
OPINION ARTICLE

 An environment for sustainable research software in

Germany and beyond: current state, open challenges, and call

for action [version 2; peer review: 2 approved]

Hartwig Anzt1,2*, Felix Bach 1*, Stephan Druskat 3-5*, Frank Löffler3,6*,
Axel Loewe 1*, Bernhard Y. Renard7*, Gunnar Seemann 8*,
Alexander Struck 5*, Elke Achhammer9, Piush Aggarwal 10, Franziska Appel11,
Michael Bader9, Lutz Brusch 12, Christian Busse 13, Gerasimos Chourdakis 9,
Piotr Wojciech Dabrowski 14, Peter Ebert15, Bernd Flemisch16, Sven Friedl 17,
Bernadette Fritzsch18, Maximilian D. Funk19, Volker Gast3, Florian Goth20,
Jean-Noël Grad 16, Jan Hegewald 18, Sibylle Hermann16, Florian Hohmann21,
Stephan Janosch22, Dominik Kutra 23, Jan Linxweiler 24, Thilo Muth 25,
Wolfgang Peters-Kottig 26, Fabian Rack27, Fabian H.C. Raters 28,
Stephan Rave 29, Guido Reina 16, Malte Reißig 30, Timo Ropinski31,32,
Joerg Schaarschmidt1, Heidi Seibold 33, Jan P. Thiele 34,
Benjamin Uekermann 35, Stefan Unger36, Rudolf Weeber16

1Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
2University of Tennessee, Knoxville, TN, USA
3Friedrich Schiller University, Jena, Germany
4German Aerospace Center (DLR), Berlin, Germany
5Humboldt-Universität zu Berlin, Berlin, Germany
6Louisiana State University, Baton Rouge, LA, USA
7Hasso Plattner Institute, Digital Engineering Faculty, University of Potsdam, Potsdam, Germany
8University Heart Centre Freiburg Bad Krozingen, Freiburg, Germany
9Technische Universität München, München, Germany
10Universität Duisburg-Essen, Duisburg, Germany
11Leibniz Institute of Agricultural Development in Transition Economies (IAMO), Halle (Saale), Germany
12Technische Universität Dresden, Dresden, Germany
13Deutsches Krebsforschungszentrum, Heidelberg, Germany
14Hochschule für Technik und Wirtschaft Berlin, Berlin, Germany
15Saarland Informatics Campus, Saarbrücken, Germany
16University of Stuttgart, Stuttgart, Germany
17Berlin Institute of Health, Berlin, Germany
18Alfred Wegener Institute, Bremerhaven, Germany
19Max-Planck-Gesellschaft e.V., München, Germany
20Universität Würzburg, Würzburg, Germany
21Universität Bremen, Bremen, Germany
22Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
23European Molecular Biology Laboratory, Heidelberg, Germany
24Technische Universität Braunschweig, Braunschweig, Germany
25Federal Institute for Materials Research and Testing, Berlin, Germany
26Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB), Berlin, Germany

Page 1 of 34

F1000Research 2021, 9:295 Last updated: 28 JAN 2021

https://f1000research.com/articles/9-295/v2
https://f1000research.com/articles/9-295/v2
https://f1000research.com/articles/9-295/v2
https://orcid.org/0000-0002-5035-7978
https://orcid.org/0000-0003-4925-7248
https://orcid.org/0000-0002-2487-4744
https://orcid.org/0000-0001-7111-7992
https://orcid.org/0000-0002-1173-9228
https://orcid.org/0000-0003-1339-0549
https://orcid.org/0000-0003-0137-5106
https://orcid.org/0000-0001-7553-905X
https://orcid.org/0000-0002-3977-1385
https://orcid.org/0000-0003-4893-805X
https://orcid.org/0000-0002-9345-1593
https://orcid.org/0000-0002-5821-4912
https://orcid.org/0000-0002-3675-0968
https://orcid.org/0000-0003-4202-3908
https://orcid.org/0000-0002-2755-5087
https://orcid.org/0000-0001-8304-2684
https://orcid.org/0000-0003-4486-2422
https://orcid.org/0000-0003-0549-6167
https://orcid.org/0000-0003-0439-7212
https://orcid.org/0000-0003-4127-1897
https://orcid.org/0000-0002-8830-0758
https://orcid.org/0000-0002-8960-9642
https://orcid.org/0000-0002-8901-6660
https://orcid.org/0000-0002-1314-9969
http://crossmark.crossref.org/dialog/?doi=10.12688/f1000research.23224.2&domain=pdf&date_stamp=2021-01-26

27FIZ Karlsruhe - Leibniz Institute for Information Infrastructure, Karlsruhe, Germany
28University of Goettingen, Göttingen, Germany
29University of Münster, Münster, Germany
30Institute for Advanced Sustainability Studies, Potsdam, Germany
31Ulm University, Ulm, Germany
32Linköping University, Linköping, Sweden
33Ludwig Maximilian University of Munich, München, Germany
34Leibniz University Hannover, Hannover, Germany
35Eindhoven University of Technology, Eindhoven, The Netherlands
36Julius Kühn-Institut (JKI), Quedlinburg, Germany

* Equal contributors

First published: 27 Apr 2020, 9:295
https://doi.org/10.12688/f1000research.23224.1
Latest published: 26 Jan 2021, 9:295
https://doi.org/10.12688/f1000research.23224.2

v2

Abstract
Research software has become a central asset in academic research. It
optimizes existing and enables new research methods, implements
and embeds research knowledge, and constitutes an essential
research product in itself. Research software must be sustainable in
order to understand, replicate, reproduce, and build upon existing
research or conduct new research effectively. In other words, software
must be available, discoverable, usable, and adaptable to new needs,
both now and in the future. Research software therefore requires an
environment that supports sustainability.

Hence, a change is needed in the way research software development
and maintenance are currently motivated, incentivized, funded,
structurally and infrastructurally supported, and legally treated.
Failing to do so will threaten the quality and validity of research. In
this paper, we identify challenges for research software sustainability
in Germany and beyond, in terms of motivation, selection, research
software engineering personnel, funding, infrastructure, and legal
aspects. Besides researchers, we specifically address political and
academic decision-makers to increase awareness of the importance
and needs of sustainable research software practices. In particular, we
recommend strategies and measures to create an environment for
sustainable research software, with the ultimate goal to ensure that
software-driven research is valid, reproducible and sustainable, and
that software is recognized as a first class citizen in research. This
paper is the outcome of two workshops run in Germany in 2019, at
deRSE19 - the first International Conference of Research Software
Engineers in Germany - and a dedicated DFG-supported follow-up
workshop in Berlin.

Keywords
Sustainable Software Development, Academic Software, Software
Infrastructure, Software Training, Software Licensing, Research
Software

Open Peer Review

Reviewer Status

Invited Reviewers

1 2

version 2

(revision)
26 Jan 2021

report

version 1
27 Apr 2020 report report

Willi Hasselbring , Kiel University, Kiel,

Germany

1.

Radovan Bast , UiT The Arctic University

of Norway, Tromsø, Norway

2.

Any reports and responses or comments on the

article can be found at the end of the article.

Page 2 of 34

F1000Research 2021, 9:295 Last updated: 28 JAN 2021

https://doi.org/10.12688/f1000research.23224.1
https://doi.org/10.12688/f1000research.23224.2
https://f1000research.com/articles/9-295/v2
jar:file:/work/f1000research/webapps/ROOT/WEB-INF/lib/service-1.0-SNAPSHOT.jar!/com/f1000research/service/export/pdf/#
https://f1000research.com/articles/9-295/v1
jar:file:/work/f1000research/webapps/ROOT/WEB-INF/lib/service-1.0-SNAPSHOT.jar!/com/f1000research/service/export/pdf/#
jar:file:/work/f1000research/webapps/ROOT/WEB-INF/lib/service-1.0-SNAPSHOT.jar!/com/f1000research/service/export/pdf/#
https://orcid.org/0000-0001-6625-4335
https://orcid.org/0000-0002-7658-1847

Corresponding authors: Axel Loewe (axel.loewe@kit.edu), Gunnar Seemann (gunnar.seemann@universitaets-herzzentrum.de)
Author roles: Anzt H: Conceptualization, Writing – Original Draft Preparation, Writing – Review & Editing; Bach F: Conceptualization,
Investigation, Writing – Original Draft Preparation, Writing – Review & Editing; Druskat S: Conceptualization, Investigation, Writing –
Original Draft Preparation, Writing – Review & Editing; Löffler F: Conceptualization, Investigation, Visualization, Writing – Original Draft
Preparation, Writing – Review & Editing; Loewe A: Conceptualization, Funding Acquisition, Investigation, Project Administration, Writing
– Original Draft Preparation, Writing – Review & Editing; Renard BY: Conceptualization, Investigation, Writing – Original Draft
Preparation, Writing – Review & Editing; Seemann G: Conceptualization, Funding Acquisition, Investigation, Project Administration,
Writing – Original Draft Preparation, Writing – Review & Editing; Struck A: Conceptualization, Writing – Original Draft Preparation,
Writing – Review & Editing; Achhammer E: Writing – Original Draft Preparation; Aggarwal P: Writing – Original Draft Preparation; Appel
F: Writing – Original Draft Preparation, Writing – Review & Editing; Bader M: Writing – Original Draft Preparation, Writing – Review &
Editing; Brusch L: Writing – Original Draft Preparation, Writing – Review & Editing; Busse C: Writing – Review & Editing; Chourdakis G:
Writing – Review & Editing; Dabrowski PW: Writing – Review & Editing; Ebert P: Writing – Original Draft Preparation; Flemisch B: Writing
– Original Draft Preparation; Friedl S: Visualization, Writing – Original Draft Preparation, Writing – Review & Editing; Fritzsch B: Writing –
Review & Editing; Funk MD: Writing – Original Draft Preparation, Writing – Review & Editing; Gast V: Writing – Review & Editing; Goth F:
Writing – Original Draft Preparation; Grad JN: Writing – Original Draft Preparation; Hegewald J: Writing – Review & Editing; Hermann S:
Writing – Original Draft Preparation, Writing – Review & Editing; Hohmann F: Writing – Original Draft Preparation; Janosch S: Writing –
Review & Editing; Kutra D: Writing – Original Draft Preparation; Linxweiler J: Writing – Original Draft Preparation; Muth T: Writing –
Original Draft Preparation; Peters-Kottig W: Writing – Original Draft Preparation; Rack F: Writing – Original Draft Preparation, Writing –
Review & Editing; Raters FHC: Writing – Original Draft Preparation; Rave S: Writing – Original Draft Preparation; Reina G: Writing –
Original Draft Preparation, Writing – Review & Editing; Reißig M: Writing – Review & Editing; Ropinski T: Writing – Original Draft
Preparation; Schaarschmidt J: Writing – Original Draft Preparation; Seibold H: Writing – Review & Editing; Thiele JP: Writing – Original
Draft Preparation, Writing – Review & Editing; Uekermann B: Writing – Original Draft Preparation, Writing – Review & Editing; Unger S:
Visualization, Writing – Original Draft Preparation; Weeber R: Writing – Original Draft Preparation
Competing interests: No competing interests were disclosed.
Grant information: The authors thank the Deutsche Forschungsgemeinschaft (DFG) for funding a meeting (Rundgespräch, grants LO
2093/3-1 and SE 1758/6-1) during which the initial draft of this paper has been created. We are particularly grateful for the support from
Dr. Matthias Katerbow (DFG). This work was additionally supported by Research Software Sustainability grants funded by the DFG:
Aggarwal: 390886566; PI: Zesch. Appel: 391099391; PI: Balmann. Bach & Loewe & Seemann: 391128822; PIs:
Loewe/Scholze/Seemann/Selzer/Streit/Upmeier.Bader: 391134334; PIs: Bader/Gabriel/Frank. Brusch: 391070520; PI: Brusch. Druskat &
Gast: 391160252; PI: Gast/Lüdeling. Ebert: 391137747; PI: Marschall.Flemisch & Hermann: 391049448; PIs:
Boehringer/Flemisch/Hermann.Hohmann: 391054082; PI: Hepp. Goth: 390966303; PI: Assaad. Grad & Weeber: 391126171; PI: Holm.
Kutra: 391125810; PI: Kreshuk.Mehl & Uekermann: 391150578; PIs: Bungartz/Mehl/Uekermann. Peters-Kottig: 391087700; PIs:
Gleixner/Peters-Kottig/Shinano/Sperber. Raters: 39099699; PI:Herwartz. Reina: 391302154; PIs: Ertl/Reina. Muth & Renard: 391179955;
PIs Renard/Fuchs. Ropinski:391107954; PI: Ropinski. Alexander Struck acknowledges the support of the Cluster of Excellence Matters of
Activity. Image Space Material funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany´s
Excellence Strategy – EXC 2025. We acknowledge support by the KIT-Publication Fund of the Karlsruhe Institute of Technology.
The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Copyright: © 2021 Anzt H et al. This is an open access article distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
How to cite this article: Anzt H, Bach F, Druskat S et al. An environment for sustainable research software in Germany and beyond:
current state, open challenges, and call for action [version 2; peer review: 2 approved] F1000Research 2021, 9:295
https://doi.org/10.12688/f1000research.23224.2
First published: 27 Apr 2020, 9:295 https://doi.org/10.12688/f1000research.23224.1

This article is included in the Science Policy

Research gateway.

Page 3 of 34

F1000Research 2021, 9:295 Last updated: 28 JAN 2021

mailto:axel.loewe@kit.edu
mailto:gunnar.seemann@universitaets-herzzentrum.de
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.12688/f1000research.23224.2
https://doi.org/10.12688/f1000research.23224.1
https://f1000research.com/gateways/scipolresearch
https://f1000research.com/gateways/scipolresearch
https://f1000research.com/gateways/scipolresearch

Background

Meet Kim, who is currently a post-grad PhD student in
researchonomy at the University of Arcadia (UofA). We will follow
Kim’s fictional career in order to understand different aspects of
research software sustainability. Note that in Kim’s world, many of
the changes this paper calls for have already been implemented.
(In our example, Kim is a female person. Of course, research
software engineers (RSEs) can be of any gender.)

Computational analysis of large data sets, computer-based simu-
lations, and software technology in general play a central role
for virtually all scientific breakthroughs of at least the 21st
century. The first image of a black hole may be the most promi-
nent recent example where astrophysical experiments and the
collection and processing of data had to be complemented
with sophisticated algorithms and software to enable research
excellence1,2. Similarly, it is research software that allows us to
get a glimpse of the consequences our actions today have on the
climate of tomorrow. However, an implication of computer-based
research is that findings and data can only be reproduced,
understood, and validated if the software that was used in the
research process is sustained and their functionality maintained.

At the same time, sustaining research software, and in particu-
lar open research software, comes with a number of challenges.
Commercial research software often has revenue flows that
can facilitate sustainable software development, mainte-
nance, and documentation as well as the operation of adequate
infrastructure. However, a large share of researchers base
their research on software that was developed in-house or as
a community effort. Many of these software stacks can not be
sustained – often because research software was not a first
class deliverable in a research project and hence remained
in a prototype state, or because of missing incentives and
resources to maintain the software after project funding ended.
Another fundamental difference to industrial software devel-
opment is that most developers of academic research software
(often doctoral students or postdoctoral researchers) never
receive training in sustainable software development3. In
particular, as they see themselves usually as the primary user of a
software product, there are virtually no incentives to invest in
sustainability measures such as code documentation or portability.

In combination with the predominance of temporary positions
in research, this results in a highly inefficient system where
millions of lines of code are generated every year that
will not be re-used after the termination of the developer’s
position. Part of the problem is the reluctance to accept research
software engineering as an academic profession that results
in a lack of incentives to produce high-quality software:
producing high software quality needs sufficient resources, and
although the San Francisco Declaration on Research Assessment
(DORA) demands a change in the academic credit system, many
institutions base promotion and appointments on traditional
metrics like the Hirsch index4. It is obvious that an extraordi-
nary amount of idealism is required to write sustainable code,
including documentation and installation routines, as well
as running infrastructure and giving support to others when
resources can be used more profitably in writing scientific
publications based on fragile prototype software5,6.

Thus, one main factor for the poor sustainability of research
software is the lack of long-term funding for research software
engineers (RSEs)7,8 who take care of the appropriate architecture,
organization, implementation, documentation, and community
interaction for the software, paired with the implementation of
measures towards making the software sustainable during and
beyond the development process9.

In this paper, we describe the state of the practice and current
challenges for research software sustainability and suggest measures
towards improvements that can solve these challenges. The
paper is the result of a community effort, with work under-
taken during two workshops and subsequent collaborative
work across the larger RSE community in Germany. It has been
initiated during a half-day workshop at first International Confer-
ence for Research Software Engineers in Germany (deRSE19)
in Potsdam, Germany on June 5th, 2019, and continued during a
dedicated two-day workshop in Berlin, Germany on November
7th and 8th, 2019, which was funded by the German Research
Foundation (Deutsche Forschungsgemeinschaft, DFG). Subse-
quently, the draft produced during the latter event was opened
up for collaborative discussion by the German RSE community
through de-RSE e.V. - Society for Research Software.

We mainly focus on the situation of research software and
RSEs in Germany, where funding bodies increasingly acknowl-
edge the importance and value of sustainable research software
and related infrastructures. The DFG, the largest funding
body for fundamental research in Germany, for example,
opened a call for sustainable research software development
at the end of 2016 and a second call for quality management
in research software in June 2019. The first call was oversub-
scribed by a factor of 10-15, a strong indicator of unmet demand.
As another example, the 2019 “Guidelines for Safeguarding
Good Research Practice” codex of the DFG now explicitly lists
software side-by-side with other research results and data.
The FAIR principles for research data10 provide guidelines
for data archiving, but enabling full reproducibility and
traceability of research software requires additional steps11. In
consequence, there are ongoing discussions on whether software
should be considered as a specific kind of research data or as a
separate entity12.

These positive developments notwithstanding, guidelines and
policies for sustainable research software development in

           Amendments from Version 1
Besides fixing some typographic errors and adding references as
suggested by the reviewers,

We separated the legal decision tress from this manuscript.
As they were not the focus of this position paper and diluted
its key messages, they were published separately: https://doi.
org/10.5281/zenodo.4327147

Other aspects that were elaborated on include: testing,
infrastructure for cross-institutional use, sustainable funding,
the relation between software quality and transparency, a clear
statement pro open source, the potential role of legal help desks.

Jan Hegewald was added to the list of authors. He already
contributed to initial submission but unfortunately his name was
missing in the list.

Any further responses from the reviewers can be found at 
the end of the article

REVISED

Page 4 of 34

F1000Research 2021, 9:295 Last updated: 28 JAN 2021

http://www.sfdora.org/read
http://www.sfdora.org/read
http://de-rse.org/en/conf2019/
http://de-rse.org/en/conf2019/
https://de-rse.org
https://www.dfg.de/foerderung/info_wissenschaft/2016/info_wissenschaft_16_71/
https://www.dfg.de/foerderung/info_wissenschaft/2019/info_wissenschaft_19_44/index.html
https://www.dfg.de/foerderung/info_wissenschaft/2019/info_wissenschaft_19_44/index.html
https://www.dfg.de/en/research_funding/principles_dfg_funding/good_scientific_practice/
https://www.dfg.de/en/research_funding/principles_dfg_funding/good_scientific_practice/
https://doi.org/10.5281/zenodo.4327147
https://doi.org/10.5281/zenodo.4327147

Germany are unfortunately still lacking, and long-term funding
strategies are missing. This all leads to unmet requirements and
unsolved challenges that we want to highlight in this paper by
elaborating on (1) why research software engineering needs
to be considered an integral part of academic research; (2) how
to decide which software to sustain; (3) who sustains research
software; (4) how software can be funded sustainably; (5) what
infrastructure is needed for sustainable software develop-
ment; and (6) legal aspects of research software development in
academia. While we specifically focus on the research soft-
ware landscape in Germany, we are convinced that many
of the analyses, findings, and recommendations may carry
beyond. We want to address RSEs who are experiencing simi-
lar challenges and newcomers to the field of research software
development, but first and foremost political and academic
decision makers to raise awareness of the importance of and
requirements for sustainable software development. As a
community, we work hard on overcoming the challenges of software
development in an academic setting, but we need support
– and reliable funding options and institutional recognition in
particular – for the sake of better research.

Why sustainable research software in the first
place?

After graduation, Kim joins a fixed-term researchonomical
research project. For her PhD thesis, she wants to crunch
some data. Her colleague recommends learning some Boa,
which is an all-purpose programming language often used in
researchonomy. Luckily, the UofA runs regular Software Plumbery
courses for researchers, including a Boa course. Kim takes the
course and gains a solid understanding of the basics of the Hash
shell, version control with Tig, and the basics of Boa. She starts
writing scripts, which help her a lot with the data processing.
Unfortunately, Kim’s scripts are quite slow and actually break after
she installs a newer version of Boa. She visits the weekly Code
Café organized by her university’s central RSE team. The RSEs not
only help her update her scripts but also suggest some changes
which speed up the computation by a factor of 25.
During the next meeting with her PhD supervisor, Kim presents
her collection of scripts. The supervisor encourages Kim to create
a Boa library from them, as they will be very useful to other
researchonomists. Thankfully, Kim’s project PI had applied for
three RSE person months in their grant, so the project enlists
an RSE from the central team. Over the next three months, Kim
and the RSE work together to build the library, document it, test
it, license it under the permissive Comanche license, update the
TigLab repository to let others contribute, introduce automated
builds for every code change via a continuous integration
platform, and make the library citable. Finally, they release the first
major version of the library, named hal9k and publish it through
the university library’s software portal, where they get a DOI
(Digital Object Identifier) for the version as well as a concept DOI
for any future versions of the library. Working with the RSE, Kim
has gained a good understanding of some methods in software
engineering, and she’s thrilled because this also means she’ll be
able to get a job with a local tech company once her fixed-term
contract has run out.
Kim passes her PhD - of which hal9k is an important part - with
flying colors, and soon citations to her library start appearing
in the researchonomic literature. To Kim’s surprise, she also
reads a blog post about a citizen science maker project which
has used hal9k to process researchonomic data measured in a
neighborhood of her hometown. She is invited to give a talk at
the local office of Siren, a global tech company, which look to
adopt hal9k, and pay Kim a generous speaker honorarium. So
generous in fact, that Kim can pay a student assistant for a full
year from the money.

Our credibility as researchers in society hinges on the notion
of proper research conduct, also known as “good research
practice”. The digitalization of research has introduced
complex digital research outputs, such as software and data sets.
Although first recommendations13 and policies14 exist, they are
far from being widely adopted. It is still somewhat unclear how
to translate good research practice into good research software
practice, for example in terms of validity and reproducibility,
but also pertaining to the responsible use of resources.
The damage that failing to do so is causing both to the progress
of the research community and to the credibility of academic
research in society is becoming increasingly clear with the
growth of the replication crisis - while the lack of universally
agreed-upon and supported good research software practice is not
the main reason for that crisis, it clearly is a contributing factor.

While it is obvious that software qualifies as a potentially
re-usable digital artifact, the additional benefit of not just
reproducing a given scenario, but transferring software use to
new problems, domains, and/or applications, justifies develop-
ing research software with a long-term perspective as sustainable
research software.

In order to support research, a sustainable software must ideally be
correct15–17, and validatable. Due to the experimental nature
of some research software, this may not be possible in all
cases, e.g., due to lack, or infeasible implementation, of a test
oracle18, vast configuration spaces, or large and heterogeneous
data inputs19. While it must be accepted that precise,
oracle-based testing may not be possible here, alternative
solutions should be implemented, such as metamorphic testing,
runtime assertions, test input sampling and generation (e.g.
via machine learning), and input data modeling. Sustainable
software must also be understandable, documented, publicly
released, adequately published (i.e. in persistently identifiable
form as software source code20, and potentially in an addi-
tional paper which describes the software concept, design
decisions, and development rationale), actively maintained, and
(re-)usable21–23. We also argue that truly sustainable research
software should ideally be published under a Free/Libre Open
Source Software (FLOSS) license, and follow an open develop-
ment model, to (1) enable the validation of research results that
have been produced using the software, (2) enable the repro-
ducibility of software-based research, (3) enable improvement
and (re-) use of the software to support more and better
research, and reduce resources to be spent on software devel-
opment, (4) reduce legal issues (see section below), (5) meet
ethical obligations from public funding, and (6) open research
software to the general public, i.e., the stakeholder group
with arguably the greatest interest in furthering research
knowledge and improving research for the benefit of all.

To make software-based research (and with that almost any
research) reproducible, the used software must continue to exist.
Furthermore, it must continue to be usable, understandable, and
return consistent results (or potential changes to results and bug
fixes must be clearly documented) in the evolving software and
hardware environment. Moreover, the software should support
reuse scenarios to avoid duplication of efforts and drain
of resources. Therefore, if research software is publicly
funded, it should be freely available under a FLOSS license.

Page 5 of 34

F1000Research 2021, 9:295 Last updated: 28 JAN 2021

Currently, creating and using sustainable research software
is not sufficiently incentivized. To evaluate in which area
this shortcoming should be addressed, we have identified the
following challenges:

• Lack of benefit for the individual: Currently, the
primary motivation for sustainable research software is
the common benefit, rather than the individual benefit.
It is clearly beneficial for the research community as a
whole to direct resources towards sustainable research
software, as it enables better and more research by free-
ing funds for domain research rather than (repetitive)
software development. But the developers are often even
at a disadvantage (e.g., they publish fewer papers5,6),
which in turn prevents sustainable research software.

• Lack of suitable incentive systems: Contributions to
research that are not traditional text-based products
(i.e., papers or monographs) are still not sufficiently
rewarded, or not rewarded at all, due to the missing
implementation of mandatory software citation20,24–32,
among other reasons. Interestingly, one third of research
software repositories have a lifespan (defined as the time
from the first time any code was uploaded to the last
contribution) of less than one day (median: 15 days11),
indicating that many codes are only made available
publicly for the publication in a journal (as increasingly
encouraged or required by journals33 and associated
with higher impact34) but are not maintained thereafter.

• Lack of awareness: Research software sustainabil-
ity and its importance is lacking visibility as well as
acceptance35–38, and research software engineering in
its implementation as sustainable software develop-
ment and software maintenance is not sufficiently
supported, both in Germany and beyond9,39,40.

• Lack of expertise: Knowledge about how to create,
maintain, and support sustainable research software
is emerging41–43 but has not yet permeated related
activities within organizations - specifically teaching,
mentoring, and consultancy. This lack of expertise can
also lead to divergence between software design and
community uptake, e.g., if the software fails to meet
the needs of the target group, or is insufficiently usable.
RSEs combine sustainable software engineering expertise
with experience in one or more research domains.

• Heterogeneous research community: There are
significant differences with respect to how software is
developed, published, used, and valued in the different
academic disciplines. Additionally, there is even hetero-
geneity within a community in terms of application and
approach. This also makes it hard to train researchers
for sustainable software development, as beyond basic
training in computational research such as provided by
The Carpentries, advanced courses for research soft-
ware engineering are not widely available (with the
notable exception of the CodeRefinery project). Targeted
curricula must be developed and updated regularly,
and specialized instructors need to be trained.

• Lack of impact measures: It is unclear how to measure
the impact of research software with respect to its
quality, reusability, and benefit for the research
community. This exceeds the implementation of research
software citation (which is work in progress20,31,32,44), and
pertains to sustainability and policy studies.

• Infrastructure issues: Due to a lack of knowledge about
how sustainability features impact the application of
research software, there is not yet enough evidence for
whether centralized or decentralized facilities should be
favored to further research software sustainability45–47.
Commonly, local infrastructure hinders cross-institutional
collaboration, whereas cross-organizational infrastructures
often suffer from lack of authentication and authorization
implementations, or legal constraints. This in turn leads
to a lack of infrastructure as a whole.

• Legal issues: Many obstacles for research software per-
tain to legal issues, such as applicable licensing and
compatibility of licenses48, and decisions about license types.

• Funding issues: Despite some individual initiatives49–52,
funding for the creation, maintenance, and support of
sustainable research software is still scarce. Addition-
ally, existing models usually supply seed funding only,
which disregards the support and maintenance steps in
the software development lifecycle. Instead, a potential
“market” is relied upon to support these, which may only
develop long after the initial project has ended. With
regard to the funding of infrastructure which underpins
modern development approaches such as DevOps and
continuous deployment, cloud infrastructure providers
and their pricing models do not work well with
current funding models, due to lack of knowledge of how
to target them with traditional academic funding and
budgeting, compliance issues, or rigid bureaucracy.

• Slow adoption of research software engineering as
a profession: Career options for research software
work are not fully determined, although career paths
are emerging in some regions. Initially, the RSE
initiative in the UK has made progress in this area, and
RSE groups have been installed in many institutions.
In Germany, the US, and the Netherlands, this is still work
in progress. It is also not yet determined how to match
research software engineering roles in public institutions
with industry roles53.

In summary, the necessary but resource-intensive practice of
creating, maintaining, supporting, and funding sustainable
research software is not yet sufficiently incentivized and
enabled by research institutions and funding agencies, nor
does it align well with the publish-or-perish culture that is still
prominent in most fields.

Therefore, it is necessary to comprehensively motivate
sustainable research software practice. In the following, we
identify stakeholders of research software54–56, and explicate
their particular motivations for sustainable research software.

Page 6 of 34

F1000Research 2021, 9:295 Last updated: 28 JAN 2021

https://carpentries.org
http://coderefinery.org/lessons/
http://www.de-rse.org/
http://www.us-rse.org/
http://www.nl-rse.org/

Subsequently, we specify challenges towards satisfying the
demands of the individual stakeholders.

Stakeholder motivations for research software
sustainability
While a wide range of stakeholders share interest in sustain-
able software, we argue that their individual motivation can
differ quite significantly:

The general public benefits from research which supports the
common good, in other terms: creates a better world, faster.
Taxpayers have an interest in economical use of their tax
money, to which duplicated or flawed efforts to create research
software – in contrast to software reuse – is contrary. A subset
of this group may be interested in sustainable, i.e., re-usable
and understandable, software as part of citizen science.

Domain researchers benefit from better software to do more,
better, and faster research. Sustainable research software
supports this through validated functionality (e.g., correct
algorithms), the potential for reuse, and general availability.
Sustainable software also potentially simplifies building upon
previous research results by reusing the involved software to
produce additional data or by extending the software’s function-
ality. In light of recent updates to definitions of good research
practice, sustainable research software also allows domain
researchers to comply with guidelines and best practices. Addi-
tionally, using software that is sustainable enough to establish
itself as a standard tool in a field signifies inclusion in a research
community. Less directly, researchers may benefit from the
existence of sustainable standard tools as they yield stand-
ard formats, which in themselves facilitate reuse of research
data.

Research software engineers (RSEs) have an intrinsic inter-
est in sustainable research software. They create better software
for research, which enables more and better research. RSEs
have an inherent interest in developing and working with high
quality software, as part of professional ethics as well as good
research practice. RSEs build their reputation on high quality
software and software citation20,31, which will open up new
career paths. Finally, for RSEs, creating sustainable research
software is part of an attractive, intellectually challenging, and
satisfying work environment.

Research leaders as well as research performing organizations
mainly focus on the economic aspects and management of
research, i.e., available funds, people, and time employed to
optimize research output. Both need to make sure that their
employees continually improve their qualification and gener-
ate impact to improve their standing in the various research
communities and ensure continued funding. Overseeing and
enabling the creation of sustainable research software advances
their visibility in the field and makes their research endeavors
both more future-proof and more easily traceable, reproduc-
ible, and verifiable and thus more likely to attract additional
resources (including human resources). Research performing
organizations can additionally benefit from sustainable
research software if it can be reused in other areas, creat-
ing synergies between different research disciplines. These

synergies typically free resources that can then be used in areas
other than software development and maintenance. Finally,
organizations can gain highly competitive positions in terms
of funding and hiring opportunities, as well as a reputation for
being on the cutting edge of research, through early adoption of
research software engineering units, and the implementation
of sustainable research software policy and practice.

Research funding organizations have inherent interest in
– and directly benefit from – the existence of sustainable
research software as it allows them to direct more resources
towards actual research (rather than recreation of software)
and increase return on investment. At the same time, funding
organizations can create incentives for sustainable software by
imposing policies that reflect the necessity of research software
sustainability and creating respective funding opportunities.

Geopolitical units have a strategic interest to be independent
of other geopolitical units to ensure that research can continue
seamlessly regardless of geopolitical developments and ensuing
embargoes on information flow. Reuse of sustainable software
additionally frees up funding for uses other than software
development. Well-established, sustainable software systems
can also attract researchers and companies in the research
and technology sector.

Libraries (also registries, indices) benefit from sustainable
research software, as it will undergo a formal publishing proc-
ess and be properly described in its metadata. Libraries can
extend their portfolio beyond text-based research objects and
stake claims as organizations harnessing the digitalization of
research. In turn, they help to increase visibility and discoverabil-
ity for research software through their services and advance the
competitiveness of their organization or geopolitical unit.
In addition, libraries also use research software and would
thus benefit directly from a more sustainable research
software landscape. Last but not least, by using FLOSS research
software, libraries could avoid expensive licenses and often
insufficiently adapted commercial software.

Infrastructure units, such as supercomputing facilities and
university computing centers, benefit from sustainable software
as it makes their daily work in terms of software installation
and user support easier. Additionally, they can position them-
selves at the forefront of research by bundling expertise on
the creation and maintenance of sustainable research software
and installing research software engineering teams.

Industry benefits from sustainable research software, as
the process of creating and maintaining research software
produces a highly-skilled workforce. Depending on the employed
licensing model, sustainable research software can also be
adopted by industry partners to reduce cost in corporate research
and development. Helping to sustain research software may
also enable positive outreach for companies across industry and
into society.

Independent (open source) developers can get involved in
research software, even if they are not employed by a research
institution. This can help them get in contact with other

Page 7 of 34

F1000Research 2021, 9:295 Last updated: 28 JAN 2021

https://www.dfg.de/en/research_funding/principles_dfg_funding/good_scientific_practice/
https://www.dfg.de/en/research_funding/principles_dfg_funding/good_scientific_practice/

developers in the field and may potentially lead to collaborations
or job opportunities in research based on this extended
experience.

How to decide which software to sustain?

Kim’s PI is happy because Kim writes a longer section on
hal9k for the final project report and provides a software
management plan alongside it, which ticks off a box in the
template that the PI had previously worried about. The PI
does not want to let Kim go and instead offers her to be co-PI
on a follow-up project to test new methods on the data, and
integrate them into hal9k as well. They are positive that such a
project proposal has a good chance to be funded, as they can
show impact of their first project via their university’s current
research information system (CRIS) and through the number
of citations of hal9k and the publications for which it was used.
While they write the proposal, the faculty dean approaches
the two to tell them that based on Kim’s work, they will now
negotiate about two new RSEs for the central RSE team with
the university’s provost for research and plan to consider
candidates with a background in researchonomics.
When they get the decision letter from the research funding
organization, Kim and her co-PI are happy to learn that their
new project has won the grant. The reviewers specifically
point out the value of extending Kim’s Boa library to include
the proposed new methods, as well as the significant reuse
potential of hal9k for the researchonomic community as a
direct effect of its well-engineered architecture and modularity.
Additionally, they stress that it was really easy to evaluate the
software due to the comprehensive test suite, documentation,
and example data. In fact, during the first month of the new
project, three other researchonomic research projects approach
them to ask whether they can contribute to Kim’s library and
offer to fund six months of RSE work for this. Kim uses this
money to also parallelize hal9k together with the RSEs and
works with her university’s computing center to offer it as a
standard tool for researchonomic supercomputing.

Requirements and challenges
The sustained funding of all existing software efforts is not
only impossible but would risk overly splintering the commu-
nity and eventually become counterproductive to the efficiency
of the research community. Therefore, it is important to agree
on a list of transparent criteria that qualify a software prod-
uct for sustained funding. We recognize that defining research
software engineering criteria for software evaluation will
also lead to activities aiming at optimizing scores to achieve
these criteria. Hence, the criteria have to be designed such that
all score-pushing effort truly advances the value of the software.
Criteria that can be manipulated without effectively adding
value, i.e., wasting resources, should be excluded. The list
of criteria presented in this section could be the basis for a
structured review process that facilitates an unbiased evalua-
tion of software tools from various fields. Therefore, this list
must be general enough to be applied to research software from
various research disciplines while also respecting differences
between fields (e.g. citation rates between humanities and life
sciences). The challenge to do justice to a wide spectrum is e.g.
reflected by suggesting criteria comprising different levels57.
One of the major challenges in the endeavor to define a selec-
tion scheme for sustainable funding of research software is to

organize a fair and transparent review process. We believe that
it is important that the review process is conducted by experts,
or teams of experts, that have a strong background both on
software engineering as well as on the domain-specific aspects,
the latter because certain criteria often exist on a spectrum that
is most likely shaped by the specific demands of the respective
research community.

While an assessment based purely on quantitative metrics
would allow for seemingly objective comparisons between pro-
grams, the definition of valid and robust quantitative metrics
that can be evaluated with reasonable effort is a major chal-
lenge. On the other hand, a structured qualitative assessment
with scores for groups of criteria can provide a middle ground.
It is clear that both preparing an application for a review
against these criteria from the applicant side as well as the
evaluation by the reviewers requires significant effort. We
believe that the added value significantly outweighs the invest-
ment but appropriate resources need to be factored in. Sus-
tainability of research software should be considered from the
beginning for new projects. The criteria listed below, or a sub-
set such as the “good enough” practices proposed by Wilson
et al.43 and artifact review approaches58,59 are valuable throughout
the development process (including early phases) for almost
all types of research software applications. “Classical” research
funding schemes should acknowledge the need to follow best
practices during the development of new software and allow
factoring in appropriate resources to design and implement
for sustainability. In this section, we focus on the question
which software to support in dedicated sustainability funding
schemes. For such sustained funding, only software in
application class 2 or 3 as defined by Schlauch et al.60, i.e., with
significant use beyond personal or institutional purposes,
would likely be considered. Excellence as reflected in funded
projects, publications, and software adoption, i.e., back-
ing by a community, should be considered during selection.
Nevertheless, we believe a good scheme should strike a balance
between consolidating the field to few well-established software
packages on one side and stimulating innovation and coopera-
tion promoting diversity in terms of more than one monopolis-
tic package on the other side. Last but not least, there is an
inherent conflict between the long-term goals of sustainability
funding software and the necessary reevaluation to monitor
the state of the software over time.

Selection criteria
Several evaluation schemes for research software have
been proposed before and led to the formulation of first
recommendations13,14. Gomez-Diaz & Recio suggested the
CDUR scheme based on Citation, Dissemination (includ-
ing aspects like license, web site, contact point), Use, and
Research (output)61. Lamprecht et al. rephrased the FAIR data
principles10 for research software12. Hasselbring et al. found
that the adoption of FAIR principles is different between fields
with an emphasis on reuse in computer science as opposed to
a reproducibility focus in computational science11. Fehr et al.
collected a set of best practices for the setup and publication of
numerical experiments62. Jiménez et al. boiled it down to four

Page 8 of 34

F1000Research 2021, 9:295 Last updated: 28 JAN 2021

best practices63: public source code, community registry, license,
and governance. Hsu et al.64 proposed a framework of seven sus-
tainability influences (outputs modified, code repository used,
champion present, workforce stability, support from other organ-
izations, collaboration/partnership, and integration with pol-
icy). They found that the various outputs are widely accessible
but not necessarily sustained or maintained. Projects with
most sustainability influences often became institutionalized
and met required needs of the community64. In the field of
open source software, the CHAOSS (Community Health Ana-
lytics Open Source Software) project has developed met-
rics to evaluate sustainability. One objective of CHAOSS
is to automatically generate project health reports based on
software that evaluates the metrics, with most of the metrics
already covered. The UK Software Sustainability Institute
(SSI) suggested both a subjective tutorial-based and a more
objective criteria-based software evaluation scheme65, the lat-
ter being available as an online form. ROpenSci66 provides
software reviews for R developers, which have been very
successful in the community. The review criteria of the Jour-
nal of Open Source Software (JOSS) focus on the aspects
license, documentation, functionality, and tests. This list of
essential items should be fulfilled by all research software
that wants to beconsidered not only for publication but also
for sustained funding.

We drew inspiration from all these works and suggest a set
of criteria on which to base reviews for sustainable fund-
ing. This set comprises mandatory, hard criteria that we think
have to be fulfilled across domains (highlighted in italics) and
additional desirable, soft criteria that can be implemented to
different degrees depending on the use case and domain-
specific software development requirements. The soft criteria
should be evaluated in a structured way by the reviewers
with a specific response for each section rather than one
running text. The fact that most of these criteria will be consid-
ered in any software management plan (SMP) highlights its
importance for sustainable research software.

Usage and impact. Requirements qualifying software for
sustained funding are (1) its use beyond a single research
group, (2) the scientific relevance and validity of the software
documented in at least one peer-reviewed scientific publication.
Ideally a paper also describes the scope, performance, and
design of the software. (3) The use of the software in pub-
lications is a measure of impact but quantitative assessment
brings about additional challenges27. Therefore, other, potentially
domain-specific, impact measures, such as influence on pol-
icy and practice as well as use in other software and products
should be considered as well to evaluate relevance for academia
and society. Considerable attendanceat training and networking
events can be considered as a proof of use as well. (4) A market
analysis needs to show that the software is important to a user
base of relevant size and either unique or one of the main play-
ers in a field with several existing solutions. Geographical or
political aspects can be considered as well, e.g. to support the
maintenance of a European solution. A convergence process
of (parts of) a research community towards a specific software
stack, i.e., documented transition of several research groups to a

common software, would be a strong indicator of impact. (5) As
community uptake and benefits are a central goal of sustained
software funding, outreach and appropriate training material
for new users of the software are essential.

Software transparency and quality. As mandatory criteria of
software transparency and quality that have to be fulfilled, we
consider (6) the public availability of the source code in both a
code repository and an archive (for long term availability),
developed using (7) version control with meaningful commit
messages and linked to an issue tracker (ideally maintained, but
at least mirrored on a public platform). (8) Documentation of
the software needs to be publicly available comprising both
user documentation (requirements, installation, getting started,
user manual, release notes) and developer documentation (with
a development guide and API documentation within the code,
e.g. using Doxygen)67. (9) The license under which the soft-
ware is distributed must be defined. Publicly funded software
should be published under a Free/Libre Open Source Software
(FLOSS) license by default, although exceptions to this might
apply (e.g. excluding commercial use). (10) Dependencies on
libraries and technologies must be defined.

We acknowledge that some additional criteria have to be
evaluated under consideration of the research domain. These
comprise (11) the availability of examples (comprising input
data and reference results), (12) mechanisms for extensibility
(software modularity) as one aspect of software architecture68
and (13) interoperability (APIs / common and open data formats
for input and output), (14) a test suite (including at least some
of the following: unit tests, regression tests, integration tests,
end-to-end tests, performance tests; ideally run in an auto-
mated fashion in a continuous integration environment),
(15) tagged releases (considering their frequency, and avail-
ability for end users in terms of binary packages for major
operating systems, or availability via package managers or
containers), (16) no large-scale re-implementations for
functionality for which good solutions already exist. Many of
these aspects require appropriate infrastructure (see page 12).

Maturity. The research software applying for sustained fund-
ing must have already reached a certain level of maturity (typi-
cally class 2 or 3 as defined by Schlauch et al.60). A mandatory
requirement is (17) a comprehensive and up--to-date software
management plan69. The software should (18) be maintainable
with an appropriate amount of resources as detailed in a sustain-
ability section of the software management plan. The software has
(19) a well maintained website with a clearly defined point of
contact and a communication channel to inform users about
news regarding the software such as new releases. Besides an
active user community, sustainable software requires (20) a
group of developers (i.e., definitely more than 1 developer) doc-
umented, e.g. by contributions to the code base or participation
in documented, public discussions or issue tracking. Another
criterion is (21) whether potential contributors are invited to par-
ticipate in a clearly defined process (e.g., a CONTRIBUTING
document). The group of developers should have defined a
governance model for their project and easy ways for users to
provide input regarding their needs.

Page 9 of 34

F1000Research 2021, 9:295 Last updated: 28 JAN 2021

http://chaoss.community/metrics
http://chaoss.community/metrics
https://www.software.ac.uk/resources/online-sustainability-evaluation
https://joss.readthedocs.io/en/latest/review_criteria.html
https://joss.readthedocs.io/en/latest/review_criteria.html
https://www.software.ac.uk/resources/guides/software-management-plans

Recommendations
Given the diversity in the software technology landscape, and
the domain-specific software development cultures70, some of the
above-mentioned criteria have to be evaluated against domain-
specific requirements. Therefore, we highly recommend to base
the selection process on a combination of (1) a software qual-
ity-based review and (2) a domain-specific scientific review. In
particular, the former should be ideally performed by a central
institution (e.g. at funding bodies or other independent agen-
cies such as a software sustainability institute). Only criteria for
which improvement truly advances the value of the software
should be considered in evaluation schemes, i.e. no criteria
that can be gamed. After rejecting software not fulfilling the
mandatory criteria in a first stage of the review process, the
second stage of the selection process should be realized as a
transparent procedure ideally allowing the reviewers to interact
with the PIs of the software (e.g. remote meetings, forum-like
discussions) and put the software quality and development efforts
into the domain-specific context. The outcome of this sec-
ond stage should be a structured review assessing each criterion
explicitly and a rating for each of the dimensions Usage and impact,
Software quality, and Maturity. For sustained software funding,
it is important to audit the performance, relevance, impact,
progress, and level of sustainability of funded software after
reasonable time frames. Such a reevaluation should revisit the
criteria under consideration of evolving software technology and
scientific standards, without requiring a completely new proposal
being submitted. We envision funding periods of 5 years to
provide sufficient security for funded software projects, while
allowing for adaptation of the portfolio of funded software
to novel research directions and community needs. Failure to
meet the reevaluation criteria should lead to the decision to
phase-out sustainable funding. The phase-out process may
come with a 1-year funding program based on a consolidation
plan with clear goals regarding the archiving and preservation
of the software, documentation, and all existing resources.

Who sustains research software?

Kim wants to broaden her research portfolio within
researchonomics and applies for postdoctoral positions at other
institutions. Her library hal9k is growing in popularity within
researchonomics, and she wants to continue working on it. As
her university has adopted an open science policy, hal9k is free
software under a Free/Libre Open Source Software (FLOSS)
license, and Kim is free to continue her work on the library even
after moving away from UofA. Due to her involvement in the
creation of hal9k as well as her previous success in attracting
funding, Kim has the choice between multiple, attractive
positions and decides to move to the researchonomics group
at Eden University (EdU). She has already extended hal9k in
multiple directions in the past and plans to continue this work
at EdU. Her group leader at EdU would like to continue funding
her but due to a law called the Fixed-term Research Contract
Bill, EdU is not allowed to extend her contract, and neither third-
party funding for her own position nor a permanent position
are available. After having developed a now widely-used
research tool, several publications in software and paper form,
as well as having attracted funding, Kim finds herself looking for
a job again.

Research relies on software and software relies on the people
developing and maintaining it. Sustainable research requires
sustainable software, and this in turn requires continuity for
those who develop and maintain it.

Requirements
Possibly the most important demand is the need for an increase
in recognition and awareness of research software as a first
class citizen in research14,71,72. For sustainability of research soft-
ware, long-term commitments of the respective software leads
are crucial, but very few professional RSE profiles currently
exist. In consequence, it is essential to create career paths for
RSEs that are attractive and include permanency perspectives.
While creating permanent positions in the German academic
system below the faculty level is an actively discussed topic
overall73, we specifically focus on the needs originating from the
development and maintenance of research software here.

As already mentioned, research software development not
only requires domain expertise, but also software development
education, skills, and competence. Currently, most of the domain
researchers developing and maintaining domain-specific
software technology have not received professional training on
software development3,41. To enhance the productivity and
sustainability of computer-based research, it is essential to
integrate software development training into the education of
domain researchers.

Currently, a significant portion of the existing research software
is developed by individuals or in small groups, primarily
to serve their own requirements. This situation is unsatis-
fying in terms of collaboration and inefficient in terms of
several groups spending resources on generating similar or
even the same functionality. To enable and promote syner-
gies, it is important to allocate resources for research software
development and to build communities, as described in 74.

Challenges
We are currently facing a lack of awareness for the importance
of research software as discussed above. Moreover, there is little
recognition for the efforts put into software development and
maintenance. In consequence, software development in academic
settings is mostly considered as a means to an end and sustain-
ability is often not considered in project planning and grant
proposals and contributes little to progressing research careers75.
The main challenge here is the continued use of metrics that
primarily leverage traditionally published articles and article
citation numbers.

In academia, developers of research software are typically
domain researchers, and in particular if new areas are explored,
the software development process itself has research charac-
ter. Obviously, developing research software requires not only
domain knowledge but also software development skills, and the
researchers leading the software development process are often
domain experts with substantial software development experi-
ence, making them extremely valuable members of the research

Page 10 of 34

F1000Research 2021, 9:295 Last updated: 28 JAN 2021

community. However, the current academic system in Germany
does not provide a defined RSE role. Fixed-term positions are, at
least currently within the German academic system, often effec-
tively the end of a Research Software Engineer’s career path,
sometimes even a dead end. The challenge here is the lack of
available permanent positions within the non-professorial aca-
demic faculty (“Mittelbau”) in Germany, compounded by a lack
of access to these few permanent positions for RSEs. This in
turn is due to the already mentioned lack of recognition for
efforts concerning research software for faculty appointments
within domain sciences.

In order to develop sustainable software, researchers need to
have the skills and expertise to build software that is easy to
maintain and extend76. However, most of the researchers are
self-taught developers3,41. Ideally, these skills have to be built
into the domain science curricula, which could generally be done
in two different ways (or a combination of them). One obvious
solution attempt are additional courses that focus on these
topics. The main challenge here is to decide which other
topic(s) to possibly drop due to the limited volume of any given
curriculum. A different approach is to incorporate software-
related topics into existing domain science courses. While
this would provide the benefit of show-casing the usage of
specific software skills directly within the domain science,
the challenge here is the amount of work necessary to change
existing lecture material, let alone the need of the lecturers to
acquire those skills themselves in the first place.

As long as the necessary software skills within domain
sciences are not yet wide-spread, building a network from those
that have acquired relevant skills is difficult. Community efforts,
that concentrate on questions regarding research software, can
help to fill this gap. Examples of such efforts include the
Software Carpentries, national and international RSE societies
(e.g., within Germany deRSE e.V.). However, since research
software is such an interdisciplinary topic, it is hard to get
recognition and find funding within any specific discipline.
As a result, existing communities often have to rely heavily
on volunteers. This is challenging because despite benefits to
domain science, volunteers hardly receive recognition for their
work “back home”, i.e., within their domain, underlining again
the importance of our first demand.

Recommendations
Increasing recognition and awareness is a challenge that calls
for both immediate action and perseverance. Nevertheless,
some measures will likely show positive effects comparatively
soon.

Similarly to plans for research data management, funding
agencies should request that applicants include considerations
about how software developed in a project can be sustained
beyond the end of the funded project. A follow up on these plans
during and after the project lifetime, i.e., a dedicated software
management plan, is crucial.

Another recommendation is aimed at decision makers
concerning recruitment for academic positions: broaden the

definition of research impact beyond traditional scientific
publications to also include other impactful results. Not all
researchers that think of themselves as RSEs pursue a fac-
ulty position as their main career goal. However, permanent
academic non-faculty positions are rare within the German
academic system, also due to the lack of a defined RSE role. We
recommend research institutions to leverage the benefit of dedi-
cated RSEs by establishing attractive long-term career options
in the academic environment. The long-term solution in
order to gain sufficient software development skills should be
education that is included early in the career path, ideally
already at the Bachelor level. For the time being however, efforts
involving workshops and seminars that provide easy access to
hands-on training on software-related questions should be
promoted and supported as much as possible.

It is important to provide an environment where communities
can form and flourish by allocating resources for research
software development and for building communities
around it63,74,77. The identification with a community of
like-minded people and personal action78 can lead to a
permanent establishment of sustainable research software as a
valuable research output. Thus, research institutions as well as
funding agencies should not only be open-minded regarding
existing volunteer organizations, but should actively promote
the creation of such groups.

How can research software be sustainably funded?

Hal9k has grown into a widely used software in
researchonomics, and Kim is proactively asked to apply for
- and is subsequently awarded - a permanent RSE position at
the institute for researchonomy at UofA, based on her work
on the library. She works closely with the central RSE team,
but mostly due to bureaucracy and the high demand for her
library, Kim does not have enough time to maintain and further
develop hal9k alone anymore. Together with the dean she
develops a course for the researchonomics curriculum which
teaches data processing with hal9k. As a lesson from her own
career, she starts the course with sessions on the Hash shell,
version control with Tig, Boa, and two whole sessions on basics
of sustainable software development. This is very fruitful, and
due to the implementation of a new research software funding
scheme at UofA, Kim is able to hire one of the course students,
who has shown great RSE skills, straight into a long-term
position at her institute, where they focus on the maintenance
and development of hal9k, work with the computing center
to support hal9k-based supercomputing on a new, dedicated
FGPA cluster, develop training materials for external users, and
organize the yearly hal9k users and developers conference. Kim
gets to travel the world to visit researchonomics groups who
are using hal9k.

Requirements
Sustainable funding for research software boils down to
funding the four main pillars enabling sustainable soft-
ware development: (1) Personnel with expertise in research
software development; (2) Infrastructure for developing,
testing, validating, and benchmarking research software;
(3) Training in software design and sustainable software
development; and (4) Community management and events for
creating synergies between research groups and software efforts.

Page 11 of 34

F1000Research 2021, 9:295 Last updated: 28 JAN 2021

https://de-rse.org

Challenges
Short-term engagement of (early career) researchers raises the
question of how to maintain a constant level of expertise within
a developer team and prevent knowledge drain concerning
domain knowledge and software engineering skills. Conversely,
the permanent engagement of qualified personnel requires to
offer career perspectives, especially due to the fact that academia
competes with industry for the same people. A challenge spe-
cific to Germany is posed by the shortage of permanent positions
and by the restrictions for temporary positions due to the
German Wissenschaftszeitvertragsgesetz79.

Sustainable software development requires hardware tech-
nology to develop, test, validate, and benchmark features in
a continuous integration cycle. The challenge in this context
is the persistent evolution of the hardware landscape. Hence,
for creating an environment promoting sustainable software
development, it is important to provide access to a wide
hardware portfolio and to support a development cycle based
on continuous integration.

Expertise in sustainable research software development is a
scarce resource, and training is heavily needed as one way
of building up more expertise. However, while integrating
interdisciplinary software engineering courses into the
education curriculum can build up basic skills, some expertise is
domain-specific and requires interinstitutional training activities.
Furthermore, there exist no financial incentives for creating
software-specific documentation and tutorials nor to provide
other forms of support.

While the creation of research software communities is one
major asset in sustaining research software technology, promot-
ing this process requires the installation of new funding instru-
ments. Traditionally, research grants are limited to rather short
time frames and support personnel, material, hardware, and
to a limited degree also travel and research visits. Creating a
research software community however requires funding for
community and training events as well as “virtual hardware”
such as webspace, versioning systems, task-managing systems,
and compute cycles. These demands can hardly be met without
third-party funding45,80–82.

Recommendation: creation of adequate funding
schemes
Funding is a crucial factor for sustaining research software.
Currently available sources and instruments are not adequately
shaped for the challenges and solutions outlined above.
We recommend actions on the individual, organizational, and
national level.

Existing project-focused funding instruments on the local,
national, and international level need to be complemented with
funding instruments specifically designed for research soft-
ware development and sustained research software maintenance
to make research software a first class citizen in the research
landscape. For example, software projects enhancing research
and fulfilling the sustainability criteria detailed in section How

to decide which software to sustain? may be entitled for
sustained funding as long as they live up to the standards and
remain a central component of the research landscape.

Computing centers and supercomputing facilities for research
need to receive earmarked resources for the support of
sustainable software development. This funding is necessary to
provide continuous integration services, a hardware portfolio for
development, testing and benchmarking software, as well as
personnel for training domain researchers in software design
and the proper usage of the services.

The creation and maintenance of training materials for
general research software engineering education and the
software-specific documentation and tutorial creation needs to
be reflected in funding opportunities. This can either happen by
dedicating modules of research or software grants to providing
support and the generation of training material, or by opening
funding schemes focusing on interdisciplinary software devel-
opment education. The latter may include research that looks
at research software development as a process to analyze
which measures, interactions, and team compositions make
research software successful. Additionally, funding instruments
fostering the formation of research software communities have
to be established.

Which infrastructure is needed to sustain research 
software?

As the hal9k community grows, so does the need for
infrastructure. Kim and her team collaborate with the National
RSE Consortium to set up hal9k on the Consortium’s distributed
TigHub instance and organize world-wide access to it via
the NRSEC-AAI federation. Going forward, the Consortium’s
Research Software Hub - a registry and Software Heritage
Archive-based long-term repository for research software
on a national level - ingests hal9k releases with complete
metadata: citation information, the hal9k provenance graph and
computational environment information, ORCID iDs, etc. and
provides its own DOIs for versions under a concept (umbrella)
DOI. The community reviews all code and documentation
changes that are contributed to hal9k via the central TigHub
instance. The Hub’s CI system Alfred builds, tests, and pushes
new releases automatically to the registered supercomputing
clusters. Community efforts become better and more
streamlined by the day, as research software development
training is now offered as part of most curricula, and skilled
RSEs are now much easier to find and hire by research
institutions.

Project management tools
Research software is developed by individual researchers,
in small teams within a single institution, or in larger teams
distributed across multiple institutions. In particular if software
development is distributed across institutions, there exists an
urgent need for frameworks and tools enabling collaborative
code development, software feature planning, and software
management. As research software development typically includes
bleeding-edge research and in some cases development that the
researchers do not want to disclose for a certain time to preserve
intellectual property, distributed research software development

Page 12 of 34

F1000Research 2021, 9:295 Last updated: 28 JAN 2021

http://www.softwareheritage.org/
http://www.softwareheritage.org/
https://orcid.org/

also needs a global Authentication and Authorization Infrastruc-
ture (AAI). We recommend the development and/or deployment
of tools for distributed software development and software man-
agement as central research infrastructure. An important aspect
in this context is the cataloging of research software to reduce
the duplication of development efforts. This can efficiently be
realized by promoting the registration of all research software
with a unique identifier and developing a tool that allows to
explore the research software landscape. Research software
contributors should have an ORCID iD to be uniquely iden-
tifiable and referable. While some funding for such tools and
software repositories is emerging (e.g. the bio.tools catalogue
of bioinformatics tools funded as part of the European ELIXIR
project83), a standardized extension of such efforts to the RSE
community as a whole is necessary. However, as the experi-
ences from ELIXIR demonstrate, this is a non-trivial effort
that requires significant dedicated and long-term funding.

Developer training, motivation, and knowledge
exchange
As elaborated, training in sustainable software development is key
to achieve sustainability in research software. At the same time,
it is not clear how such training should be facilitated and insti-
tutionalized. Furthermore, for deriving software quality stand-
ards, evaluating the quality of software, and providing a code
review service, central resources are necessary that individuals
and groups in the research software landscape can draw from.

We consider Software Carpentry and similar efforts like the
creation of the Data Science Academy HIDA in the Helmholtz
Association of German Research Centers helpful solutions
to exchange and distribute knowledge. Local chapters of RSE
groups and (inter-)national conferences will further foster
networking and community building. We strongly recommend
the creation of a national Software Sustainability Institute
(involving funded positions to establish web platforms and
training material) similar to the UK Software Sustainability
Institute (SSI), which serves as a national contact for all aspects
related to research software. The UK SSI also publishes best
practice guidelines for research software engineering.

Research software discovery and publication
Proper software publication and possibilities for the commu-
nity to find existing software solutions for a given problem
are a prerequisite to optimally exploit synergies and avoid
redundant development. However, we observe that today, many
funding proposals lack a thorough state-of-the-art report of
software that could possibly be reused. This is most often
caused by insufficient information retrieval strategies, lack of
knowledge about relevant repositories, and an abundance of
locations where software is collaboratively developed and
stored84. Discovery requires publication in a globally accessible
location with appropriate metadata, e.g. Citation File
Format (CFF)85 and CodeMeta. Comprehensive metadata
(e.g. contributors, contact, keywords, linked publications, etc.)
and publishing platforms have to enable persistent citing, which
in turn benefits research evaluation. Selection and curation
of software (probably by a data/software librarian) for publication
and discovery are certainly challenging.

We consider GitLab or GitHub as collaborative working envi-
ronments and repositories like Zenodo appropriate publica-
tion platforms, because the latter mint DOIs, allow versioning
and are publicly funded for long-term access. GitHub, Figshare,
and Mendeley Data are examples of commercial enterprises
with business cases in the background, which leverage
research results. Besides the aforementioned metadata standards,
it is advisable to document source code, e.g. using MarkDown
(with Doxygen tooling). Metadata and citations play a role in
beneficial tools like PIDgraph, DataCite.org, CrossRef, which
utilize Persistent Identifiers (PIDs) like DOIs. Another solu-
tion to discovery are (mostly) disciplinary software indices
like swMATH or the Astronomy Source Code Library as
well as language focused systems like CRAN for R. Most of
them started as national endeavors and became platforms of
global importance. For Germany, we assume that the Nationale
Forschungsdateninfrastruktur (NFDI) will put effort into creat-
ing or supporting discovery platforms at a central point that ease
information retrieval. At the same time, all stakeholders should
be aware of and counteract potential institutional “fear” of
losing “their” data, software, and intellectual property.

Especially in interdisciplinary environments, it would be
helpful to have access to a meta software repository index,
similar to what re3data86 does for research data repositories. We
recommend the creation of such a meta index covering
important (disciplinary) software indexes in order to ease
discovery of relevant software locations. Evaluation of discovered
software is an unsolved problem. Here, anonymous telemetry of
usage may provide information for the selection of relevant
software. Publishing software, their dependencies, and envi-
ronment in containers may also ease evaluation and further
reuse. These suggestions require significant investment in
longterm infrastructure. When publishing research software
it is recommended to make use of integration schemes like
GitHub with Zenodo or local GitLab instances with publica-
tion platforms. Such indices and publication outlets may benefit
national federated research indexing & archiving systems,
similar to the hierarchy of library catalogs87.

Archiving
Software preservation aims to extend the lifetime of software that
is no longer actively maintained. There are different approaches,
which vary in the effort required and the likelihood of success.
Software archiving is one important aspect of software pres-
ervation: the process of storing a copy of a software package
so that it may be referred to in the future. The publication of a
certain software version for reference in research articles
requires simple ways to archive research software on a long-term
basis. Furthermore, its integration with collaborative software
development environments such as GitLab or GitHub and with
publication repositories is needed to facilitate archiving of
referenced software versions based on sustainable frameworks
(e.g. Invenio for GitHub to Zenodo integration).

A challenge for software archiving is the need to (ideally)
preserve the runtime environment and all dependencies of the
software. This could improve reproducibility, especially when
running the software in its original state. If research data are

Page 13 of 34

F1000Research 2021, 9:295 Last updated: 28 JAN 2021

https://orcid.org/
https://www.helmholtz-hida.de/
https://www.software.ac.uk/
https://www.software.ac.uk/
https://www.software.ac.uk/resources
https://www.software.ac.uk/resources
https://codemeta.github.io/
http://swmath.org/
http://ascl.net/
http://cran.r-project.org/
http://www.invenio-software.org/

needed to reproduce results, they should also be archived with
the software or the publication. Specialized and unique hard-
ware like high performance computing resources can be part
of the runtime environment, which may not be accessible in the
future. To overcome this, an emulation of hardware may be a
(challenging) solution. Emulation involves the encapsulation
and distribution of the complete hardware and software stacks,
including the operating system and driver interdependencies.
This can result in intellectual property issues when offered as a
service.

There are both local and global approaches to software con-
servation. One solution to keep the software in an executable
state by preserving its context and runtime environment is to
use containers such as Docker. However, to archive the Docker
containers, additional metadata should be added and stored
with the software in an archive container format that allows
exchange between repositories and exit strategies, such as the
BagIt container format88. Application or platform conservation
is also achieved by conservational efforts where unmaintain-
able (virtual) machines are sandboxed to keep the platform in
a secure but running state. Other notable efforts in this direction
include for example Singularity and Guix HPC. Another threat
is losing project repositories on global platforms like Github
or BitBucket. Here, global platforms like Software Heritage
harvest those repositories and prevent loss by long-term archiving.

Legal aspects

More and more industrial partners enter the hal9k community,
and they bring their lawyers. Together with UofA’s research
software task force, the RSE team, the researchonomy institute,
the corporate lawyers, and community representatives,
Kim decides to create a foundation to govern hal9k and its
environment: the Fullest Possible Use Foundation for Open
Researchonomy, funded by the Ministry of Research and
Education and a consortium of corporate partners. As a first
step, they re-license hal9k under the OSI-approved MIT license.

A common situation in research software creation is that the
developer has no knowledge or awareness of legal aspects and
therefore did not consider them early enough. As seen in Kim’s
example, re-licensing later in the project can be not only legally,
but also organizationally very tricky, in particular for projects
which developed over many years and involved many contribu-
tors from different organizations. Thus, we think the main legal
demands for research software development are raising aware-
ness and empowering all levels of responsible persons in
academia (from researchers and RSEs over PIs to research
performing organizations and research funding organizations)
in legal aspects. This will hopefully lead to a general legal cer-
tainty before, during, and after the research software develop-
ment process and thus enable better options for collaborations
between universities, non-commercial research institutions, and
other national or international partners. Legal aspects always
have to be considered regarding the relevant jurisdiction.
Though similar issues arise in all jurisdictions, the follow-
ing will focus on the European and specifically German legal
framework.

Challenges and clarifications
Clarification of rights. Software development is a creative
activity. The main relevant law governing legal aspects is there-
fore the copyright law. It regulates the rights and obligations of the
parties involved. Chapter 8 of the German Act on Copyright and
Related Rights (UrhG) contains specific provisions applicable to
computer programs and is based on the EU computer programs
directive. Copyright law protecting the creator of software in
similar ways exist in nearly all legal systems. It is impor-
tant for the identification of rights that software, in the sense of
(German) law, includes not only the source code but also the
design materials89. The challenge in the use, distribution, and
commercialization of software is to determine the chain of
rights and to identify all right holders. The owner of the copy-
right is not necessarily the owner of the right of use. For Ger-
many, the Copyright Act regulates the rights for employment
relationships90. In such cases, the right of use is automatically
transferred to the employer. This means that in most cases of
employed software developers and research staff, the institu-
tion holds the rights of use for the software work. This is not
automatically the case for students, freelancers, and individual
external cooperation partners. Employment and service con-
tracts with contributors could contain regulations regarding
the transfer of rights of use. For researchers who conduct free
research not subject to directives, in Germany the constitution
guarantees freedom of research so that the rights of use for
their work remains initially with the natural person. In addition
to the rights of the people directly involved, other rights of third
parties may also be relevant. Existing source code (e.g., other
Free/Libre Open Source Software (FLOSS)), external libraries,
and contributions from institutional cooperation partners are
published and provided under certain licenses and their condi-
tions must be observed (which, due to incompatibilities even
among FLOSS licenses, may well mean that individually reusable
pieces of software cannot be reused together or in a new con-
text). The nature of research careers often brings additional
complications to the chain of rights. It happens that research-
ers take their software with them when they change institu-
tions and develop it further during their career. Here, the former
employer may be entitled to some rights of use. In third-party
funded projects, in particular with industry but also with public
funding, rules regarding rights of use are often defined.
Last but not least, the software can also be affected by other
(intellectual) property rights such as patents or trademarks.
Software itself is usually not patentable but it may imple-
ment a technical invention covered by patents. When using or
distributing such software, an additional matching patent
license may be necessary. Licenses exist (for example: GNU
GPL v3) which automatically grant related patent licenses
while using the software license. That should be considered
when exploitation of the patent is planned.

Liability. Issues of warranty and liability for faulty software must
be taken into account. We consider the possibilities of contrac-
tual limitation of liability in licenses. Full exclusions of liability
are generally invalid in the German law. Limitations of
liability usually depend on the form of distribution: The limitation
options are larger if the rights of use are granted free of charge,
e.g. provision “as is” as defined, e.g. in the BSD 3-clause license.

Page 14 of 34

F1000Research 2021, 9:295 Last updated: 28 JAN 2021

https://www.softwareheritage.org
https://opensource.org/licenses/MIT

Ideas for solutions
In order to meet the legal challenges mentioned, it is abso-
lutely necessary for the software developer (team) to document
the rights chain comprehensively during the software devel-
opment (one possible solution is presented in the accompa-
nying report91). Contributions of individual persons must be
traceable and their (labor law) status must be named. At best,
contracts with rules on the transfer of rights of use should
be concluded before work begins. Declarations of assign-
ment of rights can be made for existing works. License
conditions for external contributions must be evaluated with
regard to further rights of use and possible sub-licensing.
Contracts and funding conditions must be conscientiously
documented and analyzed with regard to rules on rights of
use. In case that different parts of the software are based
on different conditions and rights of third parties, individ-
ual modules of the new software could be published under
different licenses and merged accordingly.

A national research software sustainability institute could be
established. This institute supports local research software task
forces and thereby respective researchers and research teams
in the licensing of research software and related legal issues.
For this purpose, a legal help desk will be set up, to which all
members of their respective research performing organization
can apply. Such a legal help desk should be seen as an infra-
structural investment to avoid any uncertainty about re-use of
existing research software and to support research-friendly
licensing. If researchers want to publish the research software
under a Free/Libre Open Source Software (FLOSS) license,
the organization could bundle the necessary rights beforehand.
This is particularly useful when teams of researchers, often
international, write software. In addition, the sustainability
institute may serve as a one-stop-shop for the licensing of
research software.

Recommendations
We see it as an essential part of the sustainability of research
to enable the free distribution of research software. There are
a variety of open source software licensing models (ranging
from permissive to copyleft; for further information, see
tldrlegal, the ifrOSS Lizenz-Center, or Morin et al., 201248).
The use of an FSF- or OSI-approved FLOSS license for
example would enable a truly free model and also reduce
legal issues. We recommend that research funding organiza-
tions such as the DFG discuss if they expect publishing all
funded software under these licenses, following the paradigm
of “public money, public code”. If licenses such as Apache
or MIT are applied, the research institutions may later still
commercialize the software if appropriate. Such open source
licensing is also beneficial for start-ups that intend to provide
professional services for the software.

Also for legal aspects, we believe it is important that all
(German) research performing organizations install a research
software task force, especially in light of the new DFG Code
of Conduct. Besides organization and bundling of techni-
cal and infrastructural support for local RSEs and researchers
(see previous sections), this group should organize a local legal
help desk, organize educational offers e.g. for the legal topics

presented, and (if not implemented yet) develop the software
policy of the research performing organization. As an example,
with the help of on-boarding processes performed by the
research software task force, RSEs should be able to keep
the clearance of rights as simple as possible right from the
start. This helps to avoid that - out of uncertainty and fear
to make a legal mistake - some research groups end up not
choosing any license at all, which may hinder reuse of the
software. We suggest that the local task forces build a network
with the other research performing organizations for exchange
of ideas but also for generating a bottom-up strategy to organ-
ize RSE standards for Germany and beyond and possibly be
the origin of the aforementioned software sustainability institute.

Conclusions
We find that the research software ecosystem is notoriously
lacking resources despite its strategic importance. If funding
and support does not improve, the success story of science based
on academic research software may be at stake. We recom-
mend the installation of infrastructure that enables sustainable
software development including platforms for collaboration,
continuous integration, testing, discovery, and long-term
preservation. We suggest the establishment of a nationwide
institution similar to the Software Sustainability Institute (SSI)
to provide project consulting and code review services as well
as sustainable software development training. We think that
sustainable software development should become an integral
component of the universities’ teaching curriculum. We
encourage the research funding bodies to reflect the licensing
models for academic software development, and to decide
whether the “public money, public code” paradigm justifies the
requirement that all publicly funded software has to be publicly
available under a Free/Libre Open Source Software (FLOSS)
license. Ultimately, we strongly advise the implementation of
funding schemes for sustainably supporting the development
and maintenance of research software based on clear and
transparent criteria, for creating incentives to produce high
quality community software, and for enabling career paths as
research software engineer (RSE).

Glossary
domain researchers The people doing the research to advance
knowledge in a field.

general public Lay people that do not necessarily have specific
insight regarding a research domain.

geopolitical units Governed public units, ranging from
cities and councils, over federal states and countries, up to
political unions such as the EU. In the context of this paper, the
discussion usually focuses on the larger units (countries and
political unions).

independent (open source) developers Project-external soft-
ware developers who are not employed by the institution(s)
carrying out the project.

industry Companies conducting research or profit from
available academic research software which they can directly
or indirectly apply to their field.

Page 15 of 34

F1000Research 2021, 9:295 Last updated: 28 JAN 2021

http://tldrlegal.com/
https://ifross.github.io/ifrOSS/Lizenzcenter
https://publiccode.eu/
https://www.dfg.de/en/research_funding/principles_dfg_funding/good_scientific_practice/
https://www.dfg.de/en/research_funding/principles_dfg_funding/good_scientific_practice/

infrastructure units Computing centers of research bodies
such as universities and other research centers, as well as high-
performance computing facilities.

libraries (also registries, indices) Infrastructure units of
research bodies such as universities, or independent organi-
zations, which gather research outputs and their structured
metadata, and provide indices, search, etc.

research funding organizations Public research funding
bodies but potentially also companies, foundations, associations,
etc.

research leaders Heads of research groups, such as professors
and other people with staff responsibility.

research performing organizations Research groups,
departments, faculties, research institutions (universities,
national labs, cross-institutional research groups, etc.), umbrella
organizations, such as Helmholtz-Gemeinschaft Deutscher
Forschungszentren, Max-Planck-Gesellschaft zur Förderung der
Wissenschaften, Leibniz-Gemeinschaft, etc.

research software engineers (RSEs) People creating and
maintaining research software; this group ranges from
research-focused software developers, to software engineers
with a focus on research; other definitions include other roles,
such as research software managers.

Data availability
Underlying data
No underlying data are associated with this article.

Extended data
Decision trees and documentation templates for the legal topics
are available on Zenodo91: doi: 10.5281/zenodo.4327147

Author information
We are a group of software-providing researchers, RSEs,
and infrastructural as well as legal supporters. Initially,
a group of representatives of funded projects of funded
projects of the first DFG sustainability call met during the
first German RSE conference (deRSE19) in June 2019 in
a grass-roots workshop on sustainable research software
addressing the software-based research community. During
this workshop, we realized that a lot of valuable experience
and good ideas are present in the group, and we decided to start
working on this paper together with other interested practition-
ers. We followed the generous invitation of the DFG for the
above-mentioned two-day meeting at the Robert Koch Institute in
Berlin in November 2019 to sharpen the focus of this
paper.

References

1. The Event Horizon Telescope Collaboration, Akiyama K, Alberdi A, et al.:
First M87 Event Horizon Telescope Results. IV. Imaging the Central 
Supermassive Black Hole. Astrophys J. 2019; 875(1): L4.
Publisher Full Text 

2. Nowogrodzki A: How to support open-source software and stay sane.
Nature. 2019; 571(7763): 133–134.
PubMed Abstract | Publisher Full Text 

3. Philippe O, Hammitzsch M, Janosch S, et al.: softwaresaved/international-
survey: Public release for 2018 results. 2019.
Publisher Full Text

4. Hirsch JE: An index to quantify an individual’s scientific research output.
Proc Natl Acad Sci U S A. 2005; 102(46): 16569–16572.
PubMed Abstract | Publisher Full Text | Free Full Text 

5. Bangerth W, Heister T: Quo Vadis, Scientific Software? SIAM News. 2014; 47(1):
8.
Reference Source

6. Prins P, de Ligt J, Tarasov A, et al.: Toward effective software solutions for big
biology. Nat Biotechnol. 2015; 33(7): 686–687.
PubMed Abstract | Publisher Full Text 

7. Richardson C, Croucher M: Research Software Engineer: A New Career 
Track? 2018.
Reference Source

8. Cohen J, Katz DS, Barker M, et al.: The Four Pillars of Research Software 
Engineering. IEEE Software. 2020; 38(1): 97–105.
Publisher Full Text 

9. Brett A, Croucher M, Haines R, et al.: Research Software Engineers: State of 
the Nation Report 2017. 2017.
Publisher Full Text

10. Wilkinson MD, Dumontier M, Aalbersberg IJ, et al.: The FAIR Guiding Principles 
for scientific data management and stewardship. Sci Data. 2016; 3(1):
160018.
PubMed Abstract | Publisher Full Text | Free Full Text 

11. Hasselbring W, Carr L, Hettrick S, et al.: FAIR and Open Computer Science 

Research Software. arXiv: 1908.05986. 2019.
Reference Source

12. Lamprecht AL, Garcia L, Kuzak M, et al.: Towards FAIR principles for research 
software. Data Sci. 2019; 3(1): 37–59.
Publisher Full Text 

13. Katerbow M, Feulner G: Recommendations on the development,use and 
provision of Research Software. 2018.
Publisher Full Text

14. Scheliga K, Pampel H, Konrad U, et al.: Dealing with research software:
Recommendations for best practices. Helmholtz Open Science Coordination
Office. 2019.
Publisher Full Text

15. Hatton L: The Chimera of Software Quality. Computer. 2007; 40(8): 104–103.
Publisher Full Text 

16. Chang G, Roth CB, Reyes CL, et al.: Retraction. Science. 2006; 314(5807):
1875–1875.
PubMed Abstract | Publisher Full Text 

17. Matthews BW: Five retracted structure reports: inverted or incorrect?
Protein Sci. 2007; 16(6): 1013–1016.
PubMed Abstract | Publisher Full Text | Free Full Text 

18. Kanewala U, Bieman JM: Techniques for testing scientific programs without
an oracle. In: 2013 5th International Workshop on Software Engineering for
Computational Science and Engineering (SE-CSE). 2013; 48–57.
Reference Source

19. Vogel T, Druskat S, Scheidgen M, et al.: Challenges for Verifying and 
Validating Scientific Software in Computational Materials Science. In:
International Workshop on Software Engineering for Science. 2019; 25–32.
Publisher Full Text

20. Smith AM, Katz DS, Niemeyer KE, et al.: Software Citation Principles. PeerJ
Comput Sci. 2016; 2: e86.
Publisher Full Text 

21. Merali Z: Computational science: ...Error. Nature. 2010; 467(7317): 775–777.
PubMed Abstract | Publisher Full Text 

Page 16 of 34

F1000Research 2021, 9:295 Last updated: 28 JAN 2021

http://dx.doi.org/10.5281/zenodo.4327147
https://gepris.dfg.de/gepris/suche/projekt/research_software?context=projekt&predefinedSearch=research_software&task=doSearchDirect&
https://gepris.dfg.de/gepris/suche/projekt/research_software?context=projekt&predefinedSearch=research_software&task=doSearchDirect&
https://de-rse.org/en/conf2019/
http://dx.doi.org/10.3847/2041-8213/ab0e85
http://www.ncbi.nlm.nih.gov/pubmed/31263262
http://dx.doi.org/10.1038/d41586-019-02046-0
http://dx.doi.org/10.5281/zenodo.2585783
http://www.ncbi.nlm.nih.gov/pubmed/16275915
http://dx.doi.org/10.1073/pnas.0507655102
http://www.ncbi.nlm.nih.gov/pmc/articles/1283832
https://sinews.siam.org/Details-Page/quo-vadis-scientific-software-1
http://www.ncbi.nlm.nih.gov/pubmed/26154002
http://dx.doi.org/10.1038/nbt.3240
https://sinews.siam.org/Details-Page/research-software-engineer-a-new-career-track
http://dx.doi.org/10.1109/MS.2020.2973362
http://dx.doi.org/10.5281/zenodo.495360
http://www.ncbi.nlm.nih.gov/pubmed/26978244
http://dx.doi.org/10.1038/sdata.2016.18
http://www.ncbi.nlm.nih.gov/pmc/articles/4792175
https://arxiv.org/abs/1908.05986
http://dx.doi.org/10.3233/DS-190026
http://dx.doi.org/10.5281/zenodo.1172988
http://dx.doi.org/10.2312/OS.HELMHOLTZ.003
http://dx.doi.org/10.1109/MC.2007.292
http://www.ncbi.nlm.nih.gov/pubmed/17185584
http://dx.doi.org/10.1126/science.314.5807.1875b
http://www.ncbi.nlm.nih.gov/pubmed/17473006
http://dx.doi.org/10.1110/ps.072888607
http://www.ncbi.nlm.nih.gov/pmc/articles/2206657
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1082.1609&rep=rep1&type=pdf
http://dx.doi.org/10.1109/SE4Science.2019.00010
http://dx.doi.org/10.7287/PEERJ.PREPRINTS.2169V2
http://www.ncbi.nlm.nih.gov/pubmed/20944712
http://dx.doi.org/10.1038/467775a

22. Barnes N: Publish your computer code: it is good enough. Nature. 2010;
467(7317): 753.
PubMed Abstract | Publisher Full Text 

23. Tse H: Computer code: more credit needed. Nature. 2010; 468(7320): 37.
PubMed Abstract | Publisher Full Text 

24. Hafer L, Kirkpatrick AE: Assessing Open Source Software As a Scholarly 
Contribution. Commun ACM. 2009; 52(12): 126–129.
Publisher Full Text 

25. Howison J, Bullard J: Software in the Scientific Literature: Problems with
Seeing, Finding, and Using Software Mentioned in the Biology Literature.
J Assoc Inf Sci Technol. 2016; 67(9): 137–2155.
Publisher Full Text 

26. Li K, Yan E, Feng Y: How Is R Cited in Research Outputs? Structure, Impacts, 
and Citation Standard. J Informetr. 2017; 11(4): 989–1002.
Publisher Full Text 

27. Li K, Chen PY, Yan E: Challenges of measuring software impact through 
citations: An examination of the lme4 R package. J Informetr. 2019; 13(1):
449–461.
Reference Source

28. Park H, Wolfram D: Research software citation in the Data Citation Index: 
Current practices and implications for research software sharing and 
reuse. J Informetr. 2019; 13(2): 574–582.
Publisher Full Text 

29. Pan X, Yan E, Cui M, et al.: How Important Is Software to Library 
and Information Science Research? A Content Analysis of Full-Text 
Publications. J Informetr. 2019; 13(1): 397–406.
Publisher Full Text 

30. Doerr A, Rusk N, Vogt N, et al.: Giving Software Its Due. Nat Methods. 2019;
16(3): 207–207.
PubMed Abstract | Publisher Full Text 

31. Druskat S: Software and Dependencies in Research Citation Graphs. Comput
Sci Eng. 2020; 22(2): 8–21.
Publisher Full Text | Free Full Text

32. Katz DS, Bouquin D, Hong NP, et al.: Software Citation Implementation 
Challenges. arXiv: 1905.08674. 2019.
Reference Source

33. Resnik DB, Morales M, Landrum R, et al.: Effect of impact factor and
discipline on journal data sharing policies. Account Res. 2019; 26(3):
139–156.
PubMed Abstract | Publisher Full Text | Free Full Text

34. Vandewalle P: Code Sharing Is Associated with Research Impact in Image 
Processing. Comput Sci Eng. 2012; 14(4): 42–47.
Publisher Full Text 

35. Venters CC, Jay C, Lau LMS, et al.: Software Sustainability: The Modern Tower 
of Babel. In:In: Proceedings of the Third International Workshop on Requirements
Engineering for Sustainable Systems Co-Located with 22nd International Conference
on Requirements Engineering (RE 2014), Karlskrona, Sweden: CEUR-WS. 2014;
1216: 7–12.
Reference Source

36. Goble C: Better Software, Better Research. IEEE Internet Comput. 2014; 18(5):
4–8.
Publisher Full Text 

37. Druskat S: A Proposal for the Measurement and Documentation of 
Research Software Sustainability in Interactive Metadata Repositories. In:In:
Proceedings of the Fourth Workshop on Sustainable Software for Science: Practice
and Experiences (WSSSPE4), Manchester, UK: CEUR-WS. 2016; 1686.
Reference Source

38. Katz DS: Fundamentals of Software Sustainability. 2018.
Reference Source

39. Akhmerov A, Cruz M, Drost N, et al.: Raising the Profile of Research Software:
Recommendations for Funding Agencies and Research Institutions. NWO
(The Netherlands Organisation for Scientific Research). 2019.
Reference Source

40. Casties R, Czmiel A, Damerow J, et al.: DH Research Software Engineers - For 
We Are Many. 2019.
Reference Source

41. Wilson G, Aruliah DA, Brown CT, et al.: Best practices for scientific computing.
PLoS Biol. 2014; 12(1): e1001745.
PubMed Abstract | Publisher Full Text | Free Full Text 

42. Stodden V, Miguez S: Best Practices for Computational Science: Software 
Infrastructure and Environments for Reproducible and Extensible 
Research. J Open Res Softw. 2014; 2(1): e21.
Publisher Full Text 

43. Wilson G, Bryan J, Cranston K, et al.: Good enough practices in scientific
computing. PLoS Comput Biol. 2017; 13(6): e1005510.
PubMed Abstract | Publisher Full Text | Free Full Text 

44. Li K, Lin X, Greenberg J: Software Citation, Reuse and Metadata 
Considerations: An Exploratory Study Examining LAMMPS. Proc Assoc Infor
Sci Tech. 2016; 53(1): 1–10.
Publisher Full Text 

45. Kuchinke W, Ohmann C, Stenzhorn H, et al.: Ensuring sustainability of 
software tools and services by cooperation with a research infrastructure.

Per Med. 2016; 13(1): 43–55.
PubMed Abstract | Publisher Full Text 

46. Loewe A, Seemann G, Wülfers EM, et al.: SuLMaSS - Sustainable Lifecycle 
Management for Scientific Software. E-Science-Tage 2019: Data to
Knowledge. 2019.
Publisher Full Text 

47. Druskat S, Krause T, Lüdeling A, et al.: Infrastrukturstrategien für 
nachhaltige Forschungssoftware in befristeten Projekten. deRSE19 -
Conference for Research Software Engineers in Germany. Potsdam, Germany.
2019.
Publisher Full Text

48. Morin A, Urban J, Sliz P: A Quick Guide to Software Licensing for the 
Scientist-Programmer. PLoS Comput Biol. 2012; 8(7): e1002598.
PubMed Abstract | Publisher Full Text | Free Full Text 

49. Katz DS, Ramnath R: Looking at Software Sustainability and Productivity 
Challenges from NSF. 2015. arXiv: 1508.03348.
Reference Source

50. DFG: Nachhaltigkeit von Forschungssoftware. 2016.
Reference Source

51. DFG: Qualitätssicherung von Forschungssoftware durch ihre nachhaltige 
Nutzbarmachung. 2019.
Reference Source

52. Chan Zuckerberg Initiative: Essential Open Source Software for Science.
Reference Source

53. Rodríguez-Sánchez F, Marwick B, Lazowska E, et al.: Academia’s failure to 
retain data scientists. Science. 2017; 355(6323): 357–358.
PubMed Abstract | Publisher Full Text 

54. Katz DS, Druskat S, Haines R, et al.: The State of Sustainable Research 
Software: Learning from the Workshop on Sustainable Software for Science: 
Practice and Experiences (WSSSPE5.1). J Open Res Softw. 2019; 7(1): 11.
Publisher Full Text 

55. Druskat S, Katz DS: Mapping the Research Software Sustainability Space.
In: 2018 IEEE 14th International Conference on E-Science (e-Science). 2018; 25–30.
Publisher Full Text 

56. Ye Y, Boyce RD, Davis MK, et al.: Open Source Software Sustainability Models: 
Initial White Paper from the Informatics Technology for Cancer Research 
Sustainability and Industry Partnership Work Group. 2019.
Reference Source

57. Hong NC: Minimal information for reusable scientific software. In: 2nd
Workshop on Sustainable Software for Science: Practice and Experiences (WSSSPE2).
2014.
Publisher Full Text 

58. Hasselbring W, Carr L, Hettrick S, et al.: From FAIR research data toward FAIR 
and open research software. it - Information Technology. 2020; 62(1): 39–47.
Publisher Full Text 

59. https://www.acm.org/publications/policies/artifact-review-badging.
60. Schlauch T, Meinel M, Haupt C: DLR Software Engineering Guidelines. 

Deutsches Zentrum für Luft- und Raumfahrt (DLR). 2018.
Publisher Full Text 

61. Gomez-Diaz T, Recio T: On the evaluation of research software: the CDUR 
procedure [version 2; peer review: 2 approved]. F1000Res. 2019; 8: 1353.
PubMed Abstract | Publisher Full Text | Free Full Text 

62. Fehr J, Heiland J, Himpe C, et al.: Best practices for replicability, 
reproducibility and reusability of computer-based experiments 
exemplified by model reduction software. AIMS Mathematics. 2016; 1(3):
261–281.
Publisher Full Text 

63. Jiménez RC, Kuzak M, Alhamdoosh M, et al.: Four simple recommendations 
to encourage best practices in research software [version 1; peer review: 3 
approved]. F1000Res. 2017; 6: pii: ELIXIR-876.
PubMed Abstract | Publisher Full Text | Free Full Text 

64. Hsu L, Hutchison VB, Langseth ML: Measuring sustainability of seed-funded 
earth science informatics projects. PLoS One. 2019; 14(10): e0222807.
PubMed Abstract | Publisher Full Text | Free Full Text 

65. Jackson M, Crouch S, Baxter R: Software Evaluation Guide. 2019.
Reference Source

66. rOpenSci; Anderson B, Chamberlain S, et al.: Software Peer Review, Why? 
What? In: rOpenSci Packages: Development, Maintenance, and Peer Review
Zenodo. 2019.
Publisher Full Text 

67. Lee BD: Ten simple rules for documenting scientific software. PLoS Comput
Biol. 2018; 14(12): e1006561.
PubMed Abstract | Publisher Full Text | Free Full Text 

68. Venters CC, Capilla R, Betz S, et al.: Software sustainability: Research and 
practice from a software architecture viewpoint. J Syst Software. 2018; 138:
174–188.
Publisher Full Text 

69. SSI: Writing and using a software management plan. 2019.
Reference Source

70. Johanson A, Hasselbring W: Software engineering for computational 
science: Past, present, future. Comput Sci Eng. 2018; 20(2): 90–109.
Publisher Full Text 

71.. Akhmerov A, Cruz M, Drost N, et al.: Making Research Software a First-Class 

Page 17 of 34

F1000Research 2021, 9:295 Last updated: 28 JAN 2021

http://www.ncbi.nlm.nih.gov/pubmed/20944687
http://dx.doi.org/10.1038/467753a
http://www.ncbi.nlm.nih.gov/pubmed/21048748
http://dx.doi.org/10.1038/468037a
http://dx.doi.org/10.1145/1610252.1610285
http://dx.doi.org/10.1002/asi.23538
http://dx.doi.org/10.1016/j.joi.2017.08.003
https://econpapers.repec.org/article/eeeinfome/v_3a13_3ay_3a2019_3ai_3a1_3ap_3a449-461.htm
http://dx.doi.org/10.1016/j.joi.2019.03.005
http://dx.doi.org/10.1016/j.joi.2019.02.002
http://www.ncbi.nlm.nih.gov/pubmed/30814703
http://dx.doi.org/10.1038/s41592-019-0350-x
http://dx.doi.org/10.1109/MCSE.2019.2952840
https://arxiv.org/abs/1906.06141
https://ui.adsabs.harvard.edu/abs/2019arXiv190508674K/abstract
http://www.ncbi.nlm.nih.gov/pubmed/30841755
http://dx.doi.org/10.1080/08989621.2019.1591277
http://www.ncbi.nlm.nih.gov/pmc/articles/6533124
http://dx.doi.org/10.1109/MCSE.2012.63
http://eprints.whiterose.ac.uk/84941/1/Venters.pdf
http://dx.doi.org/10.1109/MIC.2014.88
https://arxiv.org/pdf/1608.04529.pdf
https://danielskatzblog.wordpress.com/2018/09/26/fundamentals-of-software-sustainability/
https://zenodo.org/record/3378572/files/Raising the Profile of Research Software.pdf?download=1
http://web.archive.org/
http://www.ncbi.nlm.nih.gov/pubmed/24415924
http://dx.doi.org/10.1371/journal.pbio.1001745
http://www.ncbi.nlm.nih.gov/pmc/articles/3886731
http://dx.doi.org/10.5334/jors.ay
http://www.ncbi.nlm.nih.gov/pubmed/28640806
http://dx.doi.org/10.1371/journal.pcbi.1005510
http://www.ncbi.nlm.nih.gov/pmc/articles/5480810
http://dx.doi.org/10.1002/pra2.2016.14505301072
http://www.ncbi.nlm.nih.gov/pubmed/29749867
http://dx.doi.org/10.2217/pme.15.43
http://dx.doi.org/10.11588/heidok.00026843
http://dx.doi.org/10.6084/m9.figshare.11277764.v1
http://www.ncbi.nlm.nih.gov/pubmed/22844236
http://dx.doi.org/10.1371/journal.pcbi.1002598
http://www.ncbi.nlm.nih.gov/pmc/articles/3406002
https://www.researchgate.net/publication/281084477_Looking_at_Software_Sustainability_and_Productivity_Challenges_from_NSF
https://www.dfg.de/foerderung/info_wissenschaft/2016/info_wissenschaft_16_71/
https://www.dfg.de/service/error/404.jsp?redirectedURL=/foerderung/info_wissenschaft/info_wissenschaft_19_44/index.jsp
https://web.archive.org/web/20191213112602/chanzuckerberg.com/rfa/essential-open-source-software-for-science
http://www.ncbi.nlm.nih.gov/pubmed/28126779
http://dx.doi.org/10.1126/science.aam6116
http://dx.doi.org/10.5334/jors.242
http://dx.doi.org/10.1109/eScience.2018.00014
https://arxiv.org/ftp/arxiv/papers/1912/1912.12371.pdf
http://dx.doi.org/10.6084/m9.figshare.1112528.v1
http://dx.doi.org/10.1515/itit-2019-0040
https://www.acm.org/publications/policies/artifact-review-badging
http://dx.doi.org/10.5281/ZENODO.1344612
http://www.ncbi.nlm.nih.gov/pubmed/31814965
http://dx.doi.org/10.12688/f1000research.19994.2
http://www.ncbi.nlm.nih.gov/pmc/articles/6883399
http://dx.doi.org/10.3934/Math.2016.3.261
http://www.ncbi.nlm.nih.gov/pubmed/28751965
http://dx.doi.org/10.12688/f1000research.11407.1
http://www.ncbi.nlm.nih.gov/pmc/articles/5490478
http://www.ncbi.nlm.nih.gov/pubmed/31644537
http://dx.doi.org/10.1371/journal.pone.0222807
http://www.ncbi.nlm.nih.gov/pmc/articles/6808333
https://www.software.ac.uk/resources/guides-everything/software-evaluation-guide
http://dx.doi.org/10.5281/zenodo.2554759
http://dx.doi.org/10.5281/zenodo.2554759
http://www.ncbi.nlm.nih.gov/pubmed/30571677
http://dx.doi.org/10.1371/journal.pcbi.1006561
http://www.ncbi.nlm.nih.gov/pmc/articles/6301674
http://dx.doi.org/10.1016/j.jss.2017.12.026
https://www.software.ac.uk/resources/guides/software-management-plans
http://dx.doi.org/10.1109/MCSE.2018.021651343

Citizen in Research. 2019.
Publisher Full Text

72. Hong NC:. Hong NC: Making Software A First-Class Citizen. 2019.
Publisher Full Text

73. Vereinigung der Kanzlerinnen und Kanzler der Universit�ten Deutschlands:. Vereinigung der Kanzlerinnen und Kanzler der Universit�ten Deutschlands:
Bayreuther Erklärung zu befristeten Beschäftigungsverhältnissen mit 
wissenschaftlichem und künstlerischem Personal in Universitäten. 2019.
Reference Source

74.. Katz DS, McInnes LC, Bernholdt DE, et al.: Community Organizations: 
Changing the Culture in Which Research Software Is Developed and 
Sustained. Comput Sci Eng. 2019; 21(2): 8–24.
Publisher Full Text 

75. Science Guide: Room for everyone’s talent. 2019.
Reference Source

76. Carver JC, Hong NPC, Thiruvathukal GK: Software engineering for science.
CRC Press, 2016; 274.
Reference Source

77. Iaffaldano G, Steinmacher I, Calefato F, et al.: Why do developers take breaks 
from contributing to OSS projects? A preliminary analysis. arXiv: 1903.09528.
2019.
Reference Source

78. Allen A, Aragon C, Becker C, et al.: Engineering Academic Software (Dagstuhl 
Perspectives Workshop 16252). Dagstuhl Manifestos 2017; 6(1): 1–20.
Reference Source

79. Bundesministerium der Justiz und für Verbraucherschutz: Gesetz über 
befristete Arbeitsverträge in der Wissenschaft. 2017.
Reference Source

80. Chang V, Mills H, Newhouse S: From Open Source to long-term 
sustainability: Review of Business Models and Case studies. In: Proceedings
of the UK e-Science All Hands Meeting 2007 University of Edinburgh/University
of Glasgow (acting through the NeSC) 2007.
Reference Source

81. Aartsen W, Peeters P, Wagers S, et al.: Getting Digital Assets from Public-
Private Partnership Research Projects through “The Valley of Death,” and 
Making Them Sustainable. Front Med (Lausanne). 2018; 5: 65.
PubMed Abstract | Publisher Full Text | Free Full Text 

82. Gabella C, Durinx C, Appel R: Funding knowledgebases: Towards a 
sustainable funding model for the UniProt use case [version 2; peer 
review: 3 approved]. F1000Res. 2018; 6: pii: ELIXIR-2051.
PubMed Abstract | Publisher Full Text | Free Full Text 

83. Ison J, Rapacki K, Ménager H, et al.: Tools and data services registry: a 
community effort to document bioinformatics resources. Nucleic Acids Res.
2016; 44(D1): D38–D47.
PubMed Abstract | Publisher Full Text | Free Full Text 

84. Struck A: Research Software Discovery: An Overview. In: 2018 IEEE 14th
International Conference on e-Science IEEE. 2018.
Publisher Full Text 

85. Druskat S, Spaaks JH, Chue Hong N, et al.: Citation File Format (CFF) - 
Specifications. 2019.
Publisher Full Text 

86. re3data.org – Registry of Research Data Repositories.
Publisher Full Text

87. Mönnich MW: KVK - a meta catalog of libraries. LIBER Quarterly. 2001; 11(2):
121–127.
Publisher Full Text 

88. Kunze J, Scancella J, Adams C, et al.: The bagIt file packaging format (v1. 0).
RFC Editor. 2018; 8493.

89. Bundesministerium der Justiz und für Verbraucherschutz, § 69a subsection 
(1) UrhG. 2014.
Reference Source

90. Bundesministerium der Justiz und für Verbraucherschutz, § 69b UrhG.
2014.
Reference Source

91. Struck A, Loewe A, Achhammer E, et al.: A Guide for Publishing, Using, and 
Licensing Research Software in Germany. Zenodo. 2020.
http://www.doi.org/10.5281/zenodo.4327147

Page 18 of 34

F1000Research 2021, 9:295 Last updated: 28 JAN 2021

http://dx.doi.org/10.5281/zenodo.2647436
http://dx.doi.org/10.6084/m9.figshare.9862835.v1
https://www.uni-kanzler.de/fileadmin/user_upload/05_Publikationen/2017_-_2010/20190919_Bayreuther_Erklaerung_der_Universitaetskanzler_final.pdf
http://dx.doi.org/10.1109/MCSE.2018.2883051
https://www.scienceguide.nl/wp-content/uploads/2019/11/283.002-Erkennen-en-Waarderen-Position-Paper_EN_web.pdf
https://www.routledge.com/Software-Engineering-for-Science/Carver-Hong-Thiruvathukal/p/book/9781498743853
https://arxiv.org/abs/1903.09528
https://drops.dagstuhl.de/opus/volltexte/2017/7146/pdf/dagman-v006-i001-p001-16252.pdf
https://www.gesetze-im-internet.de/wisszeitvg
http://eprints.leedsbeckett.ac.uk/649/
http://www.ncbi.nlm.nih.gov/pubmed/29594123
http://dx.doi.org/10.3389/fmed.2018.00065
http://www.ncbi.nlm.nih.gov/pmc/articles/5855043
http://www.ncbi.nlm.nih.gov/pubmed/29333230
http://dx.doi.org/10.12688/f1000research.12989.2
http://www.ncbi.nlm.nih.gov/pmc/articles/5747334
http://www.ncbi.nlm.nih.gov/pubmed/26538599
http://dx.doi.org/10.1093/nar/gkv1116
http://www.ncbi.nlm.nih.gov/pmc/articles/4702812
http://dx.doi.org/10.1109/escience.2018.00016
http://dx.doi.org/10.5281/zenodo.3515946
http://dx.doi.org/10.5281/zenodo.3515946
http://dx.doi.org/10.17616/R3D
http://dx.doi.org/10.18352/lq.7638
https://www.gesetze-im-internet.de/urhg/__69a.html
https://www.gesetze-im-internet.de/urhg/__69b.html
http://www.doi.org/10.5281/zenodo.4327147

Open Peer Review
Current Peer Review Status:

Version 2

Reviewer Report 28 January 2021

https://doi.org/10.5256/f1000research.31504.r78211

© 2021 Hasselbring W. This is an open access peer review report distributed under the terms of the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

Willi Hasselbring
Software Engineering Group, Kiel University, Kiel, Germany

Thanks for delivering this revised version of your opinion article. I highly appreciate that you
addressed all the concerns I had with the previous version, such that I can now fully approve your
paper!

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Software Engineering

I confirm that I have read this submission and believe that I have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard.

Version 1

Reviewer Report 01 June 2020

https://doi.org/10.5256/f1000research.25640.r62872

© 2020 Bast R. This is an open access peer review report distributed under the terms of the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

Radovan Bast
Department of Information Technology, UiT The Arctic University of Norway, Tromsø, Norway

In "An environment for sustainable research software in Germany and beyond: current state, open
challenges, and call for action" the authors identify challenges for research software sustainability

Page 19 of 34

F1000Research 2021, 9:295 Last updated: 28 JAN 2021

https://doi.org/10.5256/f1000research.31504.r78211
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0001-6625-4335
https://doi.org/10.5256/f1000research.25640.r62872
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0002-7658-1847

in Germany and beyond.

They examine the current state of research software sustainability and challenges in motivating
sustainable research software development, selection criteria for funding, personnel, funding,
infrastructure, and legal aspects, and offer recommendations for addressing these challenges.
These sections are accompanied and with a story using a fictional character Kim which helps to
relate these aspects to typical career stages of a research software engineer.

The article is thoroughly researched, well-written, and offers an excellent overview of the
challenges when building an environment for sustainable research software. Most of the
discussed challenges and recommendations carry beyond Germany and are relevant and
transferable to other countries.

Below I give few (minor) suggestions for consideration when improving the manuscript.

Regarding the list of challenges under "Why sustainable research software in the first place?"
(pages 5 and 6):

Infrastructure issues: One design choice that often limits the use or usability of local
infrastructure resources is that they are often bound to institutional user accounts and thus
limit collaboration possibilities with collaborators in other institutions and countries. On the
other hand, pooling of infrastructure resources which could enable collaboration across
organizations can be limited by lack of authentication and authorization infrastructure (AAI)
or legal constraints. Later in the paper the authors indeed mention AAI (page 12) but this
could already be pointed out and connected earlier.

○

Legal issues: Not only licensing is an issue but legal constraints or uncertainty about legal
boundaries and identity federation can also limit the deployment of infrastructure services.
Often the deployment and operation of infrastructure services is given to technical teams
who may lack the legal support or expertise to clarify legal and privacy terms for the
storage of data and processing of data.

○

Funding issues: The challenge is not only that funding is scarce but also that it does not
align well with pricing models of cloud infrastructure providers. It can be easier for research
groups to spend a larger chunk of the budget towards the end of a year for hardware
compared to pay possibly relatively modest monthly fees for a cloud service, which however
may not fit into the budget forms. These budget constraints may also limit the possibility of
pooling resources and sharing them with other research groups. Software cloud
infrastructure is often not considered at all in the proposal. There is also a resistance among
some of my research colleagues to pay 20-50 USD/ month for an infrastructure service
which is sometimes solved by reinventing the service locally "for free".

○

Another mismatch between traditional funding models and support of software which
"must continue to exist" to be sustainable (page 5), is the experience that it can take months
or years until the software is picked up by other groups and contributions and questions
start to roll in. But by that time the funding of the project stopped, the developer (team)
may have already moved on to other positions and projects, and may not have the time to
react and help, even though they still may have interest and the knowledge. Our traditional
funding models consider the software to be "done" by the end of the project.

○

Page 20 of 34

F1000Research 2021, 9:295 Last updated: 28 JAN 2021

Selection criteria for "How to decide which software to sustain?" (page 9):
The authors mention "usage and impact", "software quality", as well as "maturity". But I
would like to see also "openness and transparency" among these. The reason is that we can
expect the research community to adapt to these or any metrics and we will over time
observe what we measure. Any set of metrics could be criticized as to some extent being
arbitrary but the advantage of including "openness and transparency" is that the
community as whole would benefit from such a metric [Enrico Glerean, "Responsible
conduct of research and questionable research practices", presentation, slide 471].

○

Regarding "Who sustains research software?":
The authors discuss the lack of recognition and awareness, as well as lack of career
opportunities. It is also about respect and I was happy to see the sentence: "Not all
researchers that think of themselves as RSEs pursue a faculty position as their main career
goal." I have experienced that RSEs are sometimes regarded as those who somehow
"failed" to obtain a faculty position whereas many RSEs have chosen this position over a
faculty position because it was a better fit for their career goals. This misunderstanding can
lead to a lack of respect towards this position and this career choice and can lead to
excellent personnel leaving the academic environment towards commercial employment,
possibly not primarily for financial reasons but sometimes to be more respected and
recognized.

○

Archiving and software preservation (page 13:
The authors mention Docker but also Singularity should be mentioned as a tool since it is
getting traction in particular on many-user systems such as higher performance computing
clusters.

○

Legal aspects (page 14):
Re-licensing is mentioned in the story box and the text starts by pointing out that licensing
is often not considered early enough in the project. Indeed re-licensing later in the project
can be not only legally, but also organizationally very tricky, in particular for projects which
developed over many years and involved many contributors in different organizations. This
could be pointed out in the text as additional motivation to consider these very early in the
project.

○

I very much like the recommendation of providing a legal help desk for research groups to
avoid the problem that out of uncertainty and fear of making a legal mistake some research
groups end up not choosing any license at all which may limit further reuse of the software.

○

The manuscript presents a decision tree for contributors (Figure 1) and also discusses
contributor license agreements. It could be useful to point out that without clear policies or
legal help desks, individuals or organizations may be hesitant to contribute to a project
because they may not feel confident having enough knowledge or authority to sign such
agreements and too many legal steps and question can also raise the barrier to contribute,
in particular for smaller projects. Also here clear guidelines and a support desk can help
removing these barriers.

○

References
1. Enrico Glerean: Responsible conduct of research and questionable research practices. 2018.
Reference Source

Page 21 of 34

F1000Research 2021, 9:295 Last updated: 28 JAN 2021

jar:file:/work/f1000research/webapps/ROOT/WEB-INF/lib/service-1.0-SNAPSHOT.jar!/com/f1000research/service/export/pdf/#rep-ref-62872-1
https://doi.org/10.6084/m9.figshare.10303487.v1

Is the topic of the opinion article discussed accurately in the context of the current
literature?
Yes

Are all factual statements correct and adequately supported by citations?
Yes

Are arguments sufficiently supported by evidence from the published literature?
Yes

Are the conclusions drawn balanced and justified on the basis of the presented arguments?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: computational chemistry, research software engineering

I confirm that I have read this submission and believe that I have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard.

Author Response 17 Dec 2020
Axel Loewe, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany

We thank you for the thorough review and constructive feedback regarding the manuscript.
Below, we address the issues raised by you point-by-point. Our responses are set in italics.

Regarding the list of challenges under "Why sustainable research software in the first
place?" (pages 5 and 6):
Infrastructure issues: One design choice that often limits the use or usability of local
infrastructure resources is that they are often bound to institutional user accounts and thus
limit collaboration possibilities with collaborators in other institutions and countries. On the
other hand, pooling of infrastructure resources which could enable collaboration across
organizations can be limited by lack of authentication and authorization infrastructure (AAI)
or legal constraints. Later in the paper the authors indeed mention AAI (page 12) but this
could already be pointed out and connected earlier.
We thank the reviewer for their suggestion, and have included the mentioned issues in the
respective list in the section “Why sustainable research software in the first place?”.

Legal issues: Not only licensing is an issue but legal constraints or uncertainty about legal
boundaries and identity federation can also limit the deployment of infrastructure services.
Often the deployment and operation of infrastructure services is given to technical teams
who may lack the legal support or expertise to clarify legal and privacy terms for the
storage of data and processing of data.
We thank the reviewer for their suggestion, and have included the mentioned issues in the
respective list in the section “Why sustainable research software in the first place?”

Page 22 of 34

F1000Research 2021, 9:295 Last updated: 28 JAN 2021

Funding issues: The challenge is not only that funding is scarce but also that it does not
align well with pricing models of cloud infrastructure providers. It can be easier for research
groups to spend a larger chunk of the budget towards the end of a year for hardware
compared to pay possibly relatively modest monthly fees for a cloud service, which however
may not fit into the budget forms. These budget constraints may also limit the possibility of
pooling resources and sharing them with other research groups. Software cloud
infrastructure is often not considered at all in the proposal. There is also a resistance among
some of my research colleagues to pay 20-50 USD/ month for an infrastructure service
which is sometimes solved by reinventing the service locally "for free".
Another mismatch between traditional funding models and support of software which
"must continue to exist" to be sustainable (page 5), is the experience that it can take months
or years until the software is picked up by other groups and contributions and questions
start to roll in. But by that time the funding of the project stopped, the developer (team)
may have already moved on to other positions and projects, and may not have the time to
react and help, even though they still may have interest and the knowledge. Our traditional
funding models consider the software to be "done" by the end of the project.
We thank the reviewer for these two comments. To address them, we have extended the “Funding
issues” list item with a discussion of these issues.

Selection criteria for "How to decide which software to sustain?" (page 9):
The authors mention "usage and impact", "software quality", as well as "maturity". But I
would like to see also "openness and transparency" among these. The reason is that we can
expect the research community to adapt to these or any metrics and we will over time
observe what we measure. Any set of metrics could be criticized as to some extent being
arbitrary but the advantage of including "openness and transparency" is that the
community as whole would benefit from such a metric [Enrico Glerean, "Responsible
conduct of research and questionable research practices", presentation, slide 471].
We thank the reviewer for this suggestion and realized that indeed most aspects in this section (6-
10, 12, 13) are actually related to openness and transparency. Therefore, we changed the title of
this section to “Software transparency and quality”.

Regarding "Who sustains research software?":
The authors discuss the lack of recognition and awareness, as well as lack of career
opportunities. It is also about respect and I was happy to see the sentence: "Not all
researchers that think of themselves as RSEs pursue a faculty position as their main career
goal." I have experienced that RSEs are sometimes regarded as those who somehow
"failed" to obtain a faculty position whereas many RSEs have chosen this position over a
faculty position because it was a better fit for their career goals. This misunderstanding can
lead to a lack of respect towards this position and this career choice and can lead to
excellent personnel leaving the academic environment towards commercial employment,
possibly not primarily for financial reasons but sometimes to be more respected and
recognized.
We fully agree with the reviewer and thank them for the renewed confirmation that this is seen as
problematic not only by the authors.

Archiving and software preservation (page 13):
The authors mention Docker but also Singularity should be mentioned as a tool since it is

Page 23 of 34

F1000Research 2021, 9:295 Last updated: 28 JAN 2021

getting traction in particular on many-user systems such as higher performance computing
clusters.
We thank the reviewer for this suggestion and now also mention Singularity and GUIX. However,
we are not aiming for an exhaustive list, as options change dynamically and might even be
specific to certain research communities.

Legal aspects (page 14):
Re-licensing is mentioned in the story box and the text starts by pointing out that licensing
is often not considered early enough in the project. Indeed re-licensing later in the project
can be not only legally, but also organizationally very tricky, in particular for projects which
developed over many years and involved many contributors in different organizations. This
could be pointed out in the text as additional motivation to consider these very early in the
project.
We thank the reviewer to point this out and it also nicely fits into the message of increasing the
awareness of legal aspects early on in the project. We have added the suggested sentence in the
manuscript.

I very much like the recommendation of providing a legal help desk for research groups to
avoid the problem that out of uncertainty and fear of making a legal mistake some research
groups end up not choosing any license at all which may limit further reuse of the software.
Thank you for supporting this idea. We have further included your idea of avoiding any license
out of a fear to make legal mistakes.

The manuscript presents a decision tree for contributors (Figure 1) and also discusses
contributor license agreements. It could be useful to point out that without clear policies or
legal help desks, individuals or organizations may be hesitant to contribute to a project
because they may not feel confident having enough knowledge or authority to sign such
agreements and too many legal steps and question can also raise the barrier to contribute,
in particular for smaller projects. Also here clear guidelines and a support desk can help
removing these barriers.
We have decided to take the decision trees out of the manuscript to strengthen our point of
publishing software under a FLOSS license. Instead, we published the decision trees together with
documentation templates under a Creative Commons license via Zenodo:
https://zenodo.org/record/4327148#.X9n6ui337OQ. In order to strengthen the point you
addressed, we added some more details related to infrastructural investment.

Competing Interests: No competing interests were disclosed.

Reviewer Report 13 May 2020

https://doi.org/10.5256/f1000research.25640.r62873

© 2020 Hasselbring W. This is an open access peer review report distributed under the terms of the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

Page 24 of 34

F1000Research 2021, 9:295 Last updated: 28 JAN 2021

https://zenodo.org/record/4327148#.X9n6ui337OQ
https://doi.org/10.5256/f1000research.25640.r62873
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Willi Hasselbring
Software Engineering Group, Kiel University, Kiel, Germany

The authors describe the state of the practice and current challenges for research software
sustainability and suggest measures towards improvements that can solve these challenges. In
particular, they propose to fund a German Software Sustainability Institute. The paper is the result
of a community effort, with work undertaken during two workshops and subsequent collaborative
work across the larger RSE community in Germany.

The UK Software Sustainability Institute has already been established during a decade (
https://www.software.ac.uk/blog/2020-05-05-impact-institute-10-years). Thus, the idea of such an
institute is not new, but it makes sense to take a specific look at the German situation. Besides
universities, the German states (local and in particular federal) fund significant large-scale
research associations (Helmholtz/DLR, Max-Planck, Leibniz). This is not the case for most other
European states, at least not with a similar scale. Another specialty is the lack of long-term funding
for research software engineers, as discussed by the authors.

The paper is well-written and easy to read. I like the boxed story of Kim’s career path.

However, I’ve some suggestions for improving the paper:

Concerning the statement “In order to support research, a sustainable software must be
correct”, I suggest to include a short discussion of the test oracle problem for scientific
software (see for instance https://doi.org/10.1109/SECSE.2013.66150991).

○

Concerning the discussion of “The list of criteria presented in this section could be the basis
for a structured review process…” I suggest to include two additional initiatives for software
review. The first is artifact evaluation in computer science conferences (the process is
explained in https://doi.org/10.1515/itit-2019-00402). The second is the SPEC Research
Group’s review process of tools for quantitative system evaluation and analysis
(https://research.spec.org/tools/submission.html).

○

The authors write “We also argue that truly sustainable research software must ideally be
published under a Free/Libre Open Source Software (FLOSS) license, and follow an open
development model…” what I fully support (see for instance https://doi.org/10.1515/itit-2019-0040
2). However, later under the section heading “Legal aspects” this requirement is thwarted. I fully
agree that legal aspects have to be considered, but the general bias of this section seems to be on
commercial licensing of research software. For instance, the decision tree in Figure 1 starts with
the question “Licensing planned?”. I assume that commercial licensing is meant, but this is not
clear since the figures are not explained in the paper. Instead, the process should start with open
sourcing the software. If licenses such as Apache or MIT are applied, the research institutions may
later still commercialize the software if appropriate. Such open source licensing is also beneficial
for start-ups, that intend to provide professional services for the software.

My experience with technology transfer units of German universities and research institutes is
that they do not understand the ideas of open source business models (see for instance
https://doi.org/10.1109/MC.2019.28981633). Their focus is on patents and commercializing
licenses, sometimes also on start-ups. Conversely, in the software industry, one major motivation
for open sourcing software is on improving the quality of software. I cite from
https://doi.org/10.1109/ICSAW.2017.114 : “the open-source approach has some psychological

Page 25 of 34

F1000Research 2021, 9:295 Last updated: 28 JAN 2021

http://orcid.org/0000-0001-6625-4335
https://www.software.ac.uk/blog/2020-05-05-impact-institute-10-years
jar:file:/work/f1000research/webapps/ROOT/WEB-INF/lib/service-1.0-SNAPSHOT.jar!/com/f1000research/service/export/pdf/#rep-ref-62873-1
https://doi.org/10.1515/itit-2019-0040
jar:file:/work/f1000research/webapps/ROOT/WEB-INF/lib/service-1.0-SNAPSHOT.jar!/com/f1000research/service/export/pdf/#rep-ref-62873-2
https://doi.org/10.1515/itit-2019-0040
jar:file:/work/f1000research/webapps/ROOT/WEB-INF/lib/service-1.0-SNAPSHOT.jar!/com/f1000research/service/export/pdf/#rep-ref-62873-2
https://doi.org/10.1109/MC.2019.2898163
jar:file:/work/f1000research/webapps/ROOT/WEB-INF/lib/service-1.0-SNAPSHOT.jar!/com/f1000research/service/export/pdf/#rep-ref-62873-3
https://doi.org/10.1109/ICSAW.2017.11
jar:file:/work/f1000research/webapps/ROOT/WEB-INF/lib/service-1.0-SNAPSHOT.jar!/com/f1000research/service/export/pdf/#rep-ref-62873-4

effects: Developers show a tendency to apply higher quality standards if they know that the code
will be publicly available.” For sustainability, quality is an important property of software.

The Figures 1-4 do more harm than good. They are daunting to researchers who intend to publish
their code open source. These figures should be removed from the paper, they are useless
without proper explanation.

I suggest that the authors focus in the present paper on their main message (request for funding
a German Software Sustainability Institute, which I fully support). Figures 1-4 could be moved to a
separate paper, enriched with proper explanation.

References
1. Kanewala U, Bieman JM: Techniques for testing scientific programs without an oracle. IEEE
Xplore. 2013. Publisher Full Text
2. Hasselbring W, Carr L, Hettrick S, Packer H, et al.: From FAIR research data toward FAIR and
open research software. it - Information Technology. 2020; 62 (1): 39-47 Publisher Full Text
3. Riehle D: The Innovations of Open Source. Computer. 2019; 52 (4): 59-63 Publisher Full Text
4. Hasselbring W, Steinacker G: Microservice Architectures for Scalability, Agility and Reliability in
E-Commerce. IEEE. 2017. Publisher Full Text
5. Tools Submission Portal. SPEC Research Group. Reference Source

Is the topic of the opinion article discussed accurately in the context of the current
literature?
Yes

Are all factual statements correct and adequately supported by citations?
Yes

Are arguments sufficiently supported by evidence from the published literature?
Partly

Are the conclusions drawn balanced and justified on the basis of the presented arguments?
Partly

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Software Engineering

I confirm that I have read this submission and believe that I have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard, however I have
significant reservations, as outlined above.

Author Response 17 Dec 2020
Axel Loewe, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany

Thank you for the thorough review and constructive feedback regarding our manuscript. Below,

Page 26 of 34

F1000Research 2021, 9:295 Last updated: 28 JAN 2021

https://doi.org/10.1109/SECSE.2013.6615099
https://doi.org/10.1515/itit-2019-0040
https://doi.org/10.1109/MC.2019.2898163
https://doi.org/10.1109/ICSAW.2017.11
https://research.spec.org/tools/submission.html

we address the issues raised by you point-by-point. Our responses are set in italics.

Concerning the statement “In order to support research, a sustainable software must be
correct”, I suggest to include a short discussion of the test oracle problem for scientific
software (see for instance https://doi.org/10.1109/SECSE.2013.66150991).
We thank the reviewer for this suggestion, and included a brief discussion of the test oracle
problem as suggested, and additionally of further challenges to verification and validation, such
as large configuration spaces and heterogeneous data (as discussed in e.g.
https://doi.org/10.1109/SE4Science.2019.00010), and have suggested to implement the solutions
mentioned in the literature.

Concerning the discussion of “The list of criteria presented in this section could be the basis
for a structured review process…” I suggest to include two additional initiatives for software
review. The first is artifact evaluation in computer science conferences (the process is
explained in https://doi.org/10.1515/itit-2019-00402). The second is the SPEC Research
Group’s review process of tools for quantitative system evaluation and analysis (
https://research.spec.org/tools/submission.html).
We thank the reviewer for this suggestion and included the artifact review approach in the
introduction to the criteria section. The aspects of repeatability, reproducibility, and replicability
are aimed more at the results of computational research rather than research software itself, we
feel. Therefore, we didn’t include specific criteria in the list suggested to be used when evaluating
research software for sustained funding.
While the SPEC submission process is very clear, we could not find any concrete criteria applied
during the review (except for requirements regarding the license).

The authors write “We also argue that truly sustainable research software must ideally be
published under a Free/Libre Open Source Software (FLOSS) license, and follow an open
development model…” what I fully support (see for instance https://doi.org/10.1515/itit-
2019-00402). However, later under the section heading “Legal aspects” this requirement is
thwarted. I fully agree that legal aspects have to be considered, but the general bias of this
section seems to be on commercial licensing of research software. For instance, the
decision tree in Figure 1 starts with the question “Licensing planned?”. I assume that
commercial licensing is meant, but this is not clear since the figures are not explained in the
paper. Instead, the process should start with open sourcing the software. If licenses such as
Apache or MIT are applied, the research institutions may later still commercialize the
software if appropriate. Such open source licensing is also beneficial for start-ups that
intend to provide professional services for the software.
My experience with technology transfer units of German universities and research institutes
is that they do not understand the ideas of open source business models (see for instance
https://doi.org/10.1109/MC.2019.28981633). Their focus is on patents and commercializing
licenses, sometimes also on start-ups. Conversely, in the software industry, one major
motivation for open sourcing software is on improving the quality of software. I cite from
https://doi.org/10.1109/ICSAW.2017.114 : “the open-source approach has some
psychological effects: Developers show a tendency to apply higher quality standards if they
know that the code will be publicly available.” For sustainability, quality is an important
property of software.
As further detailed below, we have moved the decision trees out of this manuscript as we see the

Page 27 of 34

F1000Research 2021, 9:295 Last updated: 28 JAN 2021

https://doi.org/10.1109/SECSE.2013.66150991
https://doi.org/10.1109/SE4Science.2019.00010
https://research.spec.org/tools/submission.html

problems and agree to your arguments. We like your suggested aspect of commercialization of
FLOSS licensed software and included this aspect in the manuscript.

The Figures 1-4 do more harm than good. They are daunting to researchers who intend to
publish their code open source. These figures should be removed from the paper, they are
useless without proper explanation.
I suggest that the authors focus in the present paper on their main message (request for
funding a German Software Sustainability Institute, which I fully support). Figures 1-4 could
be moved to a separate paper, enriched with proper explanation.
We thank the reviewer for this suggestion. Our initial thought was to place these decision trees in
the supplemental material but did not realize that this is not the policy of f1000. The editorial
team moved them into the main article. This is the reason why the decision trees appeared
without additional information in the manuscript. We have now decided to take the Figures out
and have published them together with documentation templates in a separate report via
Zenodo unde a Creative Commons license, see
https://zenodo.org/record/4327148#.X9n6ui337OQ. This report is now cited in the F1000
manuscript.

Competing Interests: No competing interests were disclosed.

Comments on this article
Version 1

Author Response 17 Dec 2020
Axel Loewe, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany

We thank you for your thorough review and constructive feedback regarding the manuscript. Below, we
address the issues raised by you point-by-point. Our responses are set in italics.

Dear Mr. Anzt, dear Mr. Loewe, dear Mr. Bach, dear Mr. Seemann, dear Elke, and dear Sven, as well
as dear authors as yet unknown to me,
I am working at KIT in the field of Innovation and Relations Management, especially Licensing of
Intellectual Property Rights from KIT to Free Maket Economy. My particual focus is to Out-license
Computerprograms to Third Parties and Industry.
Thank you for your great efforts with your extensive and intersting article including the nicely
written and ever-recurring story of Kim.
Your FLOSS-based approach for sustainable software devlopment is holding immense savings
potential. That’s great.
Following are my comments to your article from the perspective of a TTO license manager, typically
supporting RSEs in cases of proprietary licensing e.g. to spin-offs or industrial companies.
Hence, most of my comments might go in a slightly different direction than the main focus of your
article, but in my point of view these comments are complementary. Hence, I wonder what you

Page 28 of 34

F1000Research 2021, 9:295 Last updated: 28 JAN 2021

https://zenodo.org/record/4327148#.X9n6ui337OQ

think of them. Looking forward to your opinion and you feedback to my comments, if you like also
gladly by telephone
Best regards
Dirk Feuchter
Thank you very much for your comments regarding distribution issues, IP compliance and
commercialization. We have generally subsumed these issues under the more general term “availability”.
We believe that this implies that software is legally available only if it is licensed, either under an open
source license or proprietarily. This impacts possible modes of distribution, but does not concern actual
(commercial) distribution processes. As a community of Research Software Engineers, we strongly believe
that publicly funded research software should be F(L)OSS-licensed per default, although we recognize
that this may not always be possible (and hence have weakened “must” to “should” as you suggested in
the respective paragraph under “Why sustainable research software in the first place”). We have further
avoided any changes to the text that would weaken this point, as we see no central obstacles to making
publicly funded research software open source in general. Contrarily, we do not accept that IP should
override public interest (both intellectually and fiscally) here, some corner cases excluded. Concurrently,
we purposefully do not focus on marketability and commercialization of research software. Instead, we
see commercial opportunities, e.g., in the provision of services for a research software product, whereas
the product itself should remain free and open source.
Thank you, also, for notifying us of some errors in the text itself and the figures, which we are fixing in
the next version.
Below, we address some of your concrete suggestions in more detail:

Abstract:
I would like to suggest to extend
„Research software must be sustainable in order to
understand, replicate, reproduce, and…“
as follows
„Research software must be sustainable in order to
understand, replicate, reproduce, distribute and…“
We thank you for the comment. The development of research software does not focus on distribution of
software results, which is more of a business aspect. The availability, regardless of the actual distribution,
is noted in the next sentence of the abstract.

Abstract:
I would like to suggest to extend
„In other words, software must be available, discoverable, usable, and adaptable to new needs,
both now and in the future.“
as follows
„In other words, software must be available, (IP-/FLOSS)compliant*, discoverable, usable, and
adaptable to new needs, both now and in the future.“
*By „(IP-/FLOSS)compliant“ I mean
in compliance
with intellectual property of third-party suppliers,
with the terms of free/libre open source licenses and with the aim to protect own intellectual
property from unintended disclosure
We thank you for the comment. As a community of RSEs we are aiming for FLOSS whenever feasible but

Page 29 of 34

F1000Research 2021, 9:295 Last updated: 28 JAN 2021

acknowledge that there are scenarios in which non-FLOSS licenses need to be considered.

Suggestion of a new penultimate paragraph in subchapter „Stakeholder motivations for research
software sustainability“ as follows: RSEs, Research leaders and research performing organisations
are interested in software sustainability also in the sense that their (research)software is
sustainable concerning legal compliance.This is an important issue distributing (research)software
for both acaedmic puposes as well as commerical purposes. For the latter RSEs and their research
leaders (typically contacting their TTO) are interested to marktet (parts of) their research software
and/or additional connectable closed software (which they prevent from unintended disclosure) to
a spin-off or an industrial company using a proprietary or a dual licensing model. For both,
acaedmic and commerical purposes RSEs and their research leaders and their research performing
organisation are interested that their (research) software plus any connectable closed software is
compliant with intellectual property of third-party suppliers and compliant with the terms of
free/libre open source licenses. An important stakeholder motivation is therefore „software
sustainbility with the aim of clarification of all software rights ownerships“.
We thank you for the suggestion. While we aim for reusable software in terms of licenses we as a
community do not focus on commercial purposes.

Please replace Subchapter heading„Challenges and clarifications Clarification of rights“by
„Challenges and Clarification of rights“
We thank you for pointing this out and corrected the structure (section and subsection headings,
respectively).

The term "research institution" appears in the glossary as a duplicate. Therefore, "research
institution" should be deleted in the brackets.
Thank you, we have replaced it by “national labs”.

Competing Interests: No competing interests were disclosed.

Reader Comment 19 May 2020
Dirk Feuchter, Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen and Karlsruhe,
Germany

Subject: Feedback to your article „An environment for sustainable research software in Germany
and beyond: current state, open challenges, and call for action…“.

Dear Mr. Anzt, dear Mr. Loewe, dear Mr. Bach, dear Mr. Seemann, dear Elke, and dear Sven, as well
as dear authors as yet unknown to me,
I am working at KIT in the field of Innovation and Relations Management, especially Licensing of
Intellectual Property Rights from KIT to Free Maket Economy. My particual focus is to Out-license
Computerprograms to Third Parties and Industry.
Thank you for your great efforts with your extensive and intersting article including the nicely
written and ever-recurring story of Kim.
Your FLOSS-based approach for sustainable software devlopment is holding immense savings

Page 30 of 34

F1000Research 2021, 9:295 Last updated: 28 JAN 2021

potential. That’s great.
Following are my comments to your article from the perspective of a TTO license manager, typically
supporting RSEs in cases of proprietary licensing e.g. to spin-offs or industrial companies.
Hence, most of my comments might go in a slightly different direction than the main focus of your
article, but in my point of view these comments are complementary. Hence, I wonder what you
think of them. Looking forward to your opinion and you feedback to my comments, if you like also
gladly by telephone
Best regards
Dirk Feuchter

Comment-DF-01:
Abstract:
I would like to suggest to extend
„Research software must be sustainable in order to
understand, replicate, reproduce, and…“
as follows
„Research software must be sustainable in order to
understand, replicate, reproduce, distribute and…“

Comment-DF-02:
Abstract:
I would like to suggest to extend
„In other words, software must be available, discoverable, usable, and adaptable to new needs,
both now and in the future.“

as follows

„In other words, software must be available, (IP-/FLOSS)compliant*, discoverable, usable, and
adaptable to new needs, both now and in the future.“

*By „(IP-/FLOSS)compliant“ I mean
in compliance

with intellectual property of third-party suppliers,•
with the terms of free/libre open source licenses and with the aim to protect own intellectual
property from unintended disclosure

•

#Comment-DF-03:Why sustainable research software in
the first place =>I would like to suggest to extend„In order to support research, a sustainable
software must be correct14, validatable, understandable, documented, publicly released,...“ as
follows „In order to support research, a sustainable software must be correct14, (IP-/FLOSS)
compliant* validatable, understandable, documented, publicly released,...“ *Concerning „(IP-
/FLOSS)compliant“ please see upon #

Page 31 of 34

F1000Research 2021, 9:295 Last updated: 28 JAN 2021

https://f1000research.com/articles/9-295/v1#ref-14
https://f1000research.com/articles/9-295/v1#ref-14

Comment-DF-04:Why sustainable research software in the first place =>„We also argue that
truly sustainable research software must ideallybe published under a Free/Libre Open
Source Software (FLOSS) license, and…“„We also argue that truly sustainable research
software should typically be published under a Free/Libre Open Source Software (FLOSS)
license, and…“

•

 #

Comment-DF-05:Why sustainable research software in the first place =>„Therefore, if research
software is publicly funded, it should be freely available under a FLOSS license.„Therefore, if
research software is publicly funded, it should be normally freely available under a FLOSS license.

Comment-DF-06:Why sustainable research software in the first place =>I would like to suggest to
extend„Legal issues: Many obstacles for research software pertain to legal issues, such as
applicable licensing and compatibility of licenses45, and decisions about license types. as
follows „Legal issues: Many obstacles for research software pertain to legal issues, such as IT law,
copyright law, copyright notices and author attributions, applicable licensing and compatibility
of licenses45, and decisions about license types.

 #
Comment-DF-07:Why sustainable research software in the first place =>„A subset of this group
may be interested in …“.Which „group“ do you mean? => the „Taxpayers“? # # # # # # # # # # # # #

Comment-DF-08:Suggestion of a new penultimate paragraph in subchapter „Stakeholder
motivations for research software sustainability“ as follows: RSEs, Research leaders and research
performing organisations are interested in software sustainability also in the sense that their
(research)software is sustainable concerning legal compliance.This is an important issue
distributing (research)software for both acaedmic puposes as well as commerical purposes. For the
latter RSEs and their research leaders (typically contacting their TTO) are interested to marktet
(parts of) their research software and/or additional connectable closed software (which they
prevent from unintended disclosure) to a spin-off or an industrial company using a proprietary or a
dual licensing model. For both, acaedmic and commerical purposes RSEs and their research
leaders and their research performing organisation are interested that their (research) software
plus any connectable closed software is compliant with intellectual property of third-party suppliers
and compliant with the terms of free/libre open source licenses. An important stakeholder
motivation is therefore „software sustainbility with the aim of clarification of all software rights
ownerships“.

Comment-DF-09:Abstract:I would like to suggest to extend„Failing to do so will threaten the quality
and validity of research..“ as follows „Failing to do so will threaten the quality, Xi and validity of
research..“ // X1= marketability or X2= distribution // As TTO-license-manager I personally would
prefer X1 but X2 is fine as well

#Comment-DF-10:In the heading such as „Why

Page 32 of 34

F1000Research 2021, 9:295 Last updated: 28 JAN 2021

https://f1000research.com/articles/9-295/v1#ref-45
https://f1000research.com/articles/9-295/v1#ref-45

sustainable research software in the first place?“, one might prefix a chapter number, just as
announced at the end of the introductory background: „This all leads to unmet requirements and
unsolved challenges that we want to highlight in this paper by elaborating on
(1)…(2)…(3)…(4)…(5)…(6)…“Hence, instead of„Why sustainable research software in the first
place?“use„(1) Why sustainable research software in the first place?“and so on:(2) How to decide
which software to sustain?(3) Who sustains research software?(4) How can research software be
sustainably funded?(5) Which infrastructure is needed to sustain research software?(6) Legal
aspects.That's a matter of taste, of course.

Comment-DF-11:Please replace Subchapter heading„Challenges and clarifications Clarification of
rights“by „Challenges and Clarification of rights“

Comment-DF-12:In both Fig. 1 and „Legal aspects/Challenges and clarifications of rights“instead of
„Subject to directives“ {weisungsgebunden dt.} from UrhG 69 bI propose to write „in execution of
his duties {in Wahrnehmung seiner Aufgaben dt.}“ from UrhG 69b, in no way to constrain
scientists, RSEs and Research leaders, but in order to free up the scope for decision-making and
thus open up opportunities.[Regardless of that, I would translate the German "weisungsgebunden"
from „UrhG 69 b“ with "bound by instructions"(short) or with "following the instructions given by
his employer"(long)]

 #

Comment-DF-13:In Subchapter „Conclusions“I would not write the following sentence, or at
most I would write it differently.„We encourage the research funding bodies to reflect the
licensing models for academic software development, and to decide whether the “public
money, public code” paradigm justifies the requirement that all publicly funded software has
to be publicly available under a Free/Libre Open Source Software (FLOSS) license.“ I can
understand your point of view and this sentence. But isn't there a lack of perspective
regarding those research leaders or RSE-teams, who are considering a foundation based on
a proprietary license model regarding their software development or RSE teams whose
software developments are taken over and marketed by industrial companies in or outside
of Germany, without return to the research performing organizations and the corresponding
RSE teams.Hence, an alternative formulation might be as follows: „We encourage the
research funding bodies to reflect the licensing models for academic software development,
and to suggest research performing organisations and their research leaders in the sense of
sustainability to make their software typically publicly available under a FLOSS-license but
also to take into consideration revenue-oriented approaches such as FLOSS business models
or proprietrary licensing if applicable.“

•

In my opinion, the final decision to license in and out as well as to transfer computer programs
under FLOSS licenses should be the responsibility of the (authorised for this purpose by the
Presidium/Board of Directors of the research performing organisation) Research Leaders, with
whom the computerprogram developing RSEs should therefore consult. Furthermore, the RSEs
and their research leaders ideally should have the opportunity at their research institution to

Page 33 of 34

F1000Research 2021, 9:295 Last updated: 28 JAN 2021

contact (preferably at an early stage) science-supporting specialist departments such as Legal, TTO,
research software local task forces or even a SSI-like nationwide institution and seek advice.

Comment-DF-14:In Fig.3 it should read "Check (1)..." instead of "Check (2)..." in both the centre left
and the top right.

Comment-DF-15: The term "research institution" appears in the glossary as a duplicate. Therefore,
"research institution" should be deleted in the brackets.
#

Best regardsDirk Feuchter--Karlsruhe Institute of
Technology (KIT)INNOVATION AND RELATIONS MANAGEMENT (IRM)Intellectual Property
ManagementDr. Dirk Feuchter (Licenses)Hermann-von-Helmholtz-Platz 1D-76344 Eggenstein
LeopoldshafenGermanyPhone: +49 721 608-2-3921E-Mail: dirk.feuchter at kit.eduWeb:
https://www.irm.kit.edu/116_1500.php https://www.irm.kit.edu/english/91.php
www.irm.kit.edu/

•

Competing Interests: No competing interests were disclosed.

The benefits of publishing with F1000Research:

Your article is published within days, with no editorial bias•

You can publish traditional articles, null/negative results, case reports, data notes and more•

The peer review process is transparent and collaborative•

Your article is indexed in PubMed after passing peer review•

Dedicated customer support at every stage•

For pre-submission enquiries, contact research@f1000.com

Page 34 of 34

F1000Research 2021, 9:295 Last updated: 28 JAN 2021

https://www.irm.kit.edu/116_1500.php
https://www.irm.kit.edu/english/91.php
http://www.irm.kit.edu/
mailto:research@f1000.com

