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Abstract

Background: Protein-protein interactions are involved in most cellular processes, and their detailed physico-
chemical and structural characterization is needed in order to understand their function at the molecular level. In-
silico docking tools can complement experimental techniques, providing three-dimensional structural models of
such interactions at atomic resolution. In several recent studies, protein structures have been modeled as networks
(or graphs), where the nodes represent residues and the connecting edges their interactions. From such networks,
it is possible to calculate different topology-based values for each of the nodes, and to identify protein regions
with high centrality scores, which are known to positively correlate with key functional residues, hot spots, and
protein-protein interfaces.

Results: Here we show that this correlation can be efficiently used for the scoring of rigid-body docking poses.
When integrated into the pyDock energy-based docking method, the new combined scoring function significantly
improved the results of the individual components as shown on a standard docking benchmark. This improvement
was particularly remarkable for specific protein complexes, depending on the shape, size, type, or flexibility of the
proteins involved.

Conclusions: The network-based representation of protein structures can be used to identify protein-protein
binding regions and to efficiently score docking poses, complementing energy-based approaches.
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Background
Protein-protein interactions are fundamental to many
cellular processes [1], and a detailed atomic-level
description of protein complexes would be needed in
order to fully understand their association mechanism
[2]. The inherent technical difficulties of experimental
methods to solve the three-dimensional structure of
many protein complexes [3] call for the integration of
complementary computational approaches [4,5]. How-
ever, the structural prediction of the complex formed by
two interacting proteins remains one of the most chal-
lenging problems in computational biology. The

complex nature of the rotational, translational, and con-
formational search makes this task extremely difficult
and too costly in computational terms to be addressed
purely by full-atom molecular mechanics simulations.
Therefore, different simplifications are required in order
to approach the docking problem [6]. The treatment of
proteins as rigid bodies or their description at low reso-
lution (either in grids [7-10] or coarse-grained models
[11-13]) are common simplifications in almost all dock-
ing approaches, at least in their initial stages. Addition-
ally, the efficient combination of different scoring terms
can increase the overall quality of the predictions if they
identify different contributions to binding [13]. There-
fore, a way to improve the performance of current scor-
ing functions is the detection of new descriptors for
protein binding, orthogonal to existing ones, which
could be easily integrated in the scoring phase.
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Recently, the analysis of protein structures as small-
world network systems has attracted significant interest
[14-17]. In small-world networks (i) the average shortest
path (between any two nodes) is logarithmically related
to the total number of nodes, and (ii) a large average
clustering coefficient is observed [18]. Using this
approach, proteins can be modeled as a network of
interactions, where the nodes represent residues and the
edges their contacts. It is assumed that highly connected
regions of the network play a key role in the protein,
which can be easily detected by means of different
topology-based network parameters. Indeed, topological
data based on small-world network descriptions of pro-
teins have been recently exploited to predict protein-
protein interfaces [19,20], protein-DNA interfaces [21],
protein-RNA interfaces [22], ligand binding sites [23,24],
modeling [25], protein dynamics [26], protein disorder
[27], ribosome functional sites [28], to identify critical
residues for protein function [15], or to evaluate protein
docking poses [29].
In this work, we characterized unbound proteins as

small-world networks for their use in docking. We used
different topology measures and evaluated their use to
predict protein binding sites. We then applied these
descriptors to the scoring stage of protein-protein dock-
ing using the latest standard docking benchmark. These
scoring functions were integrated in pyDock, a success-
ful docking scoring algorithm based on physico-chemi-
cal terms [30].

Results and discussion
Interface prediction by network-based parameters
We modeled each of the unbound protein structures of
the docking benchmark 3.0 [31] as residue-based net-
works based on Ca atoms. We then calculated different
topology-based parameters for all nodes of the network
and mapped their values into the residues they repre-
sented (see Methods). For comparison purposes, we also
generated topology networks based on the Cb atoms.
The closeness and degree values were virtually the same
for the two types of networks (correlation r2 = 0.97 and
0.92, respectively), with some differences in the cluster-
ing and betweenness parameters (correlation r2 = 0.58
and 0.49, respectively). In the next section we describe
how we directly used these values for docking scoring,
with no further optimization. But first, we have evalu-
ated the capabilities of the network-based values to pre-
dict binding interfaces. With this only purpose, for each
protein and network parameter, we defined as interface
predictions an arbitrary number of residues (i.e. nodes)
with the highest network topology values (see below)
and evaluated whether they were present in the binding
site of the known protein complex. For this purpose of
interface predictions, only surface residues of the

unbound protein were considered, defined as those hav-
ing relative accessible surface area (ASA) > 0.1%. The
positive predictive value (PPV) for each complex was
calculated as the percentage of predicted residues that
were part of the real interface (i.e. residues with at least
one atom within 10 Å of the partner protein in the
complex). Then we computed the mean PPV of all
unbound proteins. Additionally, we used different cutoff
values to restrain the selection of predicted residues. It
should be noted that some proteins had no residues
with values above certain cutoffs and, thus, no predic-
tions were computed in these cases. The random PPV
was calculated by randomly selecting surface residues of
the unbound proteins. This was repeated 100 times for
the different cutoff values.
We first studied the results of the interface predictions

based on the arbitrary number of four residues with the
highest network closeness parameter at different cutoff
values (see Figure 1A). Results did not significantly
change when considering the residues with the top one,
two, and ten closeness values (see additional file 1: Fig-
ure S1). The higher the cutoff closeness values, the bet-
ter the predictions, achieving 48.8%, 62.0% and 91.7%
PPV at 0.30, 0.40 and 0.50 cutoff closeness values,
respectively. In parallel, the percentage of the total pro-
teins that showed predictions decreased to 58.1%, 19.4%
and 3.6%, respectively. However, random PPV also
improved with the cutoff. This behavior is a conse-
quence of the closeness definition (see Methods). The
average distance to all other nodes is expected to be
always higher in larger proteins than in smaller ones.
Thus, the higher closeness values were mostly found in
the smallest proteins (see additional file 1: Figure S2A),
in which it was easier to select by chance an interface
residue (defined above). Indeed, proteins that do not
contain any residue with closeness value above a given
arbitrary threshold (e.g. 0.2) were all large (i.e. more
than 400 residues) and in some cases presented domains
weakly connected with the protein core, like the recep-
tor of the FH2 complex (PDB code 1Y64). By residue
type, the largest average closeness values typically corre-
spond to hydrophobic residues (e.g. CYS, ILE, VAL,
PHE, TYR, or LEU), probably due to their higher fre-
quency in the protein interfaces, as well as in the pro-
tein core. In any case, the difference of the predictive
success rates with respect to random was significant and
increased with the cutoff values. The most successful
predictions were found for the enzyme/inhibitor group,
with a mean PPV of 63.3% when considering all pro-
teins, and reaching 100% when applying cutoff values
over 0.50 to the closeness values. In these cases, success
rates were always clearly above random (see Figure 1B).
The proteins classified in the benchmark as “other” had
PPV similar to the expected by random distribution,
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although the success rates were slightly better than ran-
dom at higher cutoff values (see Figure 1C). On the
other hand, interface predictions for antibodies and anti-
gens were always worse than the expected random PPV,
and more surprisingly, success rates even decreased at
higher cutoff values (see Figure 1D). Actually, in most
antibodies the higher closeness values were found in the
concave surface formed by the two antibody chains
instead of in the CDR, which completely misled our pre-
dictions. The success of the predictions for the antigens
showed a similar trend to the “other” group of proteins,
as expected, given that antigens have not evolved to
bind antibodies. The interface predictions with the net-
works generated from the Cb atoms were virtually the
same (average PPVs were only around 5% worse than
those from Ca based networks; data not shown). This
shows that predictions are not very sensitive to whether
the networks are defined from the Ca or Cb atoms, and
for the rest of the analysis we will only use the networks
defined with the Ca atoms.
We have also computed the interface prediction suc-

cess rates for three additional network-based parameters
(see additional file 1: Figures S3, S4 and S5). The predic-
tive results based on the degree network parameter
showed a similar trend to those of closeness, where PPV
improved at higher (i.e. more restrictive) cutoff values.
The degree of a given node is the fraction of nodes to
which such node is connected, so residues in small pro-
teins will expectedly have higher degree values (see addi-
tional file 1: Figure S2B). Thus, residues selected at
higher cutoff values come mostly from small proteins, in
which random PPV is expected to be higher, as it hap-
pened with closeness. On the other hand, results with the
clustering parameter worsened as the cutoff increased.
High clustering values were mostly present in bigger pro-
teins (see additional file 1: Figure S2C), in which it was
more difficult to detect the correct binding site by
chance. Values for betweenness tended to be lower for

smaller proteins, but they were much less dependent on
size than the rest of parameters (see additional file 1: Fig-
ure S2D). Thus, interface predictive success rates based
on betweenness were less determined by the cutoff
applied. All topological parameters yielded better results
than average for the enzyme/inhibitor group, and worse
for the antibody/antigen cases. Only in the case of degree,
the PPV for the antibody/antigen group was above ran-
dom, since the rather local degree values were not con-
centrated in the concave surface formed by the two
antibody chains, as opposed to what happened with the
rest of network-based parameters. Examples of predic-
tions for each complex type are shown in Figure 2, with
residues colored by their closeness value.

Network-based scoring of docking poses
Having tested the capabilities of residue-based network
parameters to predict interface residues, we further
explored their application to score rigid-body docking
poses generated for the docking benchmark 3.0. Figure
3A shows the top 10 success rates (i.e. percentage of
cases with a near-native solution within the 10 best-
scoring docking poses) obtained by scoring docking
poses with the closeness values of the docking interface
residues only. These interface residues (including surface
and buried ones) were defined at different contact dis-
tances between all heavy atoms of the complex subunits
(see Methods). Success rates improved when large dock-
ing interfaces were considered, reaching 12.6% when
including residues up to 15 Å from the docking partner.
However, using even larger docking interfaces worsened
the top 10 success rate (e.g. 10.7% using 18 Å). Scoring
with other network-based parameters showed similar
trends (see additional file 1: Figure S6), where the best
results were always obtained with docking interfaces
defined at 15 Å (see Figure 3B). The top 10 success
rates were 12.6% for Betweenness 15 Å, and 11.7% for
Clustering 15 Å and Degree 15 Å.

Figure 1 Binding site prediction with closeness. Positive predicted value (PPV) of binding site predictions based on closeness parameter,
considering only the residues with the top four closeness scores that were above the cutoff value indicated in abscissas. Random PPV is shown
for comparison. The percentage of proteins that have any residue with a closeness value above the cutoff is shown ("% cases”). Data calculated
for (A) all proteins in benchmark 3.0; (B) only enzyme/inhibitor cases (20.2% of the benchmark); (C) only “other” cases (51.6% of the benchmark);
(D) only antibody/antigen cases (28.2% of the benchmark).
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Additionally, we evaluated how the docking scoring
performance depended on the success of the interface
predictions for each partner. Notably, the 29 cases (out
of 124) for which closeness correctly predicted the inter-
face in both partners achieved a top 10 docking success
rate of 34.6%, clearly above average. On the other hand,
in the 46 cases in which only one of the partners had a
correct interface prediction, the docking predictions
were of worse quality (top 10 success rate 7.7%). Finally,
when both partners had incorrect interface predictions
(49 cases), docking success clearly worsened (2.6%). The
correlation between the success of the interface predic-
tions and the docking scoring performance is thus
evident.

Combined energy-based and network-based scoring
Scoring with topology-based network parameters was in
all cases clearly better than the FTDock default scoring
(top 10 success rate 1%), but still far from the perfor-
mance achieved by state-of-the-art energy-based scoring
functions like pyDock (see Figure 3B). Interestingly, the
correlation between the results obtained by these two
different types of scoring functions (physics-based
pyDock and topology-based network) was very low
(below 0.15 for all network parameters), which suggests
that they are detecting different contributions to
binding.
Taking this into account, we combined pyDock and

the best conditions found for the four network-based
scoring functions (using contact distance 15 Å; see Fig-
ure 3B) by weighting the values of the network-based
contribution (see Methods). All combinations of net-
work-based scoring and pyDock gave better top 10 suc-
cess rates than pyDock alone (see additional file 1:
Figure S7). The best results were obtained when com-
bining Closeness 15 Å and pyDock, reaching a top 10
success rate of 31.1%, substantially better than pyDock
alone (23.3%). This combined scheme was implemented
in a new scoring function called pyDockCloseness. We
performed a cross-validation test to discard any possibi-
lity of over-training in our scoring function (see Meth-
ods). In all cases the resulting optimal weight was the
same (w = 0.45), which confirmed the robustness of the
combined function. As a further test to prevent over-fit-
ting, we validated our combined scoring function on the
new cases of the recently released docking benchmark
4.0 [32]. FTDock found a near-native solution in 38 out
of these 52 new cases. Top 10 success rate was 18.4%
for pyDock, 5.3% for Closeness 15 Å and 26.3% for
pyDockCloseness, confirming the improvement of the

Figure 2 Examples of protein binding site predictions. Network representation of three proteins shown as balls (nodes) and sticks (edges
connecting nodes). Nodes are colored by their closeness value (from minimum values in blue to maximum values in red). All partner proteins
are shown in green ribbon. (A) A successful prediction for the receptor of the enzyme/inhibitor complex between Substilisin and Streptomyces
subtilisin inhibitor (PDB code 2SIC). The top four residues according to the closeness parameter are part of the interface where the ligand binds.
(B) Prediction for the receptor of antibody/antigen between the camel VHH and Pancreatic alpha-amylase (PDB code 1KXQ). The prediction is
unsuccessful because residues with high closeness values are in the protein core, far from the binding site. (C) Ligand of the “other” type
complex between CDK2 kinase and the human cyclin dependent kinase subunit (PDB code 1BUH), in which all four predicted residues are in the
binding site.

Figure 3 Performance of network-based scoring methods. (A)
Top 10 success rates when scoring the docking poses with the
closeness values using different contact distances to define the
docking interface residues. (B) Best top 10 success rates achieved by
the different network-based parameters. Results by FTDock and
pyDock are shown for comparison purposes.
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combined scored achieved in benchmark 3.0. Taking
into account all the cases in benchmark 4.0 (which
encompasses the whole benchmark 3.0, and that based
on the above cross-validation test, can be safely used for
the rest of the analysis in this work), FTDock found a
near-native solution in 141 out of 176 cases and top 10
success rates were 22.0%, 10.6% and 29.8% for pyDock,
Closeness 15 Å and pyDockCloseness, respectively (see
Figure 4). This represents a 36% improvement of
pyDockCloseness with respect to pyDock. In a recent
study [29] RosettaDock results were combined with a
network-based scoring, achieving an improvement of
15% with respect to RosettaDock alone for 43 docking
cases (a sub-set of the benchmark used here, for which
our results are similar to those for the whole set in the
present study). In that work, two different amino acid
networks were generated for every single docking pose,
as opposed to our method, in which we pre-compute
residue-based network parameters just once for the
unbound subunits.

Analysis by complex type
The ability of closeness to identify interface residues
strongly depended on the type of complex (see Figure
1). As expected, the same trend was observed in the
success rates of pyDockCloseness for the scoring of
docking poses (see Figure 5A; based on benchmark 4.0,
as in the rest of the work). Closeness 15 Å showed poor
results in the scoring of the antibody/antigen cases, but
the combined score did not worsen pyDock results
(15.8% top 10 success rate). The scoring results on the
enzyme/inhibitor group substantially improved with all
parameters. For example, Closeness 15 Å had a remark-
able 26.5% top 10 success rate, not far from that of pyDock (34.7%). Moreover, the combination of both

scores clearly increased the top 10 success rate (44.9%).
In the case of the complexes classified as “other”, Close-
ness 15 Å performed poorly (2.7% top 10 success rate)
as compared to pyDock (15.1%). However, their combi-
nation significantly improved the success rate to 23.3%.
Given the poor interface predictions and docking results
of the network-based parameters in antibody/antigen
cases, we repeated the weight optimization between Clo-
seness 15 Å and pyDock considering enzyme/inhibitors
and “other” type of complexes only. The resulting
weighting factor was the same as with the whole set of
complexes, reinforcing the robustness of our pyDock-
Closenesss scoring function. In any case, antibody/anti-
gen cases were discarded for the rest of the analyses.

Coarse-grained model and conformational changes upon
binding
The improvement of pyDockCloseness over pyDock was
noteworthy in cases with significant conformational
change (see Figure 5B). We have previously reported the

Figure 4 Performance of the combination of energy-based and
network-based scoring methods. Success rates for the top 1 to
10 predictions of Closeness 15 Å, pyDock and their combined score
pyDockCloseness.

Figure 5 Scoring performance of pyDock, Closeness 15 Å and
pyDockCloseness by complex type and conformational change
upon binding. Top 10 success rates by (A) complex type, (B)
averaged bound/unbound RMSD of receptor and ligand.
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strong dependency of pyDock success rates on the flex-
ibility of proteins [33]. Indeed, top 10 success rate was
excellent (85.7%) for cases with small conformational
changes, but then it substantially dropped for the rest of
cases. Closeness 15 Å behaved similarly, yielding top 10
success rates of 28.6%, 15.3% and 0% for the groups of
proteins with small, medium and large conformational
changes upon binding, respectively. In the cases with
small changes upon binding (averaged unbound/bound
RMSD for receptor and ligand < 0.5 Å), Closeness 15 Å
contribution to the combined score could not improve
the already excellent results of pyDock. On the contrary,
in cases showing medium conformational changes
(unbound/bound RMSD between 0.5 and 1.5 Å),
pyDockCloseness top 10 success rate (30.6%) was con-
siderably better than that of pyDock alone (20.0%).
Interestingly, for the most difficult and challenging
group of cases with high flexibility (unbound/bound
RMSD >1.5 Å), the Closeness 15 Å contribution to the
combined score made the success rate to improve with
respect to pyDock (from 16.7% to 23.3%), regardless of
the poor performance of the network-based scoring
alone for the top 10 predictions (0%). Altogether, our
coarse-grained network-based approach (only Ca atoms
were used to build the networks and the scoring was at
residue level, see Methods) seems to be especially help-
ful in cases with significant conformational changes,
successfully complementing our all-atom approach
whose predictions quickly degenerated in inaccurate
geometries [33].

Size and anisotropy
The size and shape of a given protein determine the
general topology of the network-based representation,
and in consequence, the parameters derived from that
are expected to show different features. Therefore, it
was of interest to analyze how the different scoring
schemes were affected by the size and anisotropy of the
proteins.
Cases in the benchmark were classified according to

the FTDock grid size, which is proportional to the sum
of both protein radii [7]. The top 10 success rate obtained
by Closeness 15 Å matched that of pyDock for smaller
proteins (29.2% for cases with grid size < 150; see Figure
6A), a remarkable result explained by the fact that resi-
dues with high closeness values were close to the surface
of the protein and made a more specific contribution
when scoring docking candidates. Bigger proteins tend to
have the higher closeness values more buried, making
their contribution to the selection of docking poses more
indefinite. Indeed, as the size increased the performance
of Closeness 15 Å worsened faster than pyDock. The poor
success rates in the group of the largest proteins (grid
size >250) was due to the limited sampling of FTDock in

these conditions [33]. For proteins with grid size < 250,
pyDockCloseness was better than either pyDock or Clo-
seness 15 Å individual scorings, reaching 37.5%, 36.6%
and 16% top 10 success rate for the small, medium and
large grid-size groups, respectively.
The anisotropy of the proteins (i.e. the length of the

most different axis divided by the mean length of the

Figure 6 Scoring performance of pyDock, Closeness 15 Å and
pyDockCloseness by size, shape and interface. Top 10 success
rates according to (A) FTDock grid size (proportional to the sum of
both protein radius), (B) anisotropy of the proteins, (C) interface size
of the complexes.

Pons et al. BMC Bioinformatics 2011, 12:378
http://www.biomedcentral.com/1471-2105/12/378

Page 6 of 10



other two) played a crucial role in the success of the
Closeness 15 Å scoring. Spherical cases (those where
receptor and ligand had anisotropy values between 0.7
and 2.0) showed a poor performance, whereas prolate
cases (those where either receptor or ligand had aniso-
tropy value above 2.0) and, specially, oblate cases (those
where either receptor or ligand had anisotropy value
below 0.7) yielded better predictions (top 10 success
rates were 3.9%, 10.8% and 23.7% for spherical, prolate
and oblate cases, respectively; see Figure 6B). In spheri-
cal proteins, high closeness values tended to be in the
core of the protein, which made difficult for these resi-
due values to contribute to the scoring of near-native
poses in a specific manner. Interestingly, this suggests
that non-spherical proteins have general topological fea-
tures that are recognized by the partner. This seems to
be in contradiction with a recent work in which a new
local closeness measure was defined in order to over-
come the lack of predictive ability of global closeness
(the measure that we use in this study) for protein-
ligand binding sites in non-globular proteins [34]. On
the contrary, our results for anisotropic proteins clearly
outperformed those obtained for spherical proteins. This
perhaps reflects the different nature of the protein-pro-
tein and protein-ligand binding problem. On the other
hand, pyDock performance was less affected by aniso-
tropy (25.5%, 16.2% and 26.3% for spherical, prolate and
oblate cases, respectively). In this case, the worse results
of the prolate cases were probably due to the poorer
sampling of FTDock (prolate cases tended to be larger
than average in the benchmark). Nevertheless, success
rates for pyDockCloseness improved those of the indivi-
dual scorings, reaching top 10 success rates of 29.4%,
21.6% and 44.7% respectively.

Performance by interface area
We also found a strong correlation between the inter-
face size of the complexes and the top 10 success rates
of the scoring methods (see Figure 6C). Cases with very
small or very large interfaces showed the worse predic-
tions. Top 10 success rates steadily increased with the
interface size for pyDock and Closeness 15 Å, but dra-
matically dropped for the group of largest interfaces (0%
with pyDock and Closeness 15 Å. Notably, for this group
pyDockCloseness showed top 10 success rate of 33.3%,
emphasizing the complementarity effect of both indivi-
dual scoring functions. It is also interesting that topolo-
gical network parameters can give such predictive
trends, similar to energy-based functions.

Conclusions
In this work, we have shown that network topology
values can be used to identify binding regions in pro-
teins. Predictions were significantly better than random

in all complex types except in the antibody/antigen
cases, where the highest closeness values were generally
found in the concave surface formed by the two anti-
body chains. We have also analyzed in detail the poten-
tial use of such network topology parameters as scoring
functions to identify near-native docking poses accord-
ing to different interface definitions. Good performance
was achieved for small, oblate and enzyme proteins,
similar to that of physical-based methods like pyDock.
However, the results from both types of scoring func-
tions were found to be complementary and synergistic.
Thus, the combination of the network-based scoring
Closeness 15 Å and pyDock improved the latter top 10
success rate by 36% as tested in the most updated stan-
dard benchmark. This improvement was much larger
for oblate proteins, complexes with large interfaces and
cases classified as “other”, in which energy-based
pyDock typically had the worst results. More impor-
tantly, the coarse-grained representation in the network-
based scoring made it possible to improve the predictive
success in the most challenging type of docking cases,
that is, those with significant conformational changes
upon binding. Although this approach has limitations in
cases with certain topological features, like spherical or
very large proteins, we have shown here its potential
applications for docking as a complement to energy-
based approaches.

Methods
Representation of proteins as residue networks
In this work, unbound proteins were modeled as topolo-
gical networks as follows. The nodes represented the Ca
atoms of all the residues in a protein, and the edges the
residues in contact (i.e. those whose Ca atoms were
within 8.5 Å distance [35]). To construct the graph
topology and calculate the four centrality parameters
analyzed in this work, we used the NetworkX python
package [36]. For comparison purposes, we also gener-
ated topological networks based on the Cb atoms
instead (Ca for Glycine). The resulting networks were
very similar (see additional file 1: Figure S8) and the
predictions from these networks were virtually the same
(see Results).

Graph Theory
Within graph theory and network analysis, there are
various node measures that determine its importance. In
this work, we tested four widely used network para-
meters: three centrality measures (betweenness, closeness
and degree) and the clustering coefficient. The closeness
centrality of a node x is defined as follows:

closeness(x) = (N − 1)
/∑

d(x, y) (1)
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where N is the total number of nodes in the network
and d(x, y) is the shortest path distance between node x
and any other node y. Thus, the closeness of node x is
the inverse of the average distance to all other nodes.
The three remaining network parameters are defined as
follows: for any node x, degree is the number of edges
incident to that node, betweenness is the sum of the
fraction of all shortest paths between any two nodes
that pass through x and clustering is the fraction of con-
tacts that exist between its neighbors (i.e. the number of
triangles through x) relative to the maximum possible
contacts between them. For this work we showed the
inverted clustering value (1/clustering) so that higher
scores correlate with protein binding sites.

Benchmark sets
We used the standard protein-protein docking bench-
mark 3.0 [31] for (i) the assessment of the use of net-
work-based parameters for binding site prediction, (ii)
the comparison of the different topological parameters
for docking scoring, and (iii) the training of the optimal
balance between pyDock and the network-based scoring.
The new cases in benchmark 4.0 (the latest so far) [32]
were used to validate the optimal balance found
between pyDock and the network-based scoring. Bench-
mark 4.0 (which includes the cases of benchmark 3.0)
was used for the performance analysis.

Generation of docking poses
We used FTDock [7] with standard parameters (using
electrostatics and 0.7 Å grid resolution) to generate
10,000 rigid-body docking poses for the 176 unbound
cases of the latest standard protein-protein docking
benchmark [32]. A docking pose was considered a near-
native solution if its ligand Ca-RMSD with respect to
the crystal structure was below 10 Å. The success rate
for the top 10 predictions was calculated as the percen-
tage of cases in the benchmark that had a near-native
solution within the first 10 predictions. For this calcula-
tion, only the cases for which FTDock generated at least
one near-native solution were considered (103 for
benchmark 3.0 and 141 for benchmark 4.0).

Scoring by network parameters
We scored docking poses using the topology-based
parameters precalculated on the unbound proteins (see
above). Only the values of residues at the docking inter-
face were used. For instance, to obtain the Closeness
score for a given docking pose P, the precomputed clo-
seness values of all interface residues i, j (defined as
those with a heavy atom within a threshold distance d
from any heavy atom of the partner protein), from
receptor and ligand respectively, were added up. Each
residue value was added only once, regardless of the

number of contacts that formed with the partner pro-
tein. Weighting the residue-level closeness values by the
number of atomic contacts established with the partner
protein worsened the scoring results. A possible reason
is that we are scoring rigid-body docking poses, in
which side-chains are not always in optimal conforma-
tion for binding, and therefore a coarse-grained scoring
based on counting residues (not atomic contacts) is pre-
ferred. Perhaps flexible docking solutions might benefit
from a scoring system based on the number of contacts,
but this is beyond the scope of the current work. The
same scheme was applied to the rest of network para-
meters. Different values for d, ranging from 5 to 15 Å
were tested:

Closenessd
P =

∑
i

closenessi +
∑

j

closenessj (2)

pyDock
pyDock [30] is a scoring function that evaluates the
binding energy of rigid-body docking poses, taking into
account the contributions of the desolvation, electro-
statics and van der Waals energy terms. The desolvation
is ASA-based and uses atomic solvation parameters.
Coulombic electrostatics is calculated with a distance-
dependent dielectric constant, and individual contribu-
tions are truncated to ±1 kcal/mol to avoid artificial
high scores from models with overlap proteins. The van
der Waals term is based on a 6-12 Lennard-Jones poten-
tial, weighted to 0.1. Interatomic potentials are trun-
cated to +1 kcal/mol to avoid excessive penalization for
models containing clashes. To calculate the electro-
statics and the van der Waals terms AMBER94 para-
meters are used. This scoring function showed excellent
results in several CAPRI rounds [37,38] and in external
benchmarks [33].

Combining pyDock and network-based scoring
We combined each network-based scoring and pyDock
in a new scoring function. For instance, for a given
docking pose P and a threshold distance d, we defined
the pyDockCloseness score as the combination of Close-
ness and pyDock:

pyDockClosenessd
P = pyDockP+

wClosenessd
P

(3)

The value of w was calculated by minimizing the func-
tion F(w) on benchmark 3.0 [31], a subset of the latest
protein docking benchmark (see above):

F (w) =
∑

m

ln
(
Rankw

m

)
(4)
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where Rankw
m was defined as the best rank of a near-

native solution (ligand RMSD < 10 Å) for the bench-
mark case m, using w to balance the Closeness scoring
in the pyDockCloseness function. Values ranging from
0.0 to 2.0 with a step of 0.05 were used to determine
the lowest value of F(w).
In order to prevent overfitting, we validated the pre-

dictions on the subset of benchmark 4.0 that was not
used for the training of w. In addition, we performed a
leave-one-out cross-validation to ensure the optimized
parameter was robust to permutations. The process con-
sisted in calculating w using all the cases of the training
set except one, which was then used for validation. This
was repeated in a way that each case in the training set
was used once for validation.

Additional material

Additional file 1: Supporting figures. this file contains all the
supporting figures that are referenced in the text.
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