be important to break down the effect of E on O by the extent
to which it is mediated through D. The size of such mediation
can be measured as the relative change in the RR associated
with E when estimated from models including and excluding,
respectively, D as a covariate. The change in RR of O given E
observed by including D as a covariate, ie,

glm O E D ½ pweight ¼ Pw�; familyðbinomialÞ linkðlogÞ eform;

corresponding to Jiang et al’s third ad hoc approach [8] but
now with an appropriate balance between cases and NC, would
describe the relative change in O risk given E above and beyond
that mediated by D. In our example, this adjusted RR is 1.97
(95% CI, .49–8.0). The mediation is accordingly 1.97/2.5 = 0.78.

If the 2 models were run on independent data sets, the esti-
mated log RR values for E could be compared using their as-
ymptotic standard errors and their independence. In the present
case, however, the 2 models are run on the same data and the 2
estimates of log RR are thus dependent. The dependence may
be accounted for with either of 2 different approaches. In Stata,
the postestimation command suest stores individual score values
from the weighted maximum (pseudo)likelihood estimation.
The score values are then utilized to compute a robust standard
error for the difference of the log RR values in the 2 models.
The syntax for a log-binomial regression is

glm O E D ½iweight ¼ Pw�; familyðbinomialÞ linkðlogÞ
estimates store M1

glm O E ½iweight ¼ Pw�; familyðbinomialÞ linkðlogÞ
estimates store M2

suest M1 M2

lincom b½M1 O : E� � b½M2 O : E�; eform
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The suest command requires the sampling weights to be used as
“importance weights” (iweight) rather than “probability weights”
(pweight).

This yields the (same) point estimate of 0.78 for the media-
tion and provides us with its 95% CI, which spans .64 to .93.
Summarizing, one could say that of the RR = 2.5 that describes
the effect of E on O, D contributes with 22% (95% CI, 7%–
36%).

Alternatively, a bootstrap approach can be followed. For
each bootstrap sample from the observed data, both models
are fitted and the difference between log RR values is comput-
ed. The usual bootstrap standard errors and CIs can then be
computed for the difference, and the CI can be converted to a
CI for the ratio of the 2 RRs [13, 14].

If a GLM with a log link for the binomial family does not
converge, as may be the case when O is common, or we for
other reasons wish to describe the association between E and
O with an OR using logistic regression, we can replace the log
link with a logit link. GLM of the binomial family with an
identity link estimates the absolute risk difference rather than
the RR. Using this link enables us to model interactions on an
additive scale, which may well be more relevant than doing so
on a multiplicative scale in studies such as GEMS, which ad-
dresses exposures against which public health interventions,
such as vaccination, may be warranted [2, 3, 15].

We have so far considered binary E and O variables, but the
RPM is also valid for continuous outcomes. Thus, we can
model symmetrically distributed continuous variables, such as
infant development scores [16] and growth [17] using an iden-
tity link combined with a Gaussian distribution:

glm O E [pweight ¼ Pw]; familyðgaussianÞ linkðidentityÞ;

which is equivalent to the simpler linear regression command:

regress O E ½ pweight ¼ Pw�:

The effect estimate describes the change in O associated
with E.

The RPM approach can also be used to model the effects of
E on a count, such as that captured in an incidence rate or
incidence density, using Poisson regression analysis:

glm O E ½ pweight ¼ Pw�; familyð poissonÞ linkðlogÞ eform:

or, when there is overdispersion, using a negative binomial
distribution:

glm O E ½ pweight ¼ Pw�; familyðnbinomialÞ linkðlogÞ eform:

The effect estimate describes the incidence rate ratio for O
where the exposure is E.

Finally, switching from GLM to time-to-event analysis, the
Cox proportional hazards model is well adapted to weighted
analysis. Time-to-event analysis requires 2 outcome variables,
T is the time from recruitment into the CCF to censoring or
to the occurrence of O, which here has the value 1 when the
event (eg, death) occurs, or 0 if the individual is censored. In
Stata, the sampling weights are included when the data is
declared to be time-to-event data:

stset T ½ pweight ¼ Pw�; failureðO ¼¼ 1Þ:

The hazard ratios for the event where E is the exposure is
returned by

stcox E:

As in CC studies, having served as a control in a CCF study
does not preclude an individual from later serving as a case or
again being recruited as a control for another case [2, 3]. Simi-
larly, having been enrolled as a case should not bar an individ-
ual from again being included as a case, nor from later being
included as a control.

The presentation hitherto assumes that we have access to an
exact sampling weight. The weight is calculated from the inci-
dence risk, which we cannot obtain from the CCF study. In
GEMS, the risk of D is estimated using healthcare utilization
and attitude surveys (HUAS), which are undertaken every 4–6
months throughout the study [9, 18]. These estimates carry
sampling errors, which need to be taken into account when
ultimately estimating the effect of E on O in the underlying
cohort.

In the Supplementary Appendix, we provide an Excel sheet,
“Data,” in the workbook “RPMParametersAndTablesAug2012.
xlsx,” which generates joint probabilities and 2 × 2 tables de-
scribing an imagined source population based on chosen pa-
rameters explained in the sheet “Codes.” We used it to
generate the 2 × 2 tables presented in the current manuscript.
This population (ie, the underlying cohort) has an exposure
(E), a case disease (D), and a dichotomous outcome (O), the
latter recorded during follow-up. “Data” enables the user to
change the underlying probabilities and associations. In cell
C30, it produces an R command highlighted in yellow which,
using our R function “rpmBootstrap.R,” also provided in the
Supplementary Appendix, estimates the composite measures
of association, ie, the RR describing the effect of E on O in the
reconstructed population (“Unadjusted RR”), the effect of E
on O above and beyond that mediated by D (“Adjusted RR”),
and the proportion of the Unadjusted RR which is mediated
by D (“Mediation RR”). These estimates incorporate not only
the sampling error of the CCF study but also that of the D
incidence risk estimate obtained from an independent survey.
This sampling weight is calculated based on the number of
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individuals who developed D (Huas.D) and the number of in-
dividuals who did not (Huas.NoD). The analysis might be
modified in a variety of ways. For example, the effect of E on
O might be modeled in terms of an OR in logistic regression;
as a dichotomous outcome on an additive scale, using an
identity link to measure risk difference (RD); as the numerator
of incidence density or rate in Poisson or negative binomial
regression; as a continuous variable in linear regression; or as
a hazard ratio in Cox regression.

“rpmBootstrap.R” also generates a Stata (test.dta) and a
comma-separated values (test.csv) data set, which contain data
from the imagined CCF study and which can be used in a
weighted GLM regression of the binomial family to estimate
the RR, OR, and RD describing the effect of E on a dichoto-
mous O. This approach, described in some detail in this
paper, does not, however, incorporate the sampling error of
the sampling weight estimate, and should accordingly be used
only when this value is known, as when analyzing data from a
CCF study nested in a defined cohort, or when surveys used
to estimate D incidence risk are of a size that the derived
sampling weights can be considered known values.

EFFECTS OF CHANGING THE POPULATION
PARAMETERS

To illustrate how a change in parameters that define critical
associations in the underlying population influences the
observed effect and to guide the reader on how to use the
material in the Supplementary Appendix, let us consider the
alterations that occur if we change the association between E
and D so that RR changes from 5 to 3. This is achieved by
changing RR.D.E in cell D7 of the spreadsheet “Data” in the
Workbook “RPMParametersAndTablesAug2012.xlsx” accord-
ingly. The reader will in cell Q84 find that the association de-
scribed by the RR in the reconstructed population between E
and O is reduced from 2.5 to 2.3. Moreover, because we in
this example keep the exposure prevalence in the population
unchanged at 0.05, the incidence of D is reduced accordingly,
in this example from 0.0240 to 0.0220. Such an incidence can
be obtained in a survey of 273 individuals that identifies 6 new
cases of D.

By running the command returned in cell C30 using the
function “rpmBootstrap.R” in R and then the command “glm
O E [pweight = Pw], family(binomial 1) link(log) eform” on
the generated dataset “test.dta,” Stata will return not only the
RR of 2.3 but also its 95% CI of .48–11.1. This assumes that
the incidence risk of 0.0220 is a fixed number, an assumption
which is questionable unless the survey has a very large
sample size. Encompassing the sampling error of the sampling
weight, our R bootstrap run yielded an RR of 2.4 (95% CI,
.26–6.9). Adjusting for D reduced the RR to 2.0 (95%

CI, .24–6.3) and quantified the mediation to be 0.86 (95% CI,
.69–.96), ie, D contributing with 14% (95% CI, 4%–31%) of
the effect of E on O.

If, on the other hand we change the association between E
and D so that the RR changes from 5 to 10, the incidence
increases to 0.0299, which can be obtained by a survey of 276
individuals of which 8 develop D. Under this scenario, cell
Q84 in the sheet “Data” returns an RR of 3.1; Stata also yields
its 95% CI of 1.2–7.9. Taking the sampling error of the
survey-derived incidence estimate into account using
rpmBootstrap, R yielded an RR of 3.4 (95% CI, .95–8.1),
which was reduced to 1.9 (95% CI, .58–5.3) after adjustment
for D; the mediation was 0.57 (95% CI, .42–.82), so according
to this analysis, D contributed with 43% (95% CI, 18%–58%)
of the effect of E on O.

The Supplementary Data can also be used to illustrate Jiang
et al’s argument that, if D changes the risk of O, the first ad
hoc approach is valid only if incidence risk is 50% or 0.5. An
incidence risk of 50% can be achieved by for example chang-
ing the population incidence of D for individuals not exposed
to E, ie, p.0.D, to 0.41667. It can be seen that in this unrealistic
scenario, Jiang’s first ad hoc approach (cell Q54) yields an
estimate identical to that obtained with the RPM (cell Q84).

DISCUSSION

We have presented a conceptual framework and illustrate analy-
ses of data from CCF studies. If cases and controls are sampled
independently of the exposures and a reliable measure of case
disease occurrence can be obtained, such studies can with high
efficiency estimate the association between the exposure record-
ed when the individuals are recruited into the CCF study and
outcomes captured during follow-up thereafter. CCF studies
exploit the condensation of individuals who develop the case
disease into the CoCa, and are thereby more efficient than the
corresponding cohort studies.

Previous reports have explored the reuse of CC data to esti-
mate the association between exposures and alternative out-
comes [6, 8, 19, 20]. While the suggested approaches range from
inverse probability weighting to semiparametric marginal and
full likelihood models, the key issue of obtaining appropriate
sampling weights is hidden from view. Moreover, there is no
suggestion of how to incorporate the standard error of the sam-
pling weight into the composite effect measure generated by the
proposed analyses. In general, the rarer the case disease and the
smaller the surveys, the more extensive is the contribution from
the sampling weight estimates to this joint sampling error.

A well-designed CCF study should be planned with the
intent of estimating the association between antecedent expo-
sures and outcomes during follow-up of the 2 cohorts. To
enable the necessary weighting, such studies will ensure that
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appropriate estimates of case disease incidence, and thereby
sampling weight, is captured. This poses particular challenges
for CCF studies of infectious diseases, of which the GEMS
[10]—to our knowledge—is a conspicuous first. Because the
incidence of infectious diseases, such as diarrhea, varies over
time and often between relatively closely situated locales, this
risk in GEMS is estimated using HUAS rounds undertaken
periodically during the study [9, 18], and not as a one-time
snapshot [21]. The HUAS-based sampling weights are thereby
likely to approach a “real-time” representation of the expo-
sures, case disease, and outcomes, thus increasing the validity
of the weighted regression analyses. An estimate of incidence
risk derived from such survey data pooled over the duration of
the study might be used, if estimates for individual survey
rounds seem sufficiently similar. When incidence risk esti-
mates from sequential surveys differ substantially and pooling
over time accordingly is questionable, our advice is to first es-
timate the composite estimates, which describe the effect of E
on O for each survey round. This may be of particular rele-
vance for studies that describe microbial agents’ contribution
to infectious disease, where microepidemics can cause sub-
stantial monthly, seasonal, and year-to-year variations [22,
23]. When relevant and appropriate, one can thereafter pool
the composite effect sizes, thereby ensuring transparency and
epidemiological clarity.

This paper deals with single-population CCF studies that do
not recruit controls matched to their corresponding cases, when
sampling weights may need to be estimated differently (manu-
script in preparation). Further, in a pooled analysis across pop-
ulations (strata), the weights should be based on the relative
stratum sizes and the incidence of D within each stratum.

In most CCF studies relatively few children will be enrolled
more than once. Even in a cohort study in Guinea-Bissau,
where children were followed with weekly stool specimen ex-
amination to identify infections with enteropathogens from
birth up to 2 years of age, generalized estimating equations or
frailty correction to account for between-child differences did
not substantially alter point estimates or precision [24–26].
We suggest that if such correction yields no or little effect on
point estimates and their precision, it need not be incorporat-
ed in the bootstrapping approaches that capture the sampling
error of the sampling weight estimates. It is beyond the scope
of this paper to describe in further detail how to take into
account between-individual differences in the occurrence of
exposures and/or outcomes [27, 28].

In this paper, we describe how a CCF study can be analyzed
using weighted regression analysis and, using a bootstrap ap-
proach, incorporate the sampling error not only of the CCF
component but also of the sampling weight derived from con-
currently undertaken survey. Using the spreadsheet and an R
function supplied in the Supplementary Appendix, we also

show how changes in population parameters, exemplified by a
change in the association between E and D, will change the
association between E and O in the reconstructed population.

It is our contention that if reliable data on disease incidence
are captured, thereby allowing sampling weights to be estimat-
ed, weighted regression analysis of CCF data can provide a
useful, flexible, and effective analytic tool. We hope that by
presenting the conceptual framework for CCF study design
and guidance for RPM analysis using weighted regression, we
will foster collaboration among infectious disease specialists,
epidemiologists, and biostatisticians. Such collaboration in
conceptualizing, designing, undertaking, analyzing, and inter-
preting CCF studies will improve the studies and make it
more likely that the analyses and results will address issues of
relevance to clinical infectious diseases and communicable
disease epidemiology. With constraints on financial and
human resources to address critical questions of relationships
between specific infections and outcomes (such as clinical se-
quelae, nutritional impact of infection as well as illness- and
infection-associated mortality), CCF studies, because of their
efficiency, become particularly attractive. The RPM described
in this paper provides a basis for estimating relationships in
the population between infection with a pathogen (eg, a diar-
rheal pathogen as detected in GEMS) and consequences of in-
fection over the period of follow-up. With respect to death
possibly related to infection with a diarrheal pathogen, for
example, CCF and RPM provide a way to go beyond describ-
ing case fatality among enrolled cases who are infected with
the pathogen of interest to assessment of the association
between the pathogen and mortality in the source population.
One would anticipate that this addition to the toolbox of ana-
lytic epidemiology might also be useful in estimating the
impact of interventions that decrease the frequency of a partic-
ular infection on specific outcomes (eg, stunting or death).
This can help set priorities for choosing among potential in-
terventions aimed at control of infectious diseases encountered
by clinicians on the frontline of clinical care.

Supplementary Data

Supplementary materials are available at Clinical Infectious Diseases online
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als consist of data provided by the author that are published to benefit the
reader. The posted materials are not copyedited. The contents of all sup-
plementary data are the sole responsibility of the authors. Questions or
messages regarding errors should be addressed to the author.
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