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Epigenome-WideStudy IdentifiesEpigeneticOutliers
in Normal Mucosa of Patients with Colorectal Cancer
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ABSTRACT
◥

Nongenetic predisposition to colorectal cancer continues
to be difficult to measure precisely, hampering efforts in
targeted prevention and screening. Epigenetic changes in the
normal mucosa of patients with colorectal cancer can serve
as a tool in predicting colorectal cancer outcomes. We
identified epigenetic changes affecting the normal mucosa
of patients with colorectal cancer. DNA methylation profil-
ing on normal colonmucosa from 77 patients with colorectal
cancer and 68 controls identified a distinct subgroup of
normally-appearing mucosa with markedly disrupted DNA
methylation at a large number of CpGs, termed as “Outlier
Methylation Phenotype” (OMP) and are present in 15 of 77
patients with cancer versus 0 of 68 controls (P < 0.001).
Similar findings were also seen in publicly available datasets.
Comparison of normal colon mucosa transcription profiles
of patients withOMP cancer with those of patients with non-
OMP cancer indicates genes whose promoters are hyper-
methylated in the OMP patients are also transcriptionally
downregulated, and that many of the genes most affected are
involved in interactions between epithelial cells, the mucus

layer, and the microbiome. Analysis of 16S rRNA profiles
suggests that normal colon mucosa of OMPs are enriched in
bacterial genera associated with colorectal cancer risk,
advanced tumor stage, chronic intestinal inflammation,
malignant transformation, nosocomial infections, and
KRAS mutations. In conclusion, our study identifies an
epigenetically distinct OMP group in the normal mucosa
of patients with colorectal cancer that is characterized by a
disrupted methylome, altered gene expression, and micro-
bial dysbiosis. Prospective studies are needed to determine
whether OMP could serve as a biomarker for an elevated
epigenetic risk for colorectal cancer development.

Prevention Relevance: Our study identifies an epigenet-
ically distinct OMP group in the normal mucosa of patients
with colorectal cancer that is characterized by a disrupted
methylome, altered gene expression, and microbial dysbio-
sis. Identification of OMPs in healthy controls and patients
with colorectal cancer will lead to prevention and better
prognosis, respectively.

Introduction
Despite the availability of an effective screening test, colo-

rectal cancer remains the third-leading cause of cancer-related
deaths in men and women in the United States (1).
Over the years, scientists have discovered various molecular

markers like gene mutations (KRAS, BRAF, and APC genes);
CpG island methylator phenotype (CIMP), microsatellite
instability, and so on to better understand the heterogeneous

outcomes of colorectal cancer (2). However, it is noteworthy
that all of these molecular subtypes are based on investigating
the tumor tissues. We, on the other hand, study the normal
tissues of patients with colorectal cancer, which could harbor
biomarkers to better understand colorectal cancer outcomes.
We have identified site-specific DNA methylation differ-

ences in normal colon mucosa that distinguish patients with
cancer from patients without cancer with high sensitivity and
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specificity (3). This observation, validated in both an indepen-
dent population (4) and an animal model (5), suggests that
these cancer patient “signature” methylation differences in
normal tissues accumulate over time as a result of aging,
environmental exposures and, perhaps, genetic influences. Our
earlier observation (3) that the largest category of genes affected
by differential methylation was those involved in carbohydrate
and lipid metabolism is consistent with long-standing epide-
miological evidence (6) that dietary factors affect colorectal
cancer risk.
Colorectal cancer risk is not distributed uniformly across the

population but is higher in patients of African descent than
Caucasians, Hispanics or Asians (7). African American (AA)
patients with colorectal cancer also appear less likely to develop
microsatellite-instable cancers (a formof colorectal cancerwith
improved outcome) than their Caucasian counterparts (7). In
addition, AA patients who are asymptomatic are more likely to
have proximal, large, precancerous adenomatous polyps pres-
ent on colonoscopy screening (8). While there are likely to be
socioeconomic factors involved in disparities in cancer inci-
dence and outcomes, it is also possible that race-associated
differences in biology contribute (9).
Our current study was designed to investigate differences in

the normal colon epigenome of patients with colorectal cancer
by performing genome-wide DNAmethylation profiling on 77
patients with colorectal cancer (42 AA and 35 Caucasians) and
age-, sex- and race-matched controls (34 AA and 34 Cauca-
sian). We also performed normal colon transcription profiling
on selected patients with cancer, as well as microbiome
analysis via 16S rRNA sequencing. Our hypothesis is that
environmental factors interact with the normal colon epi-
genome to engender epigenetic changes that predispose to
cancer, and that these changes are greater and/or more
frequent in AA than in Caucasians. We hypothesize, further,
that environmental factors, principally diet, exert much of
their effect on the normal colon epigenome through inter-
actions with the microbiome.

Materials and Methods
Samples
Normal colon tissues (fresh frozen) of 77 patients with

colorectal cancer were purchased from Fox Chase Cancer
Centre biobank. These normal colon tissues adjacent
(�10 cm away) to tumors were collected from colorectal
cancer patients as described previously (3, 4). Similarly,
normal colon tissues (fresh frozen) from age, sex, location,
and race matched healthy controls (n ¼ 70) were collected
during routine screening colonoscopies after informed con-
sent. Controls with previous colonoscopic finding of polyps
were excluded.
Written informed consent from the patients was obtained

and the study was conducted in accordance withDeclaration of
Helsinki ethical guidelines and the study was approved by
Temple University’s institutional review board.

Sample processing
DNA extraction
Genomic DNA was extracted from colon tissue samples

using Invitrogen PureLink genomic DNA kit as per the man-
ufacturer’s protocol.

RNA extraction
RNA was extracted using Qiagen’s RNeasy Plus mini kit.

Briefly, nearly 30mg of colon tissue was homogenized followed
by isolation and purification using standard manufacturer’s
protocol.

Quantification and quality check
Extracted DNAs and RNAs were quantified using Thermo

Fisher’s NanoDrop. RNA integrity was checked on Agilent
2100 Bioanalyzer.

Statistical analyses
All the statistical analyses were done using different packages

in R. Plots were made using both R and GraphPad Prism
(version 8).

DNA methylation
Illumina EPIC array
Extracted DNA was sent to external Genomic Facility at

Penn State University to be run on Illumina’s EPIC array. Prior
to array run, extracted DNA was treated with bisulfite using
Zymo EZ DNA methylation kit. Bisulfite-treated DNA is
processed further to run Illumina’s EPIC array as described
previously (10). The output data are generated in the .idat files.
Two healthy samples failed to hybridize during the initial array
processing.

Data processing
Raw data files from 77 patients with colorectal cancer and 68

healthy controls were preprocessed using minfi’s preprocessIl-
lumina function to mimic Genome Studio’s background cor-
rection and normalization steps in the R environment. Probe
normalization was also done via the preprocessIllumina func-
tion that equally recreates Genome Studio’s method of nor-
malizing variability in red/green signal using paired red/green
control probes in a reference sample. Beta values obtained after
these preprocessing steps were used for all the subsequent
analyses.

Quality control
The quality of the samples was checked using the minfi

getQC test.

Batch effect
As the samples were run in batches, batch effect was checked

using correlation and Bland Altman analyses for the replicate
samples [both intraplate or interwell replicates (same samples
in different wells of the same plate) as well as interplate
replicates (same samples in different plates)].
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Cell composition/purity
Epithelial cell purity between the tissues from healthy con-

trols and patients with colorectal cancer was estimated by
leukocyte unmethylation for purity (LUMP) as described
previously (11).

CpG selection for methylation analyses
SNP associated and cross-reactive CpGs (12, 13) and 59 SNP

CpGs were excluded from analysis. Poor performing probes
(missing values in ≥20% of the samples) were also excluded.
This resulted in 819,239 CpGs that were included for the
analyses.

Cluster analysis
Unsupervised clustering using bootstrap method was per-

formed using the pvclust package in R.

Principal component analysis
Principal component analysis was done by using prcomp

function in R.

Outlier analysis
Outliers or individuals with Outlier Methylation Pheno-

type (OMP) were identified by following a two-step proce-
dure (14, 15). In the first step, each of the 819,239 CpG sites was
analyzed for the presence of outliers [methylation levels beyond
1.5 times the interquartile range below the first quartile (“hypo-
methylated outliers”) or above the third quartile (“hypermethy-
lated outliers”) of the distribution]. In the second step, the
distribution of outlier CpGs was plotted for each sample and
similar outlier calculations as in Step 1 were done, to identify
individuals with extremely large number of outlier CpGs
compared with rest of the population. Outliers of Step 2 were
considered as the individuals with OMP.

Differential methylation analysis
Between group comparisonswere done using two-sided t test

for methylation values. Bonferroni correction was used to
correct for multiple testing. We checked the location/feature
of each of the 819239 CpGs and corrected for 108,498 features
(because methylation levels are highly correlated at CpGs
within the same feature, and are, thus, not independent)
resulting in P values less than 4.6E-07 as the cut off for
significance. A cut off (0.05) for magnitude of difference in
beta values was also introduced. Hence, CpGs with P value less
than 4.6E-07 and magnitude of difference >0.05 were consid-
ered to be significant. Differential methylation analyses were
done using two-sided t test in R. Differential methylated
regions (DMR) were identified using “DMRcate” package in R.

Gene expression
RNA sequencing
RNA-sequencing libraries were prepared using Illumina’s

TruSeq stranded mRNA kit by following the standard man-
ufacturer’s protocol. Libraries were sequenced in Illumina
HiSeq 4000 at GENEWIZ.

Data processing
Sequencing data quality was assessed by FastQC. Sequencing

reads were trimmed using Trim Galore and aligned using
mapping software STAR (16). Transcripts were counted using
HTSeq.

Differential gene expression analysis
Weused R package DESeq2, version 3.13 (17) for differential

gene expression analyses.

Gene Ontology analysis
Weused theRpackageReportingTools (https://bioconductor.

org/packages/release/bioc/html/ReportingTools.html) to gener-
ate Gene Ontology (GO) pathways (18).

Microbiome
16S rRNA sequencing
16S rRNA libraries were generated using amodified Illumina

16S protocol that increases input DNA to 62.5 ng. Barcoded
libraries were generated with Nextera XT adapters per Illumi-
na’s 16S protocol. Purified libraries were quantified via Qubit
and analyzed on the Agilent DNA Bioanalyzer in order to
generate 10 mmol/L pooled libraries to be sequenced on the
MiSeq platform.

Amplicon sequence variants
We pre-processed raw 16S rRNA sequences generated

for 70 colon tissue samples collected from AA patients using
QIIME2, version 2019.1 (19). We obtained a total of
3,845,964 quality-screened DNA sequences, with an average
count of 54,942 sequence reads per sample. We applied the
DADA2 algorithm (20) via the q2-dada2 plugin to denoise
the sequence data and generate unique amplicon sequence
variants (ASV). Taxonomic classification of representative
ASVs was conducted using the classify-sklearn na€�ve Bayes
classifier (21) against the Greengenes, version 13_8 99%
reference database (22).

Taxonomic composition and differential abundance
We used R package phyloseq, version 1.24.2 (23) to describe

the taxonomic composition of each cohort at the phylum and
genus level. In addition, differential abundance analysis using R
package DESeq2, version 3.13 (17) was applied to identify
bacterial taxa that were significantly different between the
cohorts studied. Differential abundances in bacterial species
were assessed using a log2foldchange value, and cohort com-
parisons were conducted applying the Wald test with the
Benjamini-Hochberg correction.

Microbiome diversity
A rarefied sampling depth of 14,214 DNA reads per sample

andRpackage phyloseq, version 1.24.2 (23)were further used to
assess microbiome diversity across sampling cohorts. Diversity
within samples (alpha diversity) was estimated as observed
number of ASVs and Shannon diversity index and significance
of differences was tested using nonparametric Wilcoxon
rank sum tests. Rarified samples were also used to calculate
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Bray–Curtis beta diversity (dissimilarity between samples), and
nonmetric multidimensional scaling (NMDS) was performed.
Significance of differences in beta diversity between cohorts
was assessed by permutational analysis of variance (PERMA-
NOVA) and permutation tests for homogeneity inmultivariate
dispersion (PERMDISP) inR package vegan, version 2.5–6 (24)
with 999 permutations.

Data availability statement
The datasets generated during this study are available in the

GEO repository (GSE 199057).

Results
Quality control of methylation dataset
All the samples passed the quality control (QC) test onminfi

(Supplementary Fig. S1A). No batch effects were observed for
the processed methylation data. All the replicates (irrespective
of intraplate or interplate) were strongly correlated (R2¼ 0.99).
Similarly, all the replicates (Supplementary Fig. S1B–S1E)
showed similar results on Bland Altman analyses wherein
nearly 45K CpGs (5%) were outside agreement boundary
irrespective of whether those were intraplate (Supplementary
Fig. S1B and S1C) or interplate (Supplementary Fig. S1D and
S1E) replicates. Furthermore, there was no difference (P ¼
0.4626) in the cell purity of normal tissues from healthy
controls and patients with colorectal cancer on LUMP analysis
(Supplementary Fig. S1F).

Identification of an outlier methylation group in normal
tissues of cancer patients
We performed unsupervised hierarchical cluster analysis,

using methylation data from 819,239 CpGs to determine
whether our study population could be subdivided on the basis
of the normal colon epigenome. Interestingly, we observed a
group of 14 colorectal cancer individuals (11 AA and 3
Caucasians) and a Caucasian colorectal cancer patient cluster-
ing separately (highlighted in yellow inFig. 1A) from rest of the
dataset. We also performed principal component analysis to
determine whether quantitative variation at multiple sites
might distinguish the study groups (Fig. 1B). Patients without
cancer were less variable compared to the colon cancer
groups of both races. The Caucasian healthy (CH) group
had the least variability followed by the AA healthy group
(AH) group. The AA cancer (AC) group had the highest
variability followed by the Caucasian cancer group (CC).
Very high variability in the cancer groups was exacerbated by
the samples (11AC, 4CC) at the right side of the PCA plot
(values >590 in PC1, samples within the black ellipse). It is
noteworthy, that these 15 individuals are the ones that
cluster separately in Fig. 1A.

Definition of an OMP group
Because both PCA and cluster analysis suggested the

existence of a group with dramatically disrupted normal

tissue methylomes, we applied the same metric we have used
previously (14, 15) to identify individuals with “Outlier Meth-
ylation Phenotype” (OMP) (Fig. 2). Although this method (see
Materials and Methods) transforms a fundamentally quanti-
tative trait (methylation values) into a discrete classifier (OMP
status), it simplifies further analysis of factors that may con-
tribute to this phenotype. In other words, converting a quan-
titative variable to a categorical variable simplifies the down-
streamanalysis for better characterization of this group (OMP).
We plotted the number of CpGs in which an individual was
hyper- (Fig. 2A) or hypo-methylated (Fig. 2B) at greater than
1.5-times the interquartile range to identify those individuals
who were OMPs.
None of the CH individuals were hyper- or hypo-methylated

outliers (Fig. 2A and B), whereas two of the AH individuals
were hypo-methylated outliers. Fifteen AC patients were hyper-
or hypo-methylated outliers and 11 were bidirectional (both
hyper- and hypo-methylated) outliers. Among CC patients,
seven samples were hyper-methylated and five samples were
hypo-methylated outliers, of which only four patients were
bidirectional outliers. Individuals who were outliers in both
hyper- and hypo-methylated plots were classified as OMP
(14, 15). Further justification for classifying only bidirec-
tional outliers as OMPs (11 AC and 4 CC) is that these
individuals are the same patients who form separate groups
in the cluster analyses (Fig. 1A) and are furthest from the
other patients with colorectal cancer in the PCA analysis
(Fig. 1B).
We also analyzedwhether theOMP (red box) and non-OMP

(blue box) clusters (Fig. 1A) were based on any particular
feature (like age, sex). As shown in Supplementary Table S1,
these two clusters showed significant differences in cancer
status. All other variables (age, sex, location) were not signif-
icantly different. Furthermore, we did see a borderline associ-
ation (P ¼ 0.05) for race but the significance was lost after
correcting for multiple (four) tests.

Validation of OMP group in publicly available colorectal
cancer datasets
We selected three colorectal cancer datasets from Gene

Expression Omnibus (GEO) which had 450K methylation
array data for both healthy controls and normal tissues
from patients with colorectal cancer. We performed outlier
analysis in each of the datasets and identified individuals with
OMPs (or bidirectional outliers) as described above. As shown
in Supplementary Table S2A, all of the datasets show higher
frequency of OMPs in the colorectal cancer group compared to
healthy controls. Additionally, the largest dataset (GSE132804)
had significantly higher frequency of OMPs in patients with
colorectal cancer compared to controls. Furthermore, we also
analyzed if any cofounding variables in dataset GSE132804
influenced the OMP output. Supplementary Table S2B clearly
indicates that the two groups (cancer and controls) were
matched for age, sex, and location, justifying that OMP is not
an outcome of unbalanced covariables. This validates our
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finding that normal tissues of patients with colorectal cancer
are more prone to have disrupted epigenome or OMP char-
acteristic compared with healthy controls.

Effect of OMPs on differential methylation in normal
colon mucosa of colorectal cancer patients
AA and Caucasian patients with colorectal cancer, com-

bined, showed significantly different methylation at 85,178
CpGs (10.40%) compared with healthy controls (Fig. 3A).
On race-stratified subgroup analysis, the AC patients had

26,803 differentially methylated CpGs compared with the AH
controls (Fig. 3B), whereas the CC patients had 12,016
(Fig. 3C) differentially methylated CpGs compared with the
(CH) controls. More than 60% of the differentially methylated
CpGs (7,341 CpGs) in the Caucasian patients with colorectal
cancer were also differentially methylated in AA patients with
colorectal cancer (Fig. 3B and C), suggesting that many of the
cancer-associated methylation alterations were common
to both AC and CC patients. However, AA patients with
colorectal cancer had a much larger number of abnormally

Figure 1.

Analysis ofmethylation data.A,Unsupervised cluster analysis of study samples. Hierarchial cluster plots using unsupervised cluster analysis showing separate cluster
for the OMPs. B, Principal component analyses. Principal component analyses of study groups using 819,239 CpGs.

Figure 2.

Identification of samples with OMP.
Number of CpGs in which a sample is
hypermethylated outlier (A) or Hypo-
methylated outlier (B). Dotted line
indicates outlier boundary. Each sym-
bol is a sample. Symbols above the
dotted lines are outliers in respective
plots. Colored symbols indicate sam-
ples that are outliers in both the plots
and are termed as “OMPs”. Samples
represented by colored symbols are
OMPs. Same color and shape show the
same individuals in both the plots.

Epigenetic Outliers in Colorectal Cancer
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methylated CpG sites compared with their healthy controls (an
additional >14,000 CpG sites), than did their Caucasian
counterparts.
We also analyzed whether any confounding effects between

the control and colorectal cancer groups account for these
differences. Table 1 shows the demographic profile of the
analyzed samples. None of the variables were significantly
different between cancer and control groups. Hence, all the
differentially methylated probes (overall or race-specific) are
associated with colorectal cancer.
Because we had identified a group of patients with dra-

matically disrupted normal colon methylation profiles, and
the groups was composed of largely AA patients, we asked
whether the increased number of differences between
AC and AH groups compared with the CC and CH groups
were driven by the OMPs by excluding them from the
analysis. When this was done, the number of differentially
methylated CpGs was reduced by more than 50% in overall
cancer versus healthy comparison (Fig. 3D). A similar trend
was observed in AC versus AH (Fig. 3E). However, we did
not observe a reduction in abnormally methylated CpGs
between the CC versus CH groups (Fig. 3F), suggesting that
OMPs in the AC group contributed much more variance
than in the CC group.
It is noteworthy that DNA methylation profiles of normal

colon mucosa between the controls and colorectal cancer
patients of AA and Caucasian races are mostly similar. We
observed a very small fraction of race-associated differences in
site-specific CpG methylation between either healthy controls
(0.10%, or 794 sites) or between cancer patients (0.02%, or 193
sites) (Supplementary Fig. S2). These observations suggest that
racial disparities in colon cancer incidence and outcome are not
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Figure 3.

Volcano plots showing differential methylation analyses. Colon cancer versus healthy in all samples (A), AAs (B), and Caucasians (C). Non-outlier colon cancer versus
healthy in all samples (D), AAs (E), and Caucasians (F). DMPs, differentially methylated positions; DMRs, differentially methylated regions.

Table 1. Demographic profile of analyzed samples.

All samples
Cancer (n ¼ 77) Control (n ¼ 68) Pa

Age (mean� SD) 57.67 � 9.68 56.81 � 8.81 0.5757
Sex

Males 38 33 1.0000
Females 39 35

Race
Caucasian 35 34 0.6198
African American 42 34

Location
Distal 42 37 1.0000
Proximal 35 31

Caucasians
Cancer (n ¼ 35) Control (n ¼ 34) Pa

Age (mean� SD) 56.80 � 9.33 56.06 � 9.61 0.6905
Sex

Males 15 15 1.0000
Females 20 19

Location
Distal 19 19 1.0000
Proximal 16 15

African Americans
Cancer (n ¼ 42) Control (n ¼ 34) Pa

Age (mean� SD) 58.40 � 10.02 57.56 � 8.00 0.7461
Sex

Males 23 18 1.0000
Females 19 16

Location
Distal 23 18 1.0000
Proximal 19 16

at test for age and Fisher exact test for other variables.
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a result of large numbers of methylation differences at different
CpG sites, with the caveat that not all CpG sites are interrogated
by the Illumina platform used.
Each of the above analyses (cluster, PCA, outlier, differential

methylation) indicates the presence of a highly epigenetically
disrupted group of patients with colorectal cancer, of which the
majority are AA. We examined this OMP group of patients,
further, to determine what factors might influence this phe-
notype, and whether it might contribute to observed racial
disparity in colorectal cancer incidence and outcome.

Differential expression of genes with differentially
methylated promoter CpGs in AA OMPs
A working hypothesis on racial disparities in colon cancer

developed fromour analysis of normal tissueDNAmethylation
is that OMPs, although not unique to AAs, are more prevalent
among AAs and OMPs may be at higher risk of cancer. It is
noteworthy that of the 178,469 CpGs that were differentially
methylated between OMP cancer patients and non-OMP
cancer patients (Supplementary Fig. S3), 40,961 CpGs were
present in the promoter regions of 11,357 genes.
Again, because the majority (�75%) of OMPs were African

American and we wished to characterize this group further, we
compared gene expression levels between OMPs (AO) and
non-OMPs (AC) among AA patients with colorectal cancer for
whom we were able to obtain normal colon RNA samples by
bulk RNA sequencing (3 OMPs vs. 5 non-OMPs). More than
17% (1,964) of the promoter differentially methylated genes
also exhibited differential expression levels (Supplementary
Fig. S4). The majority (1,151 genes) of the differentially
expressed genes were hypermethylated in the promoters of
OMPs. As expected, most of these hypermethylated genes
(1,021 or 88.7%) were downregulated in the OMPs compared
with non-OMPs (Supplementary Fig. S4).
Supplementary Table S3 lists the differentially expressed

genes. Multiple genes linked to mucins (MUC17, MUC3A,
MUC12, MUC4, MUC5B, MUC20, MUC2, MUC13, MUC1);
claudins (CLDN8, CLDN3, CLDN4, CLDN7, CLDN12,
CLDN9), cadherins (CDHR2, CDHR5, CDH1, CDH17,
CDHR1) and other transmembrane junction proteins (DSC2,
CGN, CAPN13, CDHR2, TMPRSS2, AMN) were differentially
expressed (down regulated) inOMPs. In addition, among those
genes that were hypo-methylated (Supplementary Table S3),
the proinflammatory cytokine genes IL6 and IL11 were both
upregulated. The top significant biological processes (Supple-
mentary Table S4) associated with the differentially expressed
genes included xenobiotic processes (response to xenobiotic
stimulus, xenobiotic metabolic process), leading us to perform
an analysis of gut microbiome components.

Differential microbiome in OMPs (AO) compared to non-
OMPs (AC) in AA patients with colorectal cancer
Similar to expression analysis, additional microbiome anal-

ysis was restricted to AA patients and included 35 AH, 25
AC and 10 AO patients. In total, we identified 18,522 ASVs

across all samples analyzed. At the phylum level and across
all cohorts, the microbiota was dominated by ASVs assigned to
the phyla Firmicutes, Bacteroidetes, Proteobacteria, Actino-
bacteria, Fusobacteria, and Verrumicrobia (Fig. 4A). At the
genus level, ASVs were assigned primarily to the genera
Bacteroides, Oscillospira, Clostridium, Coprococcus, Previotella,
and Ruminococcus (Fig. 4B).
Although neither alpha nor beta diversity estimates were

significantly different between AH, AC, and AO cohorts
(Wilcoxon rank sum tests P > 0.05, Supplementary Fig. S5A;
PERMANOVA, P ¼ 0.084, Supplementary Fig. S5B), differ-
ential abundance analysis (Supplementary Fig. S5C) revealed
that significant differences among cohorts were detected
in the phyla Actinobacteria, Bacteroidetes, Firmicutes,
and Proteobacteria. More specifically, we detected an
increased abundance of the Eubacterium genus in AC tissues
when directly compared with taxonomic profiles of the AO
cohort, whereas the genera Fusobacterium, Phascolarctobac-
terium, Bacteroides, Roseburia, Dialister, Stenotrophomonas,
and Ruminococcus were more prevalent in the AO cohort
(Fig. 4C).

Discussion
We performed genome-wide DNAmethylation profiling on

normal colon mucosa from African American and Caucasian
colorectal cancer patients and age-, sex-, and race-matched
controls. Our hypothesis was that colorectal cancer incidence
and outcomewere associatedwith underlying differences in the
normal tissue epigenome.
Unsupervised hierarchical cluster analysis (Fig. 1A) and

principal component analysis (Fig. 1B) both suggested the
existence of a separate group of colorectal cancer patients with
dramatically disrupted normal tissue methylomes. Interesting-
ly, we were also able to identify this same group of epigenet-
ically disrupted individuals by using a simple metric of outlier
determination as used previously by our group (14, 15). We
have termed this group of patients with colorectal cancer as
OMP (see also Fig. 2). We also identified OMPs in publicly
available colorectal cancer datasets. OMP frequencies varied
from 1% to 2% in controls and 8% to 30% in patients with
colorectal cancer. This clearly suggests that patients with
colorectal cancer are more prone to develop OMPs compared
with controls. Furthermore, the varying percentage of OMPs
among patients with colorectal cancer (<10% in GSE48684 and
GSE131013; and�30% in GSE 132804) in these datasets could
be explained by smaller sample size (24 patients with colorectal
cancer in GSE48684) or difference in ethnicity (Spanish pop-
ulation in GSE131013). Unfortunately, these datasets do not
have any AA samples, so we could not perform race-specific
analyses.
While we identified many differences in average site-specific

methylation between patients with colorectal cancer and con-
trols, confirming and extending our previous studies (3, 4),
the major difference we identified between AA and Caucasian
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patients with colorectal cancer was in the number of patients
with OMP (15). AAs (26%) were more than twice as likely to
be OMPs compared with Caucasian (11%) patients with
colorectal cancer. Furthermore, AA patients with colorectal
cancer displayed higher abnormality in methylation profiles
(AC vs. AH) than their Caucasian counterparts (CC vs. CH).
However, methylation differences between the AC and AH
groups were greatly reduced on excluding the OMPs, sug-
gesting a substantial role for OMPs in causing epigenetic
disbalances in AA patients with colorectal cancer.
Because the frequency of OMPs appears higher among

African Americans (Fig. 2), and OMPs have sometimes been
associated with undesirable outcomes in other diseases (14), as
well as cancer (25, 26), a greater frequency of OMPs among AA
patients with colorectal cancer could be associated with racial
disparities in colorectal cancer incidence and outcome. How-
ever, too few OMPs have been identified to determine whether

this unusual molecular phenotype is associated with any
clinical outcome or any established molecular subtype in
patients with colorectal cancer. However, it is noteworthy, that
our previous study onOMP in TCGAdata showed that OMP is
independent of CIMP (15). Another important aspect of cancer
including colorectal cancer is the significance of epigenetic
aging in tumorigenesis, and its potential use for cancer risk
prediction (27). It would be interesting to further evaluate if
OMPs have epigenetic age drift in normal tissues, which could
be used as a predictive and prognostic tool. Nevertheless,
determining the cause of OMP in normal tissues is of interest
because of its potential to affect gene expression in normal
colonmucosa, as well as the potential for environmental factors
to influence this phenotype.
Our analysis of gene expression, comparing normal colon

mucosa of OMP cancer patients with non-OMP cancer
patients, indicated that the major pathways differentially
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affected in OMP patients were involved in repression of genes
mediating the interaction between the intestinal epithelium/
mucus barrier and the microbiome. For instance, a number of
genes from the cadherin superfamily, claudins and other
transmembrane junction proteins were downregulated in the
OMP group. Cadherins and claudins are integral parts of
adherens and tight junctions, respectively. Cadherins are
important cell adhesion molecules and loss of cell adhesion,
specifically by downregulation of E-cadherin (CDH1) has been
associated with malignant characteristics including tumor
progression, loss of differentiation, invasion and metasta-
sis (28). On the other hand, claudins are transmembrane
proteins that maintain the barrier functioning of tight junc-
tions (29). Clearly, loss of expression of these and other
transmembrane junction proteins leads to deregulation of
normal tissue function and development of epithelium-
related diseases, including cancer (30). Furthermore, genes
belonging to the mucin family were downregulated in OMP
cancer patients. Aberrantmucin expression is linked to chronic
inflammation and colorectal cancer, as mucus functions as a
physical barrier and influences microbial composition by
providing nutrients and attachment sites for the microbial
community (31).
Analysis of the microbiome further showed differential

abundance of several genera between OMPs versus non-
OMP colorectal cancer patients. The genus Eubacterium was
found to be in lower abundance in OMPs in our study.
Interestingly, the abundance of Eubacterium hallii, and Eubac-
terium ventriosum were found to be significantly higher in
healthy samples than in colorectal cancer samples (32). E. hallii
utilizes glucose and the fermentation intermediates acetate and
lactate to form butyrate and hydrogen, which are important in
maintaining intestinal metabolic balance (33).
Fusobacterium and Bacteroides, which are among the most

prominent colorectal cancer–associated bacteria, were highly
abundant in OMPs compared with non-OMPs (34). Fusobac-
terium is also known to be associated with microsatellite
instability (MSI), hypermethylation and malignant transfor-
mation of epithelial cells (35). On the other hand, Bacteroides
fragilis cause a series of inflammatory reactions due toB. fragilis
toxin (BFT), which leads to chronic intestinal inflammation
and tissue injury and plays a crucial role leading to colorectal
cancer (36).
Other genera found to be in higher abundance in OMPs,

such as Phascolarctobacterium, Roseburia, Ruminococcus,
Diallister and Stenotrophomonas have also been reported
to be in higher abundance in patients with colorectal cancer
in other studies (37–40). Furthermore, Ruminococcus gnavus
has been positively associated with KRAS mutations (a
known colorectal cancer mutation) (41). Recent studies have
also highlighted the role of Dialister pneumosintes in
advanced colorectal cancer patients (42). Stenotrophomonas
maltophilia is a nosocomial pathogen which is found in
higher abundance in colorectal cancer patients after radio
or chemotherapy (43).

A recent study (44) showed that the overall microbial
composition in normal adjacent tissues is relatively similar to
their tumor tissues, with the exceptions of some bacteria
which show different prevalence between these two tissue
types. This suggests that some of the microbiome changes
that we observe may be affected by the presence of an
adjacent neoplasm.
AA race is widely understudied and underrepresented in

both publicly available datasets (like TCGA) and tissue bio-
banks. We were limited by the number of African American
biospecimens available in the biobank. It is to be noted that
some of the largest colorectal cancer biobanks and Con-
sortiums have negligible representation of African Americans.
Although our sample size was insufficient to clinically

characterize (like tumor grade, side of tumor, age, sex) the
OMP group, analysis of the microbiome clearly reflected that
normal colonmucosa of OMPs are enriched in bacterial genera
associated with colorectal cancer risk, advanced tumor stage,
chronic intestinal inflammation, malignant transformation,
nosocomial infections, and KRAS mutations. These observa-
tions suggest that OMP patients may have microbial dysbiosis
that is distinct from that of non-OMP patients.
In conclusion, we identified a distinct group of highly

abnormally methylated colorectal cancer patients, termed
“OMPs”, and validated their existence usingmultiple statistical
approaches and in multiple datasets. This epigenetically dis-
rupted OMP group was more prevalent among AA patients
with colorectal cancer than Caucasian patients with colorectal
cancer. Furthermore, we showed that the vast majority of
methylation differences between AA patients with colorectal
cancer and healthy controls are driven by this OMP group.
We were also able to demonstrate downregulation of crucial
genes in the OMP group, especially mucins and transmem-
brane junction genes. Finally, microbiome analysis showed
higher abundance of microbial genera that are associated
with colorectal cancer risk, malignancy and advanced tumor
stage in OMP cancer patients compared with non-OMP
cancer patients.
Whether these differences might be a cause or effect of

normal colon OMP is unclear. Such questions are only likely
to be answered by examination of a much larger number of
OMP patients. In this regard, a major consideration for future
studies is the relative rarity of OMP individuals, and a major
weakness of the present study is the small number of OMP
individuals examined. If OMPs are, in fact, more prevalent
among patients of African ancestry, examination of a much
larger number of such patients might shed additional light on
the significance of this phenotype, as well as whether itmight be
associated with observed racial disparities in colon cancer
incidence and outcome.
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