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Root-associated microbial communities play important roles in plant growth and
development. However, little attention has been paid to the microbial community
structures associated with cassava, which is a staple food for approximately 800 million
people worldwide. Here, we studied the diversity and structure of tuber endosphere
and rhizosphere bacterial communities in fourteen cassava genotypes: SC5, SC8,
SC9, SC205, KU50, R72, XL1, FX01, SC16, 4612, 587, 045, S0061, and 1110.
The results of bacterial 16S rDNA sequencing showed that the richness and diversity
of bacteria in the rhizosphere were higher than those in the tuber endosphere
across the 14 cassava genotypes. After sequencing, 21 phyla and 310 genera were
identified in the tuberous roots, and 36 phyla and 906 genera were identified in the
rhizosphere soils. The dominant phylum across all tuber samples was Firmicutes, and
the dominant phyla across all rhizosphere samples were Actinobacteria, Proteobacteria,
and Acidobacteria. The numbers of core bacterial taxa within the tuber endospheres
and the rhizospheres of all cassava genotypes were 11 and 236, respectively. Principal
coordinate analysis and hierarchical cluster analysis demonstrated significant differences
in the compositions of rhizosphere soil microbiota associated with the different cassava
genotypes. Furthermore, we investigated the metabolic changes in tuber roots of
three genotypes, KU50, SC205, and SC9. The result showed that the abundances
of Firmicutes, Proteobacteria, and Actinobacteria in tuber samples were positively
correlated with organic acids and lipids and negatively correlated with vitamins and
cofactors. These results strongly indicate that there are clear differences in the structure
and diversity of the bacterial communities associated with different cassava genotypes.
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INTRODUCTION

Plants host diverse and abundant microbial communities
that can be considered the “second genomes” of plants.
Microbial communities that exist in close association with
plants can be categorized into three groups: endophytic,
epiphytic, and closely associated (Tringe et al., 2005). Plants
and their associated microbes interact with each other and
form assemblages of genotypes that are often referred to as
“holobionts” (Vandenkoornhuyse et al., 2015; Hassani et al.,
2018). Plants attract and select for beneficial microbiomes by
releasing signal molecules and providing carbon metabolites
as root exudates to endosphere and rhizosphere bacteria (Ryu
et al., 2004; Guo et al., 2016; Lopes et al., 2016). Plants
can influence net ecosystem changes through deposition of
secondary metabolites into the rhizosphere that attract or inhibit
the growth of specific microorganisms. This rhizodeposition
was made up of small-molecular weight metabolites, amino
acids, secreted enzymes, mucilage, and cell lysates (Grayston
et al., 1998; Paterson and Sim, 2000). Soil microbes utilize
this abundant carbon source, thereby implying that selective
secretion of specific compounds may encourage beneficial
symbiotic and protective relationships whereas secretion of
other compounds inhibit pathogenic associations (Hoffland
et al., 1992; Holden et al., 1999). A concrete example is
the secretion of isoflavones by soybean roots, which attract
a mutualist (Bradyrhizobium japonicum) and a pathogen
(Phytopthora sojae) (Morris et al., 1998). In turn, plants
benefit from these relationships, as the microbes change
key nutrients into more usable forms (Long, 1989; Bolan,
1991; Zhang et al., 2009). The symbioses between plants
and the associated microbes play important roles in the
development, health and environmental adaptability of the
plant hosts (Spor et al., 2011; Berendsen et al., 2012; Yuan
et al., 2018). Previous studies on Arabidopsis thaliana (Durán
et al., 2018), grapevine (Rolli et al., 2015), and citrus (Zhang
et al., 2017) have demonstrated that the bacterial community
plays an essential role in plant growth through a variety
of mechanisms, including increasing nutrient acquisition,
promoting plant hormone production, and protecting plants
against pathogen attacks (Ritpitakphong et al., 2016; Álvarez-
Pérez et al., 2017; Hassani et al., 2018). Many plant-associated
microbes can induce systemic resistance in plants (Liu et al.,
2019). For example, stem inoculation with the bacterial strains
Bacillus amyloliquefaciens (GB03) and Microbacterium imperiale
(MAIIF2a) mitigates Fusarium root rot in cassava (Freitas
et al., 2019). Bacillus cereus AR156 is a plant growth-promoting
rhizobacterium (PGPR) that induces resistance against a broad
spectrum of pathogens in A. thaliana (Niu et al., 2011).
Moreover, harnessing the plant microbiome to maximize crop
production is increasingly considered a viable and sustainable
approach for the future of agriculture (Geddes et al., 2015;
Qiu et al., 2019).

Endophytic microbes and rhizosphere exophytic microbes
are affected both by their host plants and by environmental
stimuli. In some plants, the diversity and composition of
endophytic communities are highly variable between cultivars

(Liotti et al., 2018; López et al., 2018). For example, two Rosa
cultivars with different powdery mildew susceptibilities were
determined to share only 34.2% of operational taxonomic units
(OTUs), and the resistant cultivar had significantly lower fungal
diversity than the susceptible cultivar in the early stage of
development (Zhao et al., 2018b). Some studies have shown that
the species has a stronger influence on bacterial community
composition by growing Populus, Quercus, and Pinus in three
soils originating from different field sites (Bonito et al., 2014).
The host plant species is the most important factor that
determine the leaf endophytic bacterial communities collected
from 5 species of plants (Asclepias viridis, Ambrosia psilostachya,
Sorghastrum nutans, Panicum virgatum, and Ruellia humilis)
(Ding et al., 2013). Moreover, the taxonomic composition
of the extraordinarily diverse communities of microorganisms
associated with plants is determined partly by the plant genotype
(Korkama et al., 2006; Peiffer et al., 2013; van der Heijden and
Schlaeppi, 2015). Genotype effects on the fungal and bacterial
microbiomes have been detected in Triticum aestivum (Simonin
et al., 2020), rice (Oryza sativa) (Edwards et al., 2015), maize (Zea
mays) (Walters et al., 2018), and potato (Solanum tuberosum)
(van Overbeek and van Elsas, 2008; Inceoğlu et al., 2010). The
influence of plant genotypes on belowground microbiota can
be attributed to differences in plant growth performance, as
well as in the varying amounts of nutrients provided to soil
through litter and root exudates (Korkama et al., 2006; van der
Heijden and Schlaeppi, 2015; Hugoni et al., 2018) and through
their symbionts (Smith and Read, 2008; Gorka et al., 2019).
Rhizosphere-associated microbes obtain essential nutrients from
plants through host root exudates, and crucial nutrients can
be converted to more usable forms, including sugars, organic
acids, amino acids, and peptides, by microbes before being
assimilated by plants (Ryu et al., 2004). Therefore, through the
release of a broad variety of secondary metabolites and root
exudates, plants have the capacity to drive and shape plant-
associated microbial communities (Raaijmakers et al., 2009).
The plant genotype, by determining the community structure
of its microbial partners, can be expected to exert cascading
effects on ecosystem functions related to nutrient cycling.
Overall, plant genetic control of the microbial community
is of considerable interest for crop plant breeding and for
exploring the possibility of designing a “healthy” microbiome
(Morella et al., 2020).

Cassava (Manihot esculenta Crantz) is a member of the
Euphorbiaceae family, has strong environmental adaptability
and is tolerant of barrenness and drought (Luo, 2005). Owing
to its starch-enriched tuberous root, cassava is an important
cash crop in tropical and subtropical areas, and it can also
be converted into a large number of products; for example, it
is a major resource used in the production of starch, biofuel,
and animal feed (Utsumi et al., 2012; Okogbenin et al., 2013).
Previous studies have shown that the agronomical characteristics
of cassava are significantly influenced by different PGPR
strains (Suja et al., 2015). Microbial inoculation significantly
improved the mineral nutrient uptake, yield, harvest index,
and repression of root rot infection in cassava compared
with those in uninoculated controls (Hridya et al., 2013).
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The application of beneficial bacteria plays an important role
in increasing plant growth and protecting against pathogen
infection in cassava (Freitas et al., 2019). With the development
of next-generation sequencing technologies, culture-independent
methods have been employed to determine the profiles of
the cassava-associated microbial communities by 16S rDNA
sequencing. Li et al. (2020) showed that cassava cultivars
recruited various endophytic microbial taxa from tuberous
roots to affect the ability of root rot resistance. Similarly,
structure of microbiomes of cassava genotypes were analyzed,
and revealed their potential roles in cassava bacterial blight
resistance (Zhang et al., 2021). Such previous studies have
been made on cassava-associated bacteria overall, and few have
focused on the comprehensive investigation of endophytic and
rhizospheric bacteria of cassava genotypes. Besides, we currently
have a poor understanding of how tuber metabolites influence
microbial community structure.

In this study, fourteen cassava genotypes with significant
differences in genetic background were used to investigate the
relationship between cassava-associated bacteria and genetic
differences among cassava genotypes by 16S rDNA gene tag
sequencing analysis. Moreover, we examined the effects of
cassava tuber metabolites collected from three typical cassava
genotypes on the different bacterial communities from the
tuberous roots and rhizosphere soil. Our results will provide new
insight into the linkages between cassava-associated bacteria and
cassava genotypes.

MATERIALS AND METHODS

Study Sites and Sample Collection
A total of fourteen cassava genotypes (SC5, SC8, SC9, SC205,
KU50, R72, XL1, FX01, SC16, 4612, 587, 045, S0061, and 1110)
were provided by Prof. Wenquan Wang, and were grown in the
same field in Chengmai county, Hainan Province, China (19◦85′
N, 110◦08′ E, elevation 83 m a.s.l.) (Supplementary Table 1).
The average annual temperature at the study location is 23.8◦C,
the annual precipitation is 1786.1 mm and the average annual
sunshine hours are 2,059 h. The soil type at the site is a red loam.

Two samples (tuberous roots and rhizosphere soil) of the
fourteen genotypes were taken with three biological replicates in
March 2019. The detail of endosphere and rhizosphere microbes
sampling was as follows. The whole tuberous roots were taken
out and the bulk soil was removed by careful shaking. Soil still
adhering to the tubers was collected with sterile tweezers and
defined as the rhizosphere soil. In order to remove the majority
of rhizosphere-associated microbes and enrich for endophytic
microbes, the tubers were washed with water and sterilized, first
with 75% alcohol and then with a sodium hypochlorite solution
containing 1% active chlorine. Then, the tubers were washed
with sterilized water, and cleaned using sterilized filter paper, and
placed into sterilized bags. All the samples were stored at −80◦C
in liquid nitrogen until DNA extraction (Dong et al., 2018).
The tuberous roots of three cassava genotypes, KU50, SC205,
and SC9, were collected for metabonomic analysis, and three
biological replicate samples were taken for each cassava genotype.

DNA Extraction and Illumina MiSeq
Sequencing
The tuber samples were ground into powder by the liquid
nitrogen grinding method for the extraction of the endophytic
flora. Genomic DNA was extracted from the freeze-dried tuber
powder (50 mg) and freeze-dried soil samples (0.20 g) with
E.Z.N.A.TM Mag-Bind Soil DNA kits (Omega, United States),
following the manufacturer’s instructions. We measured the
concentration of the DNA using a Qubit 2.0 (life, United States)
to ensure that adequate amounts of high-quality genomic
DNA had been extracted. The 16S rDNA V3–V4 amplicon
was amplified using KAPA HiFi Hot Start Ready Mix (2×)
(TaKaRa Bio Inc., Japan) and individual barcoded primers
with gene-specific regions of those primers corresponding
to 341F (5′-CCTACGGGNGGCWGCAG-3′) and 805R (5′-
GACTACHVGGGTATCTAATCC-3′) (Dethlefsen and Relman,
2011). The polymerase chain reaction amplification conditions
were as follows: the reaction mixtures in each tube contained 2
µL of target DNA (10 ng/µL), 15 µL of 2 × KAPA HiFi Hot
Start Ready Mix, 1 µL of amplicon PCR forward primer (10 µM),
1 µL of amplicon PCR reverse primer (10 µM), and 11 µL of
sterile distilled water, with a total volume of 30 µL. The plate
was sealed and polymerase chain reaction (PCR) performed in
a thermal instrument (Applied Biosystems 9700, United States)
using the following program: the thermal cycling conditions for
the primary PCRs consisted of 3 min at 93◦C, followed by 5
cycles of 30 s at 94◦C, 20 s at 45◦C, and 30 s at 65◦C, followed
by 20 cycles of 20 s at 94◦C, 20 s at 55◦C, and 30 s at 72◦C,
and a final extension for 5 min at 72◦C. The PCR products were
checked using electrophoresis in 1% (w/v) agarose gels in TBE
buffer (Tris, boric acid, EDTA) stained with ethidium bromide
(EB) and visualized under UV light.

After PCR amplification, quantification of the bacterial 16S
rDNA was performed using Qubit3.0 DNA detection kits.
Next, the samples were loaded onto an Illumina MiSeq high-
throughput sequencing platform for paired-end sequencing
(Shao et al., 2017) and sequenced by Sangon BioTech (Shanghai,
China). The raw Illumina MiSeq sequences were processed and
analyzed using the Quantitative Insights into Microbial Ecology
(QIIME) software package (version 1.8.0) (Caporaso et al.,
2010). The paired-end reads were merged into longer contigs
and quality filtered to remove contigs with lengths < 200 nt,
average quality scores of < 20, and contigs containing > 3
nitrogenous bases by PANDAseq. The quality-filtered sequences
were subsequently clustered in OTUs at 97% similarity and
annotated using the Ribosomal Database Project (RDP) and
Silva bacterial databases to determine the phylogeny and relative
abundances of the OTUs (Cole et al., 2007). The unclassified
OTUs and the reads identified as chimeras through UCHIME
(Edgar et al., 2011) were removed from downstream analysis. The
raw data were submitted to the NCBI Sequence Read Archive
(Accession No. PRJNA750582).

Extraction of Tuber Metabolites
Twenty-five milligrams (± 2%) of each tuberous sample
was accurately weighed out and ground. The sample to
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be tested was then extracted, and gas chromatography-mass
spectrometry (GC-MS) detection was performed. Briefly, GC was
performed on an HP-5 MS capillary column (5% phenyl/95%
methylpolysiloxane 30 m × 250 µm i.d., 0.25 µm film thickness,
Agilent J and W Scientific, Folsom, CA, United States) to separate
the derivatives at a constant flow rate of 1 mL/min helium. One
microliter of sample was injected in split mode in a 20:1 split ratio
by the autosampler. The injection temperature was 280◦C, the
interface was set to 150◦C, and the ion source was adjusted to
230◦C. The temperature-increase program was as follows: initial
temperature of 60◦C for 2 min, 10◦C/min increase rate to 300◦C
and holding at 300◦C for 5 min. MS was performed with the full-
scan method within a range from 35 to 750 (m/z) (Sangster et al.,
2006; Want et al., 2013).

The obtained raw data were converted into the netCDF format
(xcms input file format) through Agilent MSD ChemStation
(Smith et al., 2006). R (v3.1.3) was used to obtain data matrices,
including the mass to charge ratio (m/z), retention time, and
peak area (intensity). Metabolite annotations were performed
with the AMDIS program. The databases used for annotation
were the National Institute of Standards and Technology
(NIST) commercial database and the Wiley Registry metabolome
database. Among them, the metabolite alkane retention index
was used for further qualitative substance analysis according to
the retention index provided by the Golm Metabolome Database
(GMD),1 and most of the substances were further confirmed by
standard products.

Bioinformatics and Statistical Analysis
R software (version 4.0.2) was used for bioinformatics analysis,
and certain plots were generated using the “ggplot2” package.
The “vegan” package was used to calculate the number of
microorganisms and abundance based on the 16S OTU table. For
any sample, we used total sum scaling to calculate the relative
abundance and expressed the relative abundance as percentages.
The richness and diversity statistics including the richness [the
abundance-based coverage estimator (ACE)] and the Shannon
diversity index were also calculated using mothur (Schloss et al.,
2009). The modified pipeline is described on the mothur website.
A t-test or two-way analysis of variance (ANOVA) with Duncan’s
multiple range test was performed for multiple comparisons to
determine the significant differences in the total number and α-
diversity index of bacteria in the tuberous roots and rhizosphere
soil, and Excel 2019 software was used to visualize the differences.
All statistical tests performed in this study were considered
significant at P < 0.05 with SPSS version 20.0 software.
Differences were considered significant at P < 0.05. The effects
of cassava genotypes on the core and unique microbial OTUs
in each tuber and the soil environment were analyzed according
to the methods provided by Shade and Handelsman (2012) and
Zhao et al. (2018a), respectively. The OTUs that consistently
appeared in the three biological replicates of all plant genotypes
were considered the core microbiome, while the OTUs that
were present in all three biological replicates of only one plant
genotype were considered unique microbiomes. The significant

1http://gmd.mpimp-golm.mpg.de/

differences in the microbiome of a given cassava genotype among
treatments were tested using one-way ANOVA and the least
significant difference (LSD) test (P < 0.05). These results were
visualized using Venn diagrams. Principal coordinates analyses
(PCoAs) based on Bray-Curtis distance were used to evaluate
the differences among the microbial communities of the different
cassava genotypes in the tuberous roots and rhizosphere soil.
Hierarchical clustering analysis (HCA) was performed based on
the β-diversity distance matrix, and then the unweighted pair
group method with arithmetic mean (UPGMA) algorithm was
used to build a cluster tree. Linear discriminant analysis (LDA)
and effect size (LEfSe) analyses were performed using the LEfSe
tool (Segata et al., 2011). Differences in rhizosphere bacterial
abundance were analyzed by LEfSe. The LEfSe analysis used
the Kruskal-Wallis rank sum test to detect significantly different
abundances and generated LDA scores to estimate the effect size
(threshold: ≥ 2).

The relative content (percentage) of each metabolite produced
by the three cassava genotypes and their biological roles were
determined and then visualized with a stacked column chart
to compare the compositions and structures of the tuber
metabolites. Unsupervised principal component analysis (PCA)
and orthogonal partial least squares discrimination analysis
(OPLS-DA) based on the “MetaboAnalyst” package in R were
used to compare the compositions and structures of tuber
metabolites among the different cassava genotypes and to
identify significant differences in tuber metabolites among
genotypes. The correlations between metabolites and bacterial
phyla were estimated using Mantel tests (type = Spearman) in
the “vegan” package. In addition, Pearson correlation analyses
were performed with the “corrplot” package and used to reveal
correlations between the abundance of the microbial flora and the
composition of tuber metabolites.

RESULTS

General Characteristics of 16S rDNA
Based on Sequencing Data
In this study, we obtained 3,392,789 and 3,648,420 raw reads
from the MiSeq sequencing analysis of the two sampling sites
(each sampling site consisted of 14 cassava cultivars × 3
biological replicates), with an average of 80,781 and 86,867
reads per sample. After quality filtering, a total of 3,225,194
and 3,418,691 reads were obtained from the two sampling sites,
with an average of 76,790 and 81,397 reads obtained in each
sample (Supplementary Table 1). The reads were clustered
into a total of 3,927 and 239,156 OTUs according to 97%
sequence similarity. The taxonomic assignment of the OTUs
resulted in the identification of 21 phyla and 310 genera in
tuberous roots and 36 phyla and 906 genera in rhizosphere soil
(Supplementary Table 2).

Microbial Taxonomic Analysis at the
Phylum Level
The relative abundances of the 10 most abundant phyla (>1%
of relative abundance in at least one sample) are shown in
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Figure 1A and Supplementary Table 2. Firmicutes was the
dominant phylum (>10% relative abundance) across all tuber
samples, accounting for 46.9–89.3% of the total high-quality
sequences. Proteobacteria and Actinobacteria were the next most
abundant phyla (>1% relative abundance) in all tuber samples,
accounting for 5.6–49.4% and 1.0–14.2% of the total high-
quality sequences, respectively. Interestingly, the abundances of
Actinobacteria in SC8 and Acidobacteria in 587 were extremely
high compared with those in the other tuber samples. However,
among the rhizosphere samples, Actinobacteria, Proteobacteria
and Acidobacteria were the dominant phyla (> 10% relative
abundance) across all rhizosphere samples, accounting for 17.4–
29.5%, 15.2–28.5%, and 11.0–21.8% of the total high-quality
sequences, respectively. Firmicutes, Chloroflexi, Planctomycetes,
and Verrucomicrobia were the next most abundant phyla (> 1%
relative abundance) in all rhizosphere samples, accounting for
4.9–26.2%, 4.5–14.4%, 2.7–6.5%, and 1.5–6.5% of the total high-
quality sequences, respectively. Among the rhizosphere samples,
the abundances of Firmicutes and Acidobacteria were higher
in SC5, SC8, SC9, SC205, KU50, XL1, and FX01 than in the
rhizospheres of the other genotypes (Figure 1A). The identities
and relative abundances of bacterial phyla between tuberous
roots and rhizosphere soil were obviously different. Based on the
Venn diagram analysis, 21 phyla in the rhizosphere soil were
found to be common to all tuberous samples, and 15 phyla were
exclusive to the rhizosphere samples (Figure 1B).

Comparison of Bacterial Community
Structures at the Genus Level
Based on the heatmap analysis of the relative abundances of
the 50 most abundant classified genera, there were clearly
significantly different bacterial community structures between
the tuberous roots and rhizosphere soil of the fourteen cassava
genotypes analyzed (Figure 2). The 50 most abundant genera
belonged to 13 phyla (Supplementary Table 3).

Lactococcus and Bacillus were the dominant genera (>10%
relative abundance) in all tuber samples, accounting for 20.0–
41.3% and 18.5–32.7% of the total high-quality sequences,
respectively. Interestingly, the abundance of Pseudomonas
in 045 was much higher than those in the other tuber
samples. Oceanobacillus and Carnobacterium were the next most
abundant genera (> 1% relative abundance) in all tuber samples,
accounting for 4.1–6.9% and 2.3–5.3% of the total high-quality
sequences, respectively (Figure 2A). There were 11 core genera
in the tuberous roots, accounting for only 3.5% of the total tuber
bacterial community (Figure 3A). The core bacterial genera of
the fourteen cassava genotypes included Lactococcus, Bacillus,
Oceanobacillus, Acinetobacter, Carnobacterium, Sphingomonas,
Streptococcus, Exiguobacterium, Leuconostoc, Enterococcus, and
Phenylobacterium. Among them, 6 genera had significant
differences in abundance among genotypes (P < 0.05),
namely, Lactococcus, Bacillus, Oceanobacillus, Acinetobacter,
Streptococcus, and Exiguobacterium (Supplementary Table 4).

The distributions of the genera differed greatly across
the different rhizosphere samples. A total of eight genera
(Gp1, Gaiella, Bacillus, Lactococcus, Gp3, Ktedonobacter,

Rhodoplanes, and Spirillospora) were highly abundant (>1%
relative abundance) in all rhizosphere samples (Figure 2B). The
core bacterial genera in the rhizosphere soils remained similar
among the different genotypes of cassava. There were 236 core
bacterial genera, accounting for 26.0% of the total rhizosphere
bacterial community (Figure 3B). The relative abundances of
most of the core bacterial genera showed significant differences
among genotypes (P < 0.05) (Supplementary Table 4).

Effects of Host Genetics Based on
α-Diversity Analysis
To compare the α-diversity of samples with different sequence
counts, we refined the data (i.e., we randomly picked an
equal number of sequences across samples) using QIIME. The
rarefaction curves showed the richness of the observed OTUs
(Supplementary Figure 1) and indicated that the sequencing
depth was sufficient to fully capture the diversity present.
Microbial abundance and α-diversity were estimated using the
population of bacteria, the bacterial richness (ACE) and the
bacterial Shannon index, and had a statistical analysis performed
with genotype and sampling site as explanatory variables. The
highest richness was detected in the rhizosphere soil samples,
which had significantly higher OTU and bacterial numbers
and ACE and Shannon index values than the tuber samples.
Among the tuber samples, SC8 had the highest number of
OTUs (n ≥ 306 OTUs), and 4612 had the lowest number of
OTUs (n = 49 OTUs). Among the rhizosphere soil samples,
SC16 had the highest number of OTUs (n ≥ 6,858 OTUs), and
SC205 had the lowest number of OTUs (n ≥ 4,992 OTUs).
Further, the differences in the total number and microbial alpha-
diversity of bacteria were tested with the t-test or two-way
analysis of variance (ANOVA) with Duncan’s multiple range
test and were considered different at P < 0.05. Our results
showed that there were no significant differences in the number
of bacterial OTUs among the fourteen genotypes (P > 0.05)
(Supplementary Table 5). Similarly, among the tuber samples,
no significant differences in microbial abundance or α-diversity
were observed among the fourteen genotypes (P > 0.05). Overall,
SC8 had the highest number of bacteria and α-diversity (Figure 4
and Supplementary Table 5). However, the comparison of the
microbial abundance and α-diversity metrics of the rhizosphere
soils revealed disparities in the bacterial number, ACE, and
Shannon indices among the fourteen genotypes (P = 0.000032,
0.005132, and 8.5974E−22, respectively). Furthermore, SC16, 587,
4612, and FX01 showed significantly higher bacterial diversity
than the other genotypes (Figure 4 and Supplementary Table 5).

Effects of Host Genetics Based on
β-Diversity Analysis
A β-diversity analysis based on PCoA (Figures 5A,B) and
HCA (Figure 5C) was performed to compare the bacterial
compositions of the different samples. PCoA plots based on
Bray-Curtis distances showed that bacterial communities in the
tuberous roots were not clearly separated, and 40.47% (25.38
and 15.09%) of the overall variation could be explained. In
contrast, the bacterial communities in the rhizosphere soil
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FIGURE 1 | (A) Histogram of the relative abundances at the phyla level of the TOP 10 bacterial communities. (B) Number of bacterial phyla in tuberous roots and
rhizosphere soil of different cassava genotypes. T stands for tuberous roots; R stands for rhizosphere.

were clearly separated based on the cassava genotypes, which
explained 52.68% (42.44 and 10.24%) of the overall variation
(Figures 5A,B). Similar results were also obtained from the
HCA tree. A cluster tree of all rhizosphere soil samples was
constructed using HCA (Figure 5C). The bacterial communities

in the rhizosphere soils of the different genotypes were clustered,
and all branches were clustered based on the cassava genotypes.
Thus, these results indicate that there is a correlation between the
bacterial community in the rhizosphere of cassava and the genetic
background of the cassava genotype.
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FIGURE 2 | Heatmap of the relative abundances at the genus level of the TOP 50 bacterial communities in (A) the tuberous roots and (B) the rhizosphere soil of
different cassava genotypes.

FIGURE 3 | Number of bacterial genera in (A) the tuberous roots and (B) the rhizosphere soil of different cassava genotypes.

Bacterial Groups With Significant
Differences Among Genotypes
In addition to characterizing their α- and β-diversities, another
primary purpose of comparing the microbial communities
was to identify specialized bacterial groups in the rhizosphere
soils of each genotype. LEfSe can be used to analyze bacterial
community data at any taxonomic level and to provide biological
class explanations to establish statistical significance, biological

consistency, and effect-size estimation of predicted biomarkers
(Segata et al., 2011). We performed a statistical analysis of
rhizosphere soil bacterial communities of the different cassava
genotypes at the genus level, and a total of 323 distinct bacterial
groups were identified using the default logarithmic LDA value
of 2 (Supplementary Figure 2). The SC5 microbiome was
characterized by the presence of Bacillus [LAD(log10) > 4.0];
SC8 was characterized by the presence of Ktedonobacter and
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FIGURE 4 | Microbial population (A), richness (abundance-based coverage estimator, ACE) (B), and Shannon diversity (C) in the tuberous roots and rhizosphere soil
of different cassava genotypes. Error bars represent standard deviations (SDs). Different lowercase letters and capital letters represent significant differences
(P < 0.05) within tuberous roots and rhizosphere soil according to Duncan test, respectively. T stands for tuberous roots; R stands for rhizosphere.

Frontiers in Microbiology | www.frontiersin.org 8 September 2021 | Volume 12 | Article 729022

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-729022 September 29, 2021 Time: 13:48 # 9

Ha et al. Bacterial Diversity Among Cassava Genotypes

FIGURE 5 | Principal coordinates analyses (PCoA) were performed based on (A) tuber and (B) rhizosphere soil bacterial OTU distributions using Bray-Curtis
distance. (C) Hierarchical cluster analysis (HCA) was used to form a cluster tree of rhizosphere soil bacterial communities of different cassava genotypes.

Gp2 [LAD(log10) > 4.0]; R72 was characterized by the presence
of Lactococcus and Burkholderia [LAD(log10) > 4.0]; FX01
was characterized by the presence of Thermosporothrix and
Aciditerrimonas [LAD(log10) > 4.0]; SC16 was characterized
by the presence of Sphingomonas [LAD(log10) > 4.0];
4612 was characterized by the presence of Gaiella and
Acidobacterium [LAD(log10) > 4.0]; 587 was characterized
by the presence of Gp1, Subdivision3_genera_incertae_sedis and
Gp6 [LAD(log10) > 4.0]; 045 was characterized by the presence
of Stella and Gp3 [LAD(log10) > 4.0]; S0061 was characterized
by the presence of Spartobacteria_genera_incertae_sedis
[LAD(log10) > 4.0]; and 1,110 was characterized by the
presence of Rhodoplanes and Spirillospora [LAD(log10) > 4.0].
Interestingly, no bacterial genera from the rhizosphere of SC9,
SC205, or KU50 had an LAD (log10) greater than 4.0.

Influence of Tuber Metabolites on
Microbial Communities
The α- and β-diversities of the tuber microbial communities were
not significantly different among cassava genotypes, while the
bacterial communities in the rhizosphere soils of KU50, SC205,
and SC9 clustered into different groups. No bacterial genera
had an LAD (log10) of greater than 4.0 for these three cassava
genotypes, so they were selected for metabolome analysis.

A total of 78 compounds were detected in the tuber
metabolites recovered from the tuberous roots of the three
different cassava genotypes. The types of chemicals were the same
across the three cassava genotypes. The identified compounds
were categorized into nucleic acids, lipids, vitamins, cofactors,
organic acids, peptides, and carbohydrates (Supplementary
Figure 3A). Among them, the content of carbohydrates in the
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tuberous roots of SC9 was higher than that in the tuberous
roots of the other genotypes; the content of peptides in
the tuberous roots of KU50 was higher than that in the
tuberous roots of the other genotypes; and the content of
organic acids in the tuberous roots of SC205 was higher than
that in the tuberous roots of the other genotypes. However,
distinct differences in the abundances of certain compounds
were detected (Supplementary Figure 3B), and the 19 most
abundant metabolites in each of the three cassava genotypes
were significantly different (P < 0.05) (Supplementary Table 6).
PCA ordination showed that the tuber metabolite distributions
of the three cassava genotypes were significantly separated from
each other, indicating that the metabolite compositions and
structures of the three cassava genotypes were quite different
(Supplementary Figure 3C); the first two principal components
of the PCA explained 73% (49.8 and 23.2%) of the total variation
in the metabolites. To identify the metabolites that were notably
different among the three cassava genotypes, OPLS-DA was
performed on the metabolites of the three cassava genotypes. The
analysis revealed that the metabolites with substantial differences
among the three genotypes of cassava included sugars (5), sugar
acids (4), sugar alcohols (2), organic acids (12), amino acids (3),
amides/amines (4), and others (3) (Supplementary Figure 3D).

A correlation analysis between bacterial phyla and
metabolites indicated that higher relative abundances of
Firmicutes, Proteobacteria, and Actinobacteria were positively
correlated with organic acids and lipids produced by the
tuberous roots of the three cassava genotypes and negatively
correlated with vitamins and cofactors (Figure 6A). Among
the rhizosphere soils of the three cassava genotypes, higher
relative abundances of most bacterial phyla were positively
correlated with peptides, vitamins and cofactors and negatively
correlated with carbohydrates, organic acids, lipids, and
nucleic acids (Figure 6B). Further examination of the core
genera, as defined by Bowen et al. (2017), indicated that
tuber metabolites from the rhizosphere soil increased the
relative abundances of 10 core bacterial genera, including
Lactococcus and Bacillus, compared with those in tuberous
roots. Interestingly, the identities and relative abundances
of the core microbiome genera in the rhizosphere soil were
both significantly different from those in the tuberous roots
(Supplementary Table 4).

DISCUSSION

Plants and microbes interact in order to obtain nutrients to
improve their growth and stress resistance, especially through
root-microbe interactions (Edwards et al., 2015; Wu et al.,
2020). Microbial communities have been shown to be impacted
by the microhabitat (Jin et al., 2017), soil type (Bonito
et al., 2014), and host genotype (Ofek-Lalzar et al., 2014;
Zhang et al., 2019). At present, the microbial diversity of
soils, roots, leaves, and aerial organs has been extensively
investigated by high-throughput sequencing (Buée et al., 2009;
Abdelfattah et al., 2016a,b, 2017; Liu et al., 2018; Yuan et al.,
2018). To extend our knowledge of bacterial diversity as it

FIGURE 6 | Relative abundance of bacterial phyla detected in (A) tuber and
(B) rhizosphere soil of three cassava genotypes, and correlation analysis of
bacterial community compositions and metabolite components. *Indicates
significant differences (P < 0.05).

relates to cassava genotypes, we used culture-independent high-
throughput sequencing technology to investigate the diversity
and community structure of bacteria present in the tuber
endospheres and rhizospheres of fourteen cassava genotypes
(SC5, SC8, SC9, SC205, KU50, R72, XL1, FX01, SC16, 4612,
587, 045, S0061, and 1110). Our results showed that the
diversity of bacterial communities in the tuber endosphere
and rhizosphere depends on the plant genotype and the
tuber metabolites.

Previous reports have suggested that microbial density is
generally higher in the rhizosphere than in the root and
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that bacterial diversity and richness gradually decrease from
soils to epiphytes to endophytes (Bulgarelli et al., 2012, 2015;
Lundberg et al., 2012; Edwards et al., 2015; Hacquard et al.,
2015). In this study, the diversity and richness of bacteria
in the rhizospheres of all cassava genotypes were higher
than those in the tuber endospheres. Moreover, the cassava
genotype did not significantly influence the endophytic bacterial
community structure (Figure 4). Similar results have also
been reported in previous studies: there were no significant
differences in richness or diversity among the endophytes
of different cassava genotypes (Li et al., 2020). Studies on
A. thaliana have consistently suggested that root endosphere
bacterial communities are strongly influenced by soil type and
soil properties but that host genotype has a limited effect
on the root microbiome (Bulgarelli et al., 2012; Lundberg
et al., 2012; Thiergart et al., 2020). However, we detected a
significant effect of cassava genotypes on the rhizosphere bacterial
community structure (Figure 5), which is consistent with other
previous findings (Miethling et al., 2000; Marschner et al., 2004;
Garbeva et al., 2008; Bonito et al., 2014; Burns et al., 2015;
Leff et al., 2018). For example, a significant effect of plant
genotype on rhizosphere microbial communities was observed
by comparing the rhizospheres of different experimental crops
grown in soils of the same type (Liu et al., 2020). Some
previous studies of the tree phyllosphere and maize rhizosphere
separately showed that host genetics played an important role
in shaping the bacterial microbiome (Laforest-Lapointe et al.,
2016; Walters et al., 2018). Our results provide comprehensive
empirical evidence for the selection of the microbial community
by cassava and a theoretical framework for the coevolution
between cassava and microbes; in this framework, cassava plants
use exudates to recruit, filter, and enrich certain microbial
taxa that have specific functions (Müller et al., 2016; Martin
et al., 2017; Sasse et al., 2018), and competition among
microbes for these resources drives their rapid evolutionary
radiation and consequent divergence to reduce competition
(Foster et al., 2017).

Generally, genetic based-interactions among genotypes
are complex and have been recently gaining attention
(Rasche et al., 2006; Xu et al., 2009; Aira et al., 2010;
Ýnceoğlu et al., 2012; Cheng et al., 2020), and even minor
genotype differences as between genetically modified
and parental lines are believed to affect the microbial
colonization of plant, particularly in vegetatively propagated
crop. The seed stem-associated bacterial communities,
independently of the genotypes and the soil type, is also a
possible factor determining the specificity of the bacterial
community in the tuber root system compartments.
Nevertheless, the influence of genotype in our study
is very evident.

In all cassava tuber samples, the dominant bacterial phyla
were Firmicutes, Proteobacteria, and Actinobacteria (>1% of
high-quality sequences) (Figure 1A). It has been previously
reported that Proteobacteria, Firmicutes, and Actinobacteria
are the dominant bacterial phyla in cassava (Li et al., 2020).
Similar results based on both culture-dependent and culture-
independent approaches have previously been reported for

endophytes of other plants (Khan Chowdhury et al., 2017;
Yang et al., 2017). In ginseng, Proteobacteria was found to
have the highest abundance, followed by Firmicutes and
Actinobacteria (Khan Chowdhury et al., 2017). Similarly,
in peony, Proteobacteria, Firmicutes, and Actinobacteria
have been reported to be the dominant bacterial phyla
(Yang et al., 2017). In all cassava rhizosphere samples, the
dominant bacterial phyla were Actinobacteria, Proteobacteria,
Acidobacteria, Firmicutes, Chloroflexi, Planctomycetes, and
Verrucomicrobia (>1% of high-quality sequences) (Figure 1A);
these findings are in accordance with Sarr et al. (2017),
who reported that the same soil bacterial communities were
associated with cassava cultivation in Cameroon. Actinobacteria
have also been shown to be enriched in exophytes of other
plants, such as Pinus pinaster and maize-wheat (Triticum
aestivum)/barley (Hordeum vulgare) rotation systems (Pérez-
Izquierdo et al., 2019; Xiong et al., 2021); these bacteria are used
as biocontrol agents to control soil- and seed-borne plant diseases
(Priyadharsini and Dhanasekaran, 2015). These results suggest
that rhizosphere microorganisms could play an important role
in cassava cropping in tropical regions that experience various
recurrent plant diseases.

The β-diversity analyses showed that bacterial communities
in the rhizosphere soil varied across the different plant
genotypes. PCoA indicated that the bacterial communities
in the tuberous roots were not clearly separated by cassava
genotype but that those in the rhizosphere soil were clearly
separated by cassava genotype. These results were also supported
by heatmap analyses at the genus level. Moreover, HCA
demonstrated that the rhizosphere bacterial communities
of the fourteen cassava genotypes were clustered based on
the cassava genotypes (Figure 5C); these findings support
the view that the cassava genotype influences the bacterial
rhizosphere community. Similarly, Schlemper et al. (2017)
reported that the community structures of the rhizosphere
microbiome were significantly different among seven different
sorghum cultivars. However, further studies are needed
to confirm this hypothesis and to confirm the effects of
genetic diversity on the compositions of root-associated
bacterial communities.

We noted a few genera that were consistently enriched
in the cassava tuberous roots, including Lactococcus, Bacillus,
Oceanobacillus, and Carnobacterium (Figure 2A). Lactococcus
and Bacillus improve plant resistance to diseases such as bacterial
blight and root rot in cassava and wilt disease in cucumber
(Xu et al., 2014; Freitas et al., 2019; Zhang et al., 2021).
In addition, Pseudomonas was also a dominant genus in the
tuber endosphere of 045. Pseudomonas species have been used
to alleviate heavy metal toxicity and the negative effects of
saline sodic field growth on wheat (Hassan et al., 2017). Eight
genera (Gp1, Gaiella, Bacillus, Lactococcus, Gp3, Ktedonobacter,
Rhodoplanes, and Spirillospora) were highly abundant in all
rhizosphere samples (Figure 2B). This result is in accordance
with Bao et al. (2019), who reported that the dominant
bacteria in a paddy soil included Bacillus, Acidobacteria/Gp1,
Acidobacteria/Gp3, and Ktedonobacter. Wu et al. (2021) found
that the enrichment of beneficial bacteria, mainly Gaiella,
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contributed to the ability of ramie to tolerate poor soils.
Our results showed that the cultivation of different cassava
genotypes recruited different unique and core microbes to
the cassava tubers and rhizospheres and that the microbes
were significantly different in identity and relative abundance
(Figure 3). This result is mainly attributed to the process
by which cassava plants recruit different microbes, i.e., the
release of a wide variety of exudates from tubers (Garbeva
et al., 2004; Raaijmakers et al., 2009). LEfSe analysis identified
specialized bacterial groups exclusively in the rhizosphere
soil (Supplementary Figure 2), which suggests that these
groups may play critical roles in maintaining the structure
and function of rhizospheric soil bacterial communities. For
example, Burkholderia, found in the R72 rhizosphere, was
more abundant in a pineapple-banana crop rotation soil than
in a banana monoculture soil, has the capacity to suppress
Fusarium wilt of banana (Wang et al., 2015). Other reports
who have demonstrated that bacteria from the Burkholderia
genera possess a potential biocontrol ability through the
production of varying compounds that inhibit plant pathogens
(Mendes et al., 2011; Raaijmakers and Mazzola, 2012; Tenorio-
Salgado et al., 2013). Spartobacteria_genera, found in the
S0061 rhizosphere, was stimulated potentially to suppress the
Fusarium wilt disease by sustainable biofertilizer application
(Shen et al., 2015). Furthermore, we also found that most
core microbes in the tubers and rhizosphere had plant
growth-promoting potential. These core genera are known
to produce various antibiotics, including bacillibactin and
lipopeptides (produced by Bacillus) (Li et al., 2014; Liu et al.,
2017), 2, 4-diac-etylphlor-oglucinol and phenazines (produced
by Pseudomonas) (Mazurier et al., 2009; Hu et al., 2017),
fusaricidin (produced by Paenibacillus) (Finch et al., 2018;
Li and Chen, 2019), and thiopeptide and ectoine (produced
by Streptomyces) (Cha et al., 2016). Overall, identifying these
core and unique microbiomes is important for understanding
the responsive microbial components associated with different
plant genotypes.

In this study, the bacterial communities in the rhizosphere
soils conditioned by the tuber metabolomes collected from
three typical cassava genotypes, KU50, SC205, and SC9, were
significantly different from each other taxonomically; in contrast,
the bacterial communities in the tuberous roots were not
significantly different. The correlation analysis between bacterial
phyla and the produced exudates revealed that these differences
could be linked to the exudation of certain tuber metabolites
(Figure 6). These results thus support the notion that specific
compounds within changing plant exudate profiles may drive soil
microbial dynamics (Badri et al., 2013). Although the potential
to mobilize soil nutrients is clearly already present in the soil
microbiome, tuber exudates increase the functional potential of
soil microbial communities. In addition, exudate concentrations
can play a major role in shaping the abundances of microbial
functional genes, which may be beneficial to plants (Badri
et al., 2013). Moreover, the contents of measured metabolites in
the three genotypes of cassava and their biological roles were
significantly different; the metabolites included sugars, sugar
acids, sugar alcohols, organic acids, amino acids, amides/amines,

and others (Supplementary Figure 3). These differences could
reflect a level of microbial community functional redundancy
that was stimulated by the metabolomes. In a study of the
rhizosphere microbiome of A. thaliana, Chaparro et al. (2013)
suggested that plants exude sugars that are used by a wide
variety of microorganisms as well as more specific exudates, such
as phenolic compounds, that may be intended to attract more
specific microbes. Amino acids, as specific chemoattractants for
microorganisms, promote the chemotaxis of soil microbes to
the rhizosphere (Barbour et al., 1991). Organic acids play a
crucial role in nutrient acquisition (P, Fe, and Mn) by plants
growing in nutrient-poor soils (Dakora and Phillips, 2002).
Our result is in accordance with the finding that specific
exudates of different Sorghum bicolor genotypes may influence
the rhizosphere microbial community composition (Funnell-
Harris et al., 2008). The available mineral nutrients in soils are not
sufficient to meet the requirements of plants for optimal growth;
thus, plants have evolved systems to recruit symbiotic microbial
partners that increase the availability of nutrients (Tinker, 1984;
Landeweert et al., 2001; Gyaneshwar et al., 2002; Adesemoye
and Kloepper, 2009). Many studies of root exudate-mediated
microbial defenses have developed robust models of coevolution
between plants and soil microbes; for example, in the “cry for
help” and “legacy effects” models (Weller et al., 2002; Yuan
et al., 2018), plants select for microbial communities that help
to suppress plant pathogens. The exudates released by different
genotypes of the same plant species can vary, which affects the
microbial community composition of the rhizosphere (Micallef
et al., 2009; Inceoğlu et al., 2010).

CONCLUSION

The different cassava genotypes did not affect the richness
or diversity of the endophytic bacterial community, but they
affected the richness and diversity of the exophytic bacterial
community. Furthermore, the cassava genotype shaped the
endophytic and exophytic community structures and affected
the relative abundances of core bacterial genera. The bacterial
community structures varied between the tuber endosphere and
the rhizosphere across cassava genotypes. The more dominant
bacterial phyla associated with tubers and the rhizosphere
were Firmicutes and Actinobacteria, respectively. Moreover, the
majority of genera were associated with the tuberous roots and
rhizosphere soils of specific cassava genotypes; this may have
been due to the exudation of certain metabolites from the cassava
tubers. These results suggest that plant genotypes affect the
community composition of endophytic bacteria and may affect
the community composition of exophytic bacteria through the
exudation of metabolites.
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