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As a key technique for theCRISPR-Cas9 system, identification of
single-guideRNAs (sgRNAs) on-target activity is critical for both
theoretical research (investigation of RNA functions) and real-
world applications (genome editing and synthetic biology).
Because of its importance, several computational predictors
have been proposed to predict sgRNAs on-target activity. All of
these methods have clearly contributed to the developments of
this very important field. However, they are suffering from
certain limitations. We proposed two new methods called
“sgRNA-PSM” and “sgRNA-ExPSM” for sgRNAs on-target
activity prediction via capturing the long-range sequence infor-
mation and evolutionary information using a new way to reduce
the dimension of the feature vector to avoid the risk of overfit-
ting. Rigorous leave-one-gene-out cross-validation on a bench-
mark dataset with 11 human genes and 6 mouse genes, as well
as an independent dataset, indicated that the two new methods
outperformed other competing methods. To make it easier for
users to use the proposed sgRNA-PSM predictor, we have estab-
lished a corresponding web server, which is available at http://
bliulab.net/sgRNA-PSM/.

INTRODUCTION
Three main genome editing tools, including zinc-finger nucleases
(ZFNs),1 transcription activator-like effector nucleases (TALENs),2

and CRISPR-Cas9 RNA-guided technologies,3,4, can be used to recog-
nize and cleave specific DNA sequences.5 Compared with ZFNs and
TALENs, CRISPR-Cas9 has been widely applied in various cell types
and organisms in recent years. In the type II CRISPR-Cas9 system,
single-guide RNA (sgRNA) directs Cas9 protein to the target site to
cleave the DNA target sequences, and sgRNA should be designed
to have around a 20-nt sequence to be complementary to the guide
sequence in the DNA target sequences.6,7. Rational design of sgRNA
is a crucial part for CRISPR-Cas9. Therefore, the prediction of
sgRNAs on-target activity is very important for CRISPR-Cas9.

Researchers have proposed several computational methods for
sgRNAs on-target activity prediction. Most of them treat the predic-
tion problem of sgRNA as a binary classification task or a regression
task, and the computational predictors were constructed based on
machine learning algorithms. The differences between these
approaches are feature extraction methods and machine learning
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techniques, such as gradient boosting regression (GBR),8 support
vector machines (SVMs),9–18 ensemble classifiers19–24, and deep
learning,25–32 among others. As shown in the aforementioned
studies,33,34 discriminative features are critical for constructing the
computational predictors. Accordingly, some features have been pro-
posed to capture the characteristics of sgRNAs, for example, because
the position of a nucleotide in sgRNA will affect its activity, and thus
the position-specific (PS)35 feature was proposed to incorporate these
sequence patterns, which has been used in ge-CRISPR,36, Azimuth,37

and CRISPRpred.38 Kaur et al.36 proposed an integrated pipeline
called ge-CRISPR to predict and analyze the genome editing effi-
ciency of sgRNAs. Azimuth37 employed GBR to train the model,
achieving state-of-the-art performance. CRISPRpred38 is another effi-
cient predictor, combining the discriminative features selected by
random forest (RF)39 and the SVM regression.

All of the aforementioned predictors have obtained encouraging
results and played a role in the development of computational predic-
tors for sgRNAs on-target activity prediction, but they are also
suffering from some problems or limitations. Further work is
required for the following reasons: (1) these predictors are only able
to consider the short-range sequence information of the DNA
sequences, otherwise they will cause “high-dimension disaster”;40,41

and (2) these predictors failed to incorporate the evolutionary infor-
mation, ignoring information between non-consecutive nucleotides.

In order to solve these aforementioned problems, we proposed a
novel feature, PS mismatch (PSM), sharing the advantages of both
PS35 and mismatch features.41 RNA sequence evolution involves sin-
gle nucleotides, insertions and deletions of several nucleotides, and
other factors. With the long-term accumulation of these changes in
evolution, although the similarities between the initial and the final
RNA sequences are gradually reduced, these RNA sequences still
have many features in common. PSM is such a method for extracting
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Figure 1. Graph Showing AUC Scores of the sgRNA-PSM Predictors with

Different n Values, where n Denotes the Number of Selected Features
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the evolutionary information from RNA sequences by allowing mis-
matches occurring in k-mers from specific positions.41 PSM has been
applied to predict sgRNAs on-target activity, and two predictors were
established called “sgRNA-PSM” and “sgRNA-ExPSM” (sgRNA-
extended PSM). Finally, a corresponding web server has been con-
structed (http://bliulab.net/sgRNA-PSM/).

RESULTS AND DISCUSSION
Parameter Optimization

According to Equations 9 and 10, there are two parameters in PSM, k
and m, and three parameters in the XGBoost algorithm, C, R, and F.
These parameters were optimized according to AUC (area under the
curve) by using leave-one-gene-out cross-validation on the bench-
mark dataset S (cf. Equation 3). In this study, these parameters
were optimized in the ranges listed in the following:8>>>><
>>>>:

1%k%6; with stepDk= 1
0<m%k� 1; with stepDm= 1
3%R %10; with stepDR= 1
0:05%R%0:1; with stepDR= 0:05
100%F %1000; with stepDF = 100

: (Equation 1)

The final optimal values of the five parameters (cf. Equation 1) were
optimized based on the AUC on the benchmark dataset S (cf. Equa-
tion 3), as given by

�
k= 5; m= 2; R = 3; R= 0:1; F = 800 for sgRNA� PSM
k= 5; m= 2; R = 3; R= 0:1; F = 800 for sgRNA� ExPSM

:

(Equation 2)

Feature Selection and Analysis

In order to remove the redundant features and reduce the dimension
of the resulting feature vectors, here we used SelectKBest in scikit-
learn42 to select the top number of features with the highest scores
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based on the scoring function f_regression, which can avoid the over-
fitting risk with low computational cost.43 We investigated the influ-
ence of the value n (number of selected features) in SelectKBest on the
predictive performance of sgRNA-PSM, and the results are shown in
Figure 1, from which we can see that the values of n have little impact
on the performance, and sgRNA-PSM can achieve the best perfor-
mance when n is equal to 2,000.

The importance of each feature can be analyzed based on F_score. To
explore the reason why the proposed sgRNA-PSM predictor works so
well, we analyzed the contribution of each feature. Table 1 lists the 10
most important features, from which we can see that (1) the top 9 most
important features belong to the features generated in the sequence po-
sitions from 23 to 30. In the CRISPR-Cas9 system, the DNA target se-
quences are composed of two parts:44 one is the guide sequence, and the
other is the protospacer adjacent motif (PAM). The guide sequence is
complementary to around a 20-bp sequence in sgRNA, and PAM is the
downstream short sequence of the guide sequence6 and is recognized
by the Cas9 protein.45 In the benchmark dataset S (cf. Equation 3),
the guide sequence is in the sequence positions from 5 to 24, and
PAM is the short sequence in the sequence positions from 25 to
27.37 Therefore, the top 9 most important features all cover PAM, indi-
cating that the proposed PSM is able to incorporate this important
sequence pattern. (2) PAM is composed of any nucleotide in sequence
position 25 followed by GG in positions 26 and 27.6,37 7 of the 10 most
important features capture this sequence pattern.

Comparison with Other Methods

The results obtained by sgRNA-PSM and sgRNA-ExPSM on the
benchmark dataset S are listed in Table 2, from which we can see
that the AUC achieved by sgRNA-PSM was 73.8%. The correspond-
ing AUC achieved by sgRNA-ExPSM was even better, which was
74.4%. This is reasonable because the acid cut position and percent
peptide features referred to in Equation 11 are complementary with
the PSM features in Equation 9. The PSM feature vector reflects
long-range sequence information, while the amino acid cut position
and percent peptide are guide-positional features corresponding to
the start distance of the protein coding region of the gene where
the cleavage site of the sgRNA is positioned.37

Then, we made a comparison of the sgRNA-PSM and sgRNA-ExPSM
withge-CRISPR,36Azimth,37 andCRISPRpred.38All of these predictors
were examined by the leave-one-gene-out cross-validation on the
benchmark dataset S (cf. Equation 3). For facilitating comparison, the
corresponding results obtainedby the ge-CRISPRpredictor, theAzimth
predictor, and the CRISPRpred predictor are also given in Table 2 and
Figure 2. Here, Figure 2 includes the corresponding receiver operating
characteristic (ROC) curves showing the performance of thefivepredic-
tors. A diagonal from the point (0,0) to (1,1)means a randomguess. The
better performance of the predictor corresponds to a larger AUC.

The following conclusions can be drawn from Table 2 and Figure 2:
(1) the AUC score achieved by the proposed sgRNA-PSM predictor
is higher than that of ge-CRISPR, and even higher than those of
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Table 2. List of AUC Scores Obtained by Various Methods via the Leave-

One-Gene-Out Cross-Validation on the Same Benchmark Dataset S (cf.

Equation 3)

Methods AUC (%)a

Azimthb 71.9

ge-CRISPRc 71.7

CRISPRpredd 71.6

sgRNA-PSMe 73.8

sgRNA-ExPSMf 74.4

aAUC means the area under the ROC curve;56,57 the better predictor corresponds to
larger AUC values.
bResults obtained by in-house implementation from Doench et al.37
cResults obtained by in-house implementation from Kaur et al.36
dResults obtained by in-house implementation from Rahman and Rahman.38
eFor the proposed predictor in this article, see Equations 9 and 10 with k = 5,m = 2, R =
3, R = 0.1, F = 800.
fFor the proposed predictor in this article, see Equations 10 and 11 with k = 5,m = 2, R =
3, R = 0.1, F = 800.

Table 1. The 10 Most Important Features in the sgRNA-PSM Predictor

No.
PSM
Featurea

Sequence
Positionb F_scorec

1 *G*GG 23–27 185.6

2 G*GG* 24–28 185.6

3 C*G*G 24–28 136.2

4 C**GG 24–28 136.2

5 *C*GG 23–27 129.0

6 C*GG* 24–28 129.0

7 **GGG 24–28 128.0

8 *GGG* 25–29 128.0

9 GGG** 26–30 128.0

10 **TTC 20–24 113.0

aParameters were k = 5, m = 2.
bThe sequence position of mismatches.
cCalculated by F regression.
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Azimth and CRISPRpred based on the wet experiment features, such
as amino acid cut position and percent peptide. Please note that these
two features are not sequence-based features, and they are often un-
available. (2) The sgRNA-ExPSM predictor outperforms the sgRNA-
PSM predictor by incorporating the amino acid cut position feature
and percent peptide feature.

In addition, the sgRNA-PSM predictor was further compared with
Azimuth37 and DeepCRISPR (pt+aug CNN)46 on the on-target data-
set.46,47. In order to make a fair comparison, the sgRNA-PSM predic-
tor was trained on the training set of on-target dataset reported in
Chuai et al.46 and tested on the independent test dataset46 for the
hct116, hela, and hl60 cell types. The hek293t dataset reported in
Doench et al.37 is a subset of our benchmark dataset S (cf. Equation 3).
Therefore, our method was not tested on the hek293t dataset again.
For sgRNA-PSM, SelectKBest with the scoring function chi2 in sci-
kit-learn was used to select 1,100 dimensions of the PSM features
and fed into XGBoost for classification. The predictive results of
sgRNA-PSM, DeepCRISPR (pt+aug CNN), and Azimuth are shown
in Table 3. As shown in this table, our method outperformed Azimuth
and DeepCRISPR (pt+aug CNN) on the hct116 and hela cell types,
and it is highly comparable to DeepCRISPR (pt+aug CNN) on the
hl60 cell type.

To further explore the reasons why our method cannot perform well
on the hl60 cell type, we retrained the sgRNA-PSM classifier with
each of the three datasets (hct116, hela, and hl60). For each dataset,
20% of the samples were used as the test dataset, which were stratified
by labels following Chuai et al.,46 and the remaining 80% of the sam-
ples were used as the training dataset. The results are also listed in Ta-
ble 3, from which we can see that the sgRNA-PSM trained with the
hl60 dataset outperformed the corresponding classifier trained with
the training data consisting of all four cell types, and it even outper-
formed Azimuth. The results are not surprising because the four
different cell types have different data distributions. Noise informa-
tion was introduced when combining all four cell types to train a
computational predictor. Therefore, the overall performance of
sgRNA-PSM is better than that of all of the other competing methods.

Web Server and User Guide

Providing a user-friendly and freely accessible web server for a new
predictor can obviously improve its impact.48 To make it easier for
users to use the proposed predictor, we established the corresponding
sgRNA-PSM web server. Because the sgRNA-ExPSM predictor re-
quires two features obtained from wet experiments, which are often
unavailable, its corresponding web server is not able to be con-
structed. The web server has the following functions: (1) it allows
users to input sgRNA sequences in reverse-complementary order,
and (2) it allows users to input longer sequences (30–1,000 bp).
The web server will detect all of the possible sgRNAs and predict their
on-target activities. The steps for using the sgRNA-PSM web server
are as follows:

Step 1. Click on the website address http://bliulab.net/sgRNA-
PSM/ to open the sgRNA-PSM web server, at which point the
homepage of the website will appear as shown in Figure 3. The
detailed introduction to the web server can be obtained by clicking
on the “Read Me” button.

Step 2. Click on the “Browse” button to upload the input file or
type your query DNA sequences in FASTA format.

Step 3. Click on the “Submit” button to get the final predictive re-
sults. When inputting the four DNA sequences in the “Example”
window, you will see that the first and second are predicted as high
on-target activity sgRNAs, while the third is the sequence in
reverse-complementary order, which is predicted as low on-target
activity sgRNA, and the fourth has four low on-target activity
sgRNAs and one high on-target activity sgRNA. These results
are consistent with the experimental results. In order to help the
users to solve the problems when using the web server, the
Molecular Therapy: Nucleic Acids Vol. 20 June 2020 325
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Figure 2. Graph Showing the Predictive Quality of the Aforementioned

Predictors via the ROC Curves

The corresponding AUC scores are 0.717, 0.716, 0.719, 0.738, and 0.744 for

ge-CRISPR, CRISPRpred, Azimth, sgRNA-PSM, and sgRNA-ExPSM predictors via

the leave-one-gene-out cross-validation on the same benchmark dataset S,

respectively.

Table 3. List of the AUC Scores Obtained by Various Methods on the On-

Target Dataset Reported in Chuai et al.46

Cell Typea Methods AUC (%)

hct116

Azimuthb 74.1

DeepCRISPR (pt+aug CNN)c 87.4

sgRNA-PSMd 91.7

Retrained sgRNA-PSMe 74.0

Hela

Azimuthb 67.5

DeepCRISPR (pt+aug CNN)c 78.2

sgRNA-PSMd 82.8

Retrained sgRNA-PSMe 72.1

hl60

Azimuthb 79.2

DeepCRISPR (pt+aug CNN)c 73.9

sgRNA-PSMd 77.6

Retrained sgRNA-PSMe 83.7

aThe cell type of the independent test dataset.
bResults reported in Chuai et al.46
cResults reported in Chuai et al.46
dThe sgRNA-PSM predictor trained with the dataset reported in Chuai et al.;46 see Equa-
tions 9 and 10 with k = 4, m = 2, R = 9, R = 0.05, F = 2,300.
eThe sgRNA-PSM predictor trained with each of the three datasets (hct116, hela, and
hl60).
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Frequently Questioned Answers (FQA) are provided by clicking
on the FQA button.

MATERIALS AND METHODS
Benchmark Datasets

In this study, a widely used benchmark dataset37 constructed by the
FC dataset35 and the RES dataset37 was employed to evaluate the per-
formance of different methods. The benchmark dataset consists of
5,310 sequences from 11 human genes (CD33, MED12, NF2,
CD13, TADA2B, CUL3, TADA1, HPRT, NF1, CD15, CCDC101)
and 6 mouse genes (Cd45, Cd43, Cd28,H2-K, Cd5, Thy1). There
are 1,059 high on-target activity sgRNAs and 4,251 low on-target ac-
tivity sgRNAs. The benchmark dataset S is as follows:

S = S1WS2WS3W/WS16WS17 =W17
i= 1Si; (Equation 3)

where

Si = S+
i WS�

i ði = 1; 2;/; 17Þ (Equation 4)

with
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����S�
1

�� z
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2

����S�
2

��z
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����S�
3

��z/z

��S+
16

����S�
16

��z
��S+

17

����S�
17

��z1
4
; (Equation 5)

where W represents the union symbol between two sets, Si denotes
the subset whose sgRNAs are from the ith targeting gene, the positive
subset S+

i contains high on-target activity sgRNAs, the negative sub-
set S�

i contains the low on-target activity sgRNAs,
��S+

i

�� represents
the number of sgRNAs in S+

i ,
��S�

i

�� represents the number of
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sgRNAs in S�
i , and

��S+
i

�� =��S�
i

�� denotes the number of sgRNAs
in
��S+

i

�� and ��S�
i

�� in a ratio of about 1:4. The corresponding detailed
sequences can be found in Data S1.

Themost updated on-target dataset established in Chuai et al.46 was em-
ployed to further evaluate theperformanceof the proposedmethod.This
on-target dataset was constructed based on hct116,49 hek293t,37 hela,49

and hl60.50 Those datasets were also employed by Haeussler et al.47
PSM

Feature extraction is very important for constructing a computational
predictor.51 Inspired by the PS35 and mismatch features,41 here a
novel feature extraction method, PSM, was proposed to capture the
long-range sequence information and evolutionary information.
Furthermore, PSM is able to efficiently reduce the dimension of the
feature vectors. The detailed procedures of generating PSM are
described as follows.

A DNA sample D can be represented as follows:

D = R1R2R3/Ri/RL ði = 1; 2; 3;/; LÞ; (Equation 6)

where

Ri˛fAðadenineÞ; CðcytosineÞ;GðguanineÞ; TðthymineÞg;
ði = 1; 2; 3;/; LÞ

(Equation 7)



Figure 3. Graphic of the Homepage of the Web Server http://bliulab.net/

sgRNA-PSM/
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represents the ith nucleobase in the sequence, the symbol ˛ denotes
‘‘member of’’ in the set, and L represents the length of D.

The PS feature is an important and useful feature extraction
method widely used in previous studies.35–38 Because the position
of nucleotide in a sgRNA affects its activity, the PS feature incorpo-
rates the local sequence position information by representing the
k-mers41,52 along a DNA sample D (cf. Equation 6) by “one-hot”
encoding.53 By using the PS feature, D can be represented as
follows:35–38

D =
h
f PS1 /f PS4k f

PS
4k + 1/f PS2�4k f

PS
2�4k + 1/f PSðL�kÞ�4k f

PS
ðL�kÞ�4k + 1

/f PSðL�k+ 1Þ�4k

iT
; (Equation 8)

where T represents the transpose symbol, f PSði�1Þ�4k + j denotes the jth
feature in the one-hot encoding at the ith position inD, whose value is
0 or 1, and k is the number of adjacent nucleotides in a k-mer.

From Equation 8, we can see that the dimension of the PS vector will
increase rapidly with the incensement of k values. For example, when
k is equal to 6, the dimension of the PS feature vector will be 46 �
(30 � 6 + 1) = 1.024 � 105, which will cause high-dimension
disaster.40,41,54 Therefore, Equation 8 is useful only when k is small,
and it ignores the information of non-consecutive nucleotides. As a
result, it can only incorporate the short-range and consecutive nucle-
otide information without considering the long-range and non-
consecutive nucleotide information.

The mismatch feature considers the evolutionary process and allows
mismatches occurring in k-mers. Therefore, the dimension of the cor-
responding feature vectors can be obviously decreased compared with
those of k-mers. In this study, we combined the mismatch with the PS
feature and proposed a novel feature, i.e., PSM, which is defined as
follows:
D =
h
f PSM1 /f PSMa f PSMa+ 1/f PSM2�a f PSM2�a+ 1/f PSMðL�kÞ�af

PSM
ðL�kÞ�a+ 1

/f PSMðL�k+ 1Þ�a

iT
; (Equation 9)

where f PSMði�1Þ�a+ j represents the jth feature in one-hot encoding at the
ith position in D, whose value is 0 or 1, and a denotes the number of
mismatch features considering the one-hot encoding, which can be
defined as follows:

a = 4k�m � Ck�m
k = 4k�m � k!

ðk�mÞ!m!
; (Equation 10)

where m is the number of mismatches in k-mers.

As shown in Equations 9 and 10, the first 4k�m � Ck�m
k components

reflect the one-hot-encoded feature vector corresponding to the first
sequence position, whereas the components from 4k�m � Ck�m

k + 1 to
2� 4k�m � Ck�m

k reflect the one-hot-encoded feature vector corre-
sponding to the second sequence position, and so forth. A feature vec-
tor formed with ðL � k + 1Þ� 4k�m � ½k! =ðk �mÞ!m!� components
is called the PSM vector for D as defined in Equation 9. A schematic
diagram illustrating how to generate the PSM vector forD is shown in
Figure 4. Compared to the PS vector defined in Equation 8, the
dimension of the PSM vector will be significantly reduced. For
example, when k = 6, the PS feature vector’s dimension (cf. Equa-
tion 8) is 1.024 � 105, while the PSM feature vector’s dimension is
ðL�k + 1Þ � 4k�m � ½k! =ðk�mÞ!m!� as defined in Equations 9 and
10. Now, when we assume m =5, the dimension will be ð30 � 6 +

1Þ� 46�5 � ½6! =ð6 � 5Þ!5!� = 600. The size of the latter is around
1/170th that of the former. Namely, PSM can obviously reduce the
dimension of the feature vector compared with PS. It is especially
true for larger k values (see Table 4).

Therefore, the PSM vector (cf. Equation 9) should be used to repre-
sent the DNA samples, because PSM can overcome the aforemen-
tioned limitations for large values of k, while avoiding the high-
dimension disaster problem.

Finally, we can augment the PSM vector (cf. Equation 9) to

~D =
h
f PSM1 /f PSMa f PSMa+ 1/f PSM2�a f PSM2�a+ 1/f PSMðL�kÞ�af

PSM
ðL�kÞ�a+ 1

/f PSMðL�k+ 1Þ�a a b
iT
; (Equation 11)

where ~D is the augmentedPSM, a is the amino acid cut position, and b is
the percent peptide given in Doench et al.37 Both of these two features
were obtained by wet experiments, which are often unavailable. The
feature vector formed with ðL�k + 1Þ � 4k�m � ½k! =ðk�mÞ!m!�+ 2
components is the ExPSM vector for D.
XGBoost Algorithm

TheXGBoost algorithm55 is a technique for classificationand regression
tasks, which is based on tree boosting.8 The most important advantage
Molecular Therapy: Nucleic Acids Vol. 20 June 2020 327
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:

Figure 4. Schematic Diagram Illustrating How to Generate the PSM Vector for a DNA Sequence

(A) Example of PSM with parameters of k = 2, m = 1. (B) Example of PSM with parameters of k = 3, m = 1.
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of XGBoost is its scalability in all scenarios. For more detailed informa-
tion on XGBoost, please refer to Chen and Guestrin.55

In this study, the regression model of the XGBoost algorithm was em-
ployed.We used the scikit-learn package42 to implement the XGBoost
algorithm. The values of its three main parameters (maximum depth
of a tree C, boosting learning rate R, and number of boosted trees F)
Table 4. Comparison between the PS Feature Vector’s dimension (cf.

Equation 8) and the PSM Feature Vector’s Dimension (cf. Equation 9)

k
Dimension
of PS Vectora m

Dimension
of PSM Vectorb Ratio gc

2 464 1 232 �2

3 1,792
1 1,344 �1.3

2 336 �5.3

4 6,912

1 6,912 1

2 2,592 �2.7

3 432 �16

5 26,624

2 16,640 �1.6

3 4,160 �6.4

4 520 �51.2

6 102,400
4 6,000 �17.07

5 600 �170.67

« « « « «

« « « « «

aCalculated by Equation 8.
bCalculated by Equation 9.
cRatio of the number of column 2 and the number of column 4; it is the same with g =

4m � ½ðk � mÞ!m! =k!�, where m is given in column 3.
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are given in the following sections, and all the other parameters were
set as default values.

Finally, according to Equations 9 and 11, two predictors have been
proposed as follows:�
sgRNA� PSM; if use D of Eq:7 to denote DNA samples
sgRNA� ExPSM; if use ~D of Eq:9 to denote DNA samples

(Equation 12)

Evaluation Method of Performance

The AUC, as it pertains to the ROC curve,56–58 is a widely used mea-
sure for evaluating the performance of the predictors. The better pre-
dictor corresponds to larger AUC values.

Cross-Validation

The cross-validation method is an important step for evaluating the
performance of a predictor.59 In this study, in order to ensure that
a predictor can be generalized across genes, the leave-one-gene-out
cross-validation35,37 was used, where each of the 17 subsets of Si (cf.
Equation 3) was selected one by one as the test set, while the other
16 subsets were used to construct the training set to train the predic-
tor. This process was repeated for 17 times, and each subset was
selected as the test set once.

Implementation of the Competing Methods

In this study, we compared the proposed methods with three state-of-
the-art methods, including ge-CRISPR,36 Azimuth,37 and
CRISPRpred.38 The detailed processes of these three approaches
were introduced as follows: for ge-CRISPR, the 464 dinucleotide (1-
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degree) binary features were finally fed into SVM regressor with a
radial basis function (RBF) kernel with a c value of 25 for regression.
For Azimuth, seven features were used to represent the samples,
including position-independent, position-specific, GC count,
NGGN, thermodynamic features, amino acid cut position, and
percent peptide. These features were combined with GBRwith the pa-
rameters learning_rate = 0.1, max_depth = 3, and n_estimators = 100
to construct the predictor. For CRISPRpred, five different feature
extraction methods were employed, including position-independent,
position-specific, thermodynamic features, amino acid cut position,
and percent peptide. Please note that ViennaRNA package version
2.060 was used to generate thermodynamic features. RF39 was then
performed on these features to select 2,899 relevant features accord-
ing to the importance scores (Mean Decrease Gini) with the
maximum number of trees of 500. These features were finally fed
into the SVM regressor with linear kernel function with a c value of
2�2 for regression.
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