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Abstract: Loco-regional recurrences and metastasis represent the leading causes of death in head
and neck squamous cell carcinoma (HNSCC) patients, highlighting the need for novel therapies.
Chemokine receptor 4 (CXCR4) has been related to loco-regional and distant recurrence and worse pa-
tient prognosis. In this regard, we developed a novel protein nanoparticle, T22-DITOX-H6, aiming to
selectively deliver the diphtheria toxin cytotoxic domain to CXCR4+ HNSCC cells. The antimetastatic
effect of T22-DITOX-H6 was evaluated in vivo in an orthotopic mouse model. IVIS imaging system
was utilized to assess the metastatic dissemination in the mouse model. Immunohistochemistry and
histopathological analyses were used to study the CXCR4 expression in the cancer cells, to evaluate
the effect of the nanotoxin treatment, and its potential off-target toxicity. In this study, we report
that CXCR4+ cancer cells were present in the invasive tumor front in an orthotopic mouse model.
Upon repeated T22-DITOX-H6 administration, the number of CXCR4+ cancer cells was significantly
reduced. Similarly, nanotoxin treatment effectively blocked regional and distant metastatic dissem-
ination in the absence of systemic toxicity in the metastatic HNSCC mouse model. The repeated
administration of T22-DITOX-H6 clearly abrogates tumor invasiveness and metastatic dissemination
without inducing any off-target toxicity. Thus, T22-DITOX-H6 holds great promise for the treatment
of CXCR4+ HNSCC patients presenting worse prognosis.

Keywords: CXCR4; head and neck cancer; targeted drug delivery; protein nanoparticles; diphtheria
toxin; metastasis

1. Introduction

Head and neck squamous cell carcinoma represents a major cause of mortality, with
more than 850,000 new cases and 400,000 deaths worldwide in 2020 [1]. Current treatment,
consisting of a combination of surgery, chemotherapy, and radiotherapy, achieves loco-
regional control of the disease in a variable proportion of patients. Treatment regimens for
recurrent and metastatic HNSCC patients present low response rates and limited survival
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benefits. Remarkably, around 60% of HNSCC patients develop loco-regional recurrence
and up to 30% develop distant metastases after treatment, representing the leading cause
of patient mortality [2].

Different molecular pathways have been related to metastatic dissemination in HN-
SCC, including the transforming growth factor β (TGF-β), the fibroblast growth factor
receptor (FGFR), and the chemokine receptor 4 (CXCR4), among others [3–7]. CXCR4 and
its ligand, CXCL12, play a key role in the carcinogenic process. CXCR4 is also overex-
pressed in more than 20 cancer types compared to the normal organs, including HNSCC [8].
Importantly, our group and others have previously reported that CXCR4 overexpression
in HNSCC primary tumors correlates with loco-regional and distant recurrence and has
an impact on patient prognosis [9,10]. Moreover, CXCR4 overexpression has also been
related to higher tumor grade, lymph node metastasis, and poor overall survival [11]. Thus,
in recent decades, CXCR4 has been exploited as a molecular target for cancer treatment.
Research has focused on the development of CXCR4 antagonists, mainly small molecules,
peptides, and antibodies, that can act directly on tumor cells or by regulating the tumor
microenvironment [8,12]. Currently, plerixafor (AMD3100) remains the only CXCR4 antag-
onist on the market. Many other inhibitors have been designed with enhanced properties.
Among them, polymeric plerixafor (PAMD) represents a promising strategy, presenting an
improved toxicity profile and an enhanced anti-metastatic effect [13,14]. However, most
of these inhibitors still present low tolerability and short half-life in circulation. Further-
more, current clinical trials involving CXCR4 antagonists are used in combination with
conventional chemotherapeutic drugs.

Targeted drug delivery to CXCR4 represents a promising alternative to molecularly tar-
geted therapy via CXCR4 inhibitors. While the latter only focuses on inhibiting CXCR4 sig-
naling, our approach is to deliver cytotoxic compounds directly to CXCR4-overexpressing
cells, aiming to selectively deplete these cancer cells, which display stem-cell-like prop-
erties and enhanced metastatic potential [11,15,16]. In addition, targeted drug delivery
theoretically enables the use of higher doses while reducing off-target effects and toxicity,
which are major problems of current chemotherapy [17,18]. In this framework, our group
designed the T22-DITOX-H6 nanotoxin, which incorporates the T22 peptide, a CXCR4
ligand, to selectively target CXCR4-overexpressing cells, fused to the catalytic domain of
the diphtheria toxin. This platform aims to deliver the cytotoxic compound selectively to
CXCR4-overexpressing cancer cells without off-target toxicity in non-tumor bearing organs.
This study investigates the potential use of T22-DITOX-H6 nanotoxin to prevent regional
and distant metastasis in a HNSCC mouse model in the absence of systemic toxicity. To
our knowledge, this is the first study involving CXCR4-targeted protein nanoparticles for
the treatment of HNSCC metastatic development, which holds great promise as a future
therapy for HNSCC patients.

2. Materials and Methods
2.1. Production, Purification, and Characterization of Nanoparticles

T22-DITOX-H6 protein nanoparticles were recombinantly produced in Escherichia
coli, purified, and characterized as previously described [19]. T22-DITOX-H6 nanotoxin
monomers self-assemble into 38- and 90-nanometer nanoparticles [19].

2.2. Cell Lines and Culture

UM-SCC-74B (74B) human-papillomavirus-negative (HPV−) HNSCC cell line [20]
was kindly provided by Dr. Gregory Oakley. The 74B-Luci cell line was obtained by lentivi-
ral transduction with the plasmid pLenti-III-UbC-luc (abm, Vancouver, BC, Canada) as
already described in previous work [21]. The 74B-Luci cell line was cultured in Dulbecco’s
Modified Eagle’s Medium (DMEM) (Gibco, Thermo Fisher Scientific, Waltham, MA, USA)
supplemented with 10% fetal bovine serum (FBS), 100 U/mL penicillin/streptomycin, and
2 mM glutamine (Gibco, Thermo Fisher Scientific, Waltham, MA, USA) and incubated at
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37 ◦C and 5% CO2 in a humidified atmosphere. CXCR4 expression in 74B-Luci has already
been evaluated in previous work [21].

2.3. In Vivo Experiments

For all experiments, four-week-old female mice weighing 18–25 g were purchased from
Charles River (Saint Germain-Nuelles, France). Animals were housed in a specific pathogen-
free (SPF) environment with sterile food and water ad libitum. All animal experiments were
approved by the Hospital de la Santa Creu i Sant Pau Animal Ethics Committee (Ethical
approval code 9721, 20 February 2018). Animal body weight was evaluated throughout
the course of the experiments to ensure animal welfare. A 10% weight loss was considered
the humane endpoint for the experiments. For the study of the CXCR4 expression in
the invasive fronts of the tumors, 3 × 105 74B-Luci cells were ortothopically inoculated
(tongue) in NSG mice (NOD-scid IL2Rgammanull) (n = 3). Primary tumors were collected
for later analyses 7 days after the cell inoculation, when animals started losing weight as a
consequence of primary tumor growth.

To evaluate the effect of T22-DITOX-H6 repeated administration in the invasive fronts
of the primary tumors, Swiss nude mice (NU(Ico)-Foxn1nu) (n = 8) were orthotopically
inoculated with 1 million 74B-Luci cells. One day after the implantation, animals were
randomized into two groups (n = 4) and intravenously administered up to five doses of
either buffer (166 mM NaCO3H, pH 8) or 10 µg of T22-DITOX-H6 every day. Seven days
after the tumor implantation, animals were euthanized, and organs were collected for
histopathological analyses.

The antimetastatic effect of T22-DITOX-H6 was assessed in a disseminated mouse
model that replicates the metastatic pattern of the disease. To this end, NSG mice (NOD-
scid IL2Rgammanull) (n = 14) were inoculated with 5 × 104 74B-Luci cells in the tongue.
Forty-eight hours after tumor implantation, animals were randomized into control and
treated groups (n = 7). Control animals were intravenously administered buffer (166 mM
NaCO3H, pH 8) and treated animals 10 µg of T22-DITOX-H6 every other day for up to
14 doses. Metastatic dissemination to the cervical lymph nodes was semi-quantitatively
evaluated every week (days 2, 8, 16, 22, and 30 post-tumor implantation) by measuring
tumor cells’ bioluminescent signal (BLI, total radiance photons in the region of interest
(ROI)) using the IVIS® Spectrum 200 (PerkinElmer, Waltham, MA, USA). For that, mice
were intraperitoneally injected with firefly D-luciferin (2.25 mg/mouse, PerkinElmer) 5 min
before IVIS evaluation and anesthetized with 3% isoflurane. Thirty days after the beginning
of the experiment, when cervical lymph node infiltration started to cause distress in the
mice, animals were euthanized and primary tumor, cervical lymph nodes, lungs, and liver
BLI were semi-quantified ex vivo in the whole area of the tumor/organ. Next, primary
tumors and other relevant organs were collected in 4% formaldehyde for further analysis.
All BLI measurements were performed in the luminescence/photograph mode with the
auto exposure setting. BLI images were analyzed with Living Image® Analysis Software
(PerkinElmer). Results were expressed as total flux of BLI (photons/second; radiance
photons) ± SEM.

2.4. Histopathology, Immunofluorescence, and Immunohistochemical Analysis

Four-micrometer paraffin-embedded sections obtained from tumors and organs ex-
tracted from the animals were utilized for all histopathological and immunostaining analyses.

Colocalization of CXCR4 and Human Vimentin in the invasive front of tumor tissues
was performed by immunofluorescence. Paraffin-embedded tumor sections were heated
for 1 h at 60 ◦C, dewaxed and rehydrated. Samples were subjected to antigen retrieval
using Tris-EDTA buffer, pH 9.0 (Invitrogen, Thermo Fisher Scientific, Waltham, MA, USA)
in a Decloaking Chamber™ NxGen (Biocare medical, Concord, CA, USA) at 110 ◦C for
20 min. Blockage was performed by incubating the samples in TBS + 0.5% TritonX-100 + 3%
donkey serum for 1 h at room temperature. Next, samples were incubated with the primary
antibodies human vimentin mouse IgG (ready to use, Dako, Glostrup, Denmark) and
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CXCR4 rabbit IgG (1:250, Abcam, Cambridge, UK) overnight at 4 ◦C. Tissue sections were
then incubated with the secondary antibodies anti-mouse IgG-Alexa Fluor® 546 (1:200,
Abcam) and anti-rabbit IgG-Alexa Fluor® 488 (1:200, Abcam) for 2 h at room temperature.
Before mounting, the tumor sections were stained with 0.5 µg/mL DAPI (Sigma-Aldrich,
Sant Louis, MO, USA) for 10 min at room temperature. Samples were visualized by
fluorescence microscopy and representative pictures were taken with an Olympus DP73
digital camera (Olympus Corporation, Tokyo, Japan) and analyzed using Fiji, ImageJ
software (National Institutes of Health, Bethesda, MD, USA).

For histopathological analyses, organ sections were stained with hematoxylin eosin
(H&E) and analyzed by two independent observers. CXCR4 (1:200, Abcam. Retrieval
pH high, Dako, Glostrup, Denmark) and Human Vimentin (ready to use, Dako, Glostrup,
Denmark) immunohistochemical (IHC) staining were performed in a Dako Autostainer
Link48 (Glostrup, Denmark), following the manufacturer’s instructions. Representative
images were captured using an Olympus DP73 digital camera and processed with Olympus
CellD Imaging 3.3 software (Olympus Corporation, Tokyo, Japan).

2.5. Statistical Analysis

Data were represented as mean ± standard error (SEM). Statistical analyses were
performed using the GraphPad Prism 5 software (GraphPad, San Diego, CA, USA). Re-
sults were analyzed by Scheirer–Ray–Hare test, Fisher’s test, and Mann–Whitney test.
Differences were considered statistically significant when p-values < 0.05.

3. Results
3.1. CXCR4+ Tumor Cells Are Enriched in the Tumor Budding in a HNSCC Mouse Model

Since CXCR4 overexpression in tumor tissue has been related to enhanced migration,
metastatic potential, and a higher risk of recurrence in HNSCC, we wanted to evaluate
its suitability as a receptor for targeted drug delivery. Considering the relevance of the
CXCR4 receptor in HNSCC prognosis, we wanted to further study CXCR4 expression
in a HNSCC orthotopic mouse model. For that, human HNSCC 74B-Luci cells were
inoculated orthotopically in the tongues of the mice to generate primary tumors. Both
CXCR4 and human vimentin IHC staining were performed in consecutive primary tumor
slides. Human vimentin IHC staining was used as a marker for the selective detection
of tumor cells, since the 74B cell line constitutively expresses vimentin. Moreover, the
anti-human-vimentin antibody utilized does not cross-react with mouse vimentin; thus, it
is able to detect cancer cells even as single cells in mouse tissues. Remarkably, although the
vast majority of the cancer cells within the primary tumor were CXCR4− (Figure S1), when
observing the tumor margin, several single cells and cell clusters that expressed CXCR4
invading the stromal tissue of the tumor edge were detected (Figure 1A). Moreover, some
of these CXCR4+ cells were also positive for human-vimentin expression, implying that
they were cancer cells (Figure 1A). In order to confirm these observations, CXCR4 and
human vimentin co-immunofluorescent staining was performed on the tumor samples.
The CXCR4+ vimentin+ cells were observed in the tumor budding in the primary tumor
margin, demonstrating that the CXCR4+ cells previously identified by IHC were indeed
human cancer cells (vimentin+) (Figure 1B). These results clearly suggest that CXCR4 plays
an important role in the invasion and dissemination of cancer cells from primary tumor
sites, which has already been demonstrated for other cancer types [11,15,16].

3.2. T22-DITOX-H6 Nanotoxin Treatment Abrogates Tumor-Cell Invasion In Vivo

The detection of these CXCR4+ tumor cells in the invasive front of the primary
tumors exhorted us to investigate the potential anti-invasive effect of the T22-DITOX-H6
nanotoxin. T22-DITOX-H6 includes the CXCR4 ligand T22, fused to the cytotoxic domain
of the diphtheria toxin, which is able to selectively internalize and eliminate CXCR4+

HNSCC cancer cells [21,22]. In this context, we generated an orthotopic HNSCC mouse
model through the inoculation of the 74B-Luci cells in the mouse tongues. The animals
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were administered up to five doses of either buffer (166 mM NaCO3H, pH 8) or 10 µg
of T22-DITOX-H6 on a daily basis and euthanized 48 h after the end of the treatment
(day 7 after tumor cell inoculation), at which point the tumors and other relevant organs
were collected for later analyses (Figure S2A). Human vimentingIHC staining revealed
that nanotoxin repeated administration clearly diminished the number of cancer cells
(vimentin+) in the tumor invasive front (Figure 2A,B). In agreement with this finding,
the CXCR4+ cells in the tumor budding were also reduced upon nanotoxin treatment
(Figure 2C,D). As expected, no variation in primary tumor volume was observed between
the control and nanotoxin-treated animals, as the CXCR4 expression within the tumor
tissue was negligible (Figure S3). Altogether, these findings clearly suggest that succes-
sive T22-DITOX-H6 administration effectively eliminates CXCR4+ invasive cancer cells
endowed with metastatic potential.

Figure 1. CXCR4 expression in the tumor invasive front generated in the HNSCC orthotopic mouse
model. (A) Representative CXCR4 and human-vimentin IHC images of the tumor budding showing
the presence of CXCR4+ cancer cells invading the surrounding tissue. Scale bars = 200 µm and
100 µm. (B) CXCR4 and human-vimentin immunofluorescence staining in the invasive front of the
orthotopic tumor samples. Scale bars = 50 µm.



Pharmaceutics 2022, 14, 887 6 of 15

Figure 2. Anti-invasive T22-DITOX-H6 effect in the tumor front in a HNSCC orthotopic mouse model.
(A) Representative human-vimentin IHC images of tumors collected from buffer- and T22-DITOX-
H6-treated animals, showing a reduction in the number of human-vimentin-positive stained cells in
the invasive front of the tumors after the nanotoxin treatment. Scale bar = 200 µm. (B) Quantification
of the number of human-vimentin-positive stained cells in the tumor budding in the control and
nanotoxin-treated tumors. (C) CXCR4 IHC analysis of the invasive front of tumors derived from
control and nanotoxin-treated mice, displaying a reduction in the number of CXCR4+ cells upon
T22-DITOX-H6 treatment. Scale bar = 200 µm. (D) Quantification of the number of CXCR4-positive
stained cells in the aforementioned CXCR4 IHC images. * p < 0.05; n = 4 per group (total animal
number 8). Statistical analysis was performed by Mann–Whitney test. Error bars indicate SEM.

3.3. T22-DITOX-H6 Repeated Dosage Inhibits Metastatic Dissemination in a HNSCC Orthotopic
Mouse Model in the Absence of Systemic Toxicity

The aforementioned potent inhibition of tumor-cell invasion prompted us to further
investigate the potential antimetastatic activity of T22-DITOX-H6 in an orthotopic mouse
model that replicates the metastatic pattern observed in HNSCC patients. Animals were
administered up to 14 doses of either buffer (166 mM NaCO3H, pH 8) or 10 µg of T22-
DITOX-H6 on alternate days. Tumor-cell dissemination was assessed weekly in vivo by
measuring the bioluminescent signal emitted by tumor cells (BLIs). Forty-eight hours after
the last dose (day 30 after tumor-cell inoculation), the animals were euthanized. BLI of
the primary tumors and different relevant organs was evaluated ex vivo. Then, primary
tumors and organswere collected for immunohistochemical studies (Figure S2B).

Regional metastatic dissemination to the cervical lymph nodes was evaluated during
the course of the experiment by a semi-quantitative measurement of the bioluminescent
signal emitted by the tumor cells (Figure 3A–C). Remarkably, the buffer-treated animals
presented greater cervical-lymph-node cancer-cell infiltration compared to the nanotoxin-
treated mice (Figure 3A). Semi-quantification of the emitted bioluminescent signal by
cervical lymph nodes during the experiment clearly showed that the T22-DITOX-H6
treatment abrogated cervical lymph node tumor infiltration (Figure 3B). In agreement,
the area under the curve (AUC) for the lymph nodes’ bioluminescent signal was also
significantly smaller in the nanotoxin-treated group (Figure 3C). The follow-up of the
bioluminescent signal in vivo was further validated ex vivo at euthanasia, confirming
the reduction in cervical-lymph-node tumor infiltration resulting from the nanotoxin
treatment (Figure S4A,B). Accordingly, the T22-DITOX-H6 treatment affected the percentage
of animals with cervical-lymph-node dissemination, with a 57% reduction (71% of the
control animals, versus 14% of the treated animals) (Figure 3D). Importantly, six animals
from the nanotoxin-treated group were metastasis-free, whereas only two control animals
presented no lymph-node tumor infiltration at the end of the experiment. The metastatic
cells were also detected by human-vimentin IHC staining, revealing that the lymph nodes
collected from the buffer-treated animals were vimentin+, further corroborating their
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infiltration by the tumor cells (Figure 3E). Remarkably, cervical lymph node infiltration was
macroscopically detected in the control animals, while their nanotoxin-treated counterparts
presented a normal appearance, with an absence of visible cancer masses (Figure 3F). In
agreement, tumor-cell infiltration also affected the cervical-lymph-node area, with the
cervical lymph nodes derived from the nanotoxin-treated animals being significantly
smaller compared to their buffer-treated counterparts (Figure 3G). Thus, T22-DITOX-H6
repeated administration in the disseminated mouse model clearly inhibited regional cervical
lymph node metastasis.

Figure 3. T22-DITOX-H6 repeated administration reduces the occurrence of regional dissemination
to the cervical lymph nodes in a HNSCC-disseminated mouse model. (A) Bioluminescence intensity
(BLI) emitted by 74B-Luci cancer cells during the experiment in the buffer- and T22-DITOX-H6-treated
animals. (B) Semi-quantification of the emitted BLI in the cervical lymph nodes (LNs) throughout the
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experiment in the control and treated groups. (C) Area under the curve (AUC) of the registered
BLI emitted by cervical lymph nodes (LN) in the time course of the experiment for both control
and nanotoxin-treated animals. (D) Percentage of the animals presenting cervical-lymph-node (LN)
infiltration at the endpoint of the experiment in the buffer- and T22-DITOX-H6-treated groups.
(E) Human vimentin IHC analysis of cervical lymph node samples from control and treated animals
at the endpoint of the experiment (day 30 post-tumor-cell inoculation). Scale bars = 500 µm and
200 µm. (F) Representative images of the cervical lymph nodes (LN) from a buffer-treated animal
(up) and a nanotoxin-treated animal (down) at euthanasia. Animals from the buffer-treated group
presented macroscopic infiltrated lymph nodes. (G) Quantification of the area of the cervical lymph
nodes observed in the human-vimentin IHC samples collected from buffer- and T22-DITOX-H6
groups. * p < 0.05; ** p < 0.01; *** p < 0.001; n = 7 per group (total animal number 14). Statistical
analysis was performed by Scheirer–Ray–Hare test, Mann–Whitney test, and Fisher’s test. Error bars
indicate SEM.

Furthermore, distant metastatic dissemination to the lungs and liver, two commonly
observed metastatic sites in advanced-HNSCC patients, was also assessed at the end of
the experiment (Figure 4). Ex vivo evaluation of the bioluminescent signal emitted by
the lung (Figure S4C,D) and liver (Figure S4E,F) samples at the endpoint of the experi-
ment showed a reduction in the tumor-cell dissemination upon T22-DITOX-H6 repeated
administration. Lung metastatic foci were detected by human-vimentin IHC, as no macro-
scopic metastases were visible at first sight, neither in the buffer-treated animals, nor in
the nanotoxin-treated animals. Human-vimentin immunostaining allowed the precise
detection of the lung metastatic foci, which were not only formed by cancer cell clusters,
but also by single cells (Figure 4A). Importantly, the repeated dosage of nanotoxin dra-
matically impaired lung metastatic dissemination, as five animals from the treated group
presented no metastatic infiltration while no buffer-treated animals were metastasis-free
after the treatment, representing a 70% reduction in the occurrence of lung metastases
(100% in the buffer-treated animals, compared to 30% in the nanotoxin-treated group)
(Figure 4B). Furthermore, the number of lung metastatic foci, both single-cell and cluster,
observed in the animals from the control group was significantly higher than the number
detected in the nanotoxin-treated group, further corroborating the antimetastatic effect of
the T22-DITOX-H6 treatment (Figure 4C).

Similarly, human-vimentin IHC was also utilized to study the metastatic dissemination
to the liver, since no macroscopic metastatic foci could be observed directly (Figure 4D).
Remarkably, the T22-DITOX-H6 treatment clearly abrogated liver metastases. First, the
percentage of animals displaying liver metastatic foci decreased as a consequence of the nan-
otoxin treatment, with a 43% reduction in the liver metastasis occurrence (100% metastatic
animals in the buffer-treated group, versus 57% in the T22-DITOX-H6-treated group).
Thus, three out of seven nanotoxin-treated animals were completely free of liver metas-
tases (Figure 4E). In agreement with this finding, the number of both single and cluster
metastatic foci was reduced in the T22-DITOX-H6 group compared to the buffer-treated
animals, also implying that the nanotoxin treatment reduced the development of liver
metastasis in this model (Figure 4F).

Finally, no systemic toxicity derived from the repeated administration of T22-DITOX-
H6 was observed in the animals. The H&E staining of the livers and kidneys (the organs
involved in drug metabolism and elimination) after treatment showed no histopathological
alterations (Figure 5A). Spleen samples were also studied; since some leukocytes express
CXCR4, the spleen constitutes a potential site for on-target toxicity. Importantly, the spleen
H&E analysis also showed that the normal architecture of the organ was preserved after
nanotoxin treatment (Figure 5A). In addition, no differences in body weight were detected
between the control and T22-DITOX-H6-treated animals throughout the experiment, further
confirming the lack of off-target toxicity of the treatment (Figure 5B).
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Figure 4. T22-DITOX-H6 repeated administration inhibits distant metastatic dissemination to
lungs and liver in a HNSCC-disseminated mouse model. (A) Representative human-vimentin
IHC images of lung metastatic foci in samples obtained from buffer- and nanotoxin-treated mice.
Scale bars = 100 µm. (B) Percentage of the animals from control and treated groups displaying lung
metastases detected by human-vimentin IHC. (C) Quantification of the number of lung metastatic
foci in each animal from the buffer- and T22-DITOX-H6-treated groups. (D) Human-vimentin IHC
images showing the metastatic foci in the liver samples collected from control and treated mice. Scale
bars = 100 µm. (E) Percentage of the animals from buffer- and T22-DITOX-H6 groups presenting liver
metastases detected by human-vimentin IHC. (F) Quantification of the number of liver metastatic foci
in each animal from the buffer- and nanotoxin-treated groups. ** p < 0.01; *** p < 0.001; n = 7 per group
(total animal number 14). Statistical analysis was performed by Mann–Whitney test and Fisher’s test.
Error bars indicate SEM.

Thus, intravenous T22-DITOX-H6 repeated administration dramatically blocked both
regional and distant dissemination of the HNSCC cells in this orthotopic mouse model able
to replicate the metastatic pattern observed in HNSCC patients. It is important to mention
that no primary tumor shrinkage was observed after the treatment (Figure S5), as has been
already mentioned for a previous experiment (Figure S3).
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Figure 5. Evaluation of the systemic toxicity derived from T22-DITOX-H6 administration in the
HNSCC-disseminated mouse model. (A) Histopathological analysis by H&E staining in liver, kidneys,
and spleen samples collected from buffer- and T22-DITOX-H6-treated groups. Scale bars = 100 µm
and 50 µm (zoom in) (B) Body weights of buffer- and nanotoxin-treated animals over the course of
the experiment. Error bars indicate SEM.

4. Discussion

In this work, we showed for the first time that targeted delivery of the diphtheria
cytotoxic domain to CXCR4-overexpresing human HNSCC via the T22-DITOX-H6 nan-
otoxin effectively eliminates the cancer cells present in the invasive front of primary tumors,
thus demonstrating a potent anti-invasive effect. In addition, the repeated administration
of T22-DITOX-H6 in a HNSCC-disseminated mouse model that replicates the metastatic
pattern found in patients achieved a potent antimetastatic effect, which included a dramatic
blockage of regional lymph node dissemination and a potent inhibition of distant metastasis
to the lungs and liver, without inducing systemic toxicity in the animals. Remarkably, the
nanotoxin treatment presented no effect on the primary tumor, suggesting that T22-DITOX-
H6 is capable of selectively eliminating the CXCR4-overexpressing cells responsible for
the metastatic process. Importantly, metastatic dissemination still represents the main
cause of HNSCC patient mortality [23–25], highlighting the necessity for novel therapeutic
strategies, such as our targeted drug delivery approach.

Notably, we detected CXCR4+ human HNSCC cells in the edges of primary tumors
in an orthotopic mouse model. These CXCR4+ cancer cells, located in the tumor front,
are empowered with a greater invasive and metastatic potential, and have also been
described in other cancer types, in which they have been identified as cancer stem cells
(CSCs) [26–28]. In this framework, repeated T22-DITOX-H6 administration effectively
eliminated the CXCR4+ HNCSS cancer cells in the invasive front of the primary tumors.
Thus, the selective elimination of these highly metastatic CXCR4+ cancer cells would
potentially block metastatic dissemination.
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Consequently, T22-DITOX-H6 nanotoxin repeated intravenous administration in a
HNSCC mouse model induced a potent blockage of tumor metastasis, both regional and
distant, in the absence of systemic toxicity. In vivo BLI was utilized to semi-quantitatively
evaluate the regional tumor dissemination to the cervical lymph nodes. Although it is an
extremely useful technique for preclinical cancer studies, in vivo BLI is limited by spatial
resolution and poor signal tissue penetration, which prevented us from detecting in vivo
tumor cell infiltration in the organs located deeper in the mouse body, such as lungs and
liver [29]. To overcome these limitations, a semi-quantitative ex vivo BLI assessment of the
relevant explanted organs was performed at euthanasia, revealing an effect of the nanotoxin
treatment in blocking the metastatic dissemination. Moreover, the BLI semi-quantitative
measures were further corroborated by the IHC analyses, which showed that, in fact,
the nanotoxin-treated animals presented a reduction in both regional and distant tumor
metastasis. Importantly, the nanotoxin treatment induced a 57% reduction in the regional
dissemination to the cervical lymph nodes, a major metastatic site in HNSCC patients.
Over 40% of HNSCC patients present cervical lymph node dissemination at diagnosis,
and up to 30% of early-stage patients are still at risk of developing regional metastases
during the disease, dramatically affecting their prognosis and survival [30,31]. In addition,
nanotoxin treatment also reduced the distant metastatic dissemination to both the lungs
and liver, with reductions of 70% and 43%, respectively. Although distant dissemination is
not especially frequent at presentation, up to 30% of HNSCC patients develop metastases
in the time course of their disease, presenting a very poor prognosis with a median overall
survival of less than one year [2,32]. Moreover, the vast majority of recurrent and metastatic
HNSCC patients are only candidates for palliative treatment, emphasizing the urgent need
for novel curative therapies [32,33]. However, it is important to comment that a percentage
of the nanotoxin-treated animals still presented metastases after treatment, suggesting that
targeting the CXCL12/CXCR4 axis might not be sufficient to completely ablate metastatic
dissemination. These results pave the way for further exploration of the combination of
T22-DITOX-H6 treatment with other therapies, such as targeted drugs against TGF-β or
FGFR that are also involved in the HNSCC metastatic spread [3–7].

Current HNSCC treatment still mainly relies on conventional chemotherapeutic drugs,
as well as molecularly targeted drugs (cetuximab) and immune checkpoint inhibitors
(pembrolizumab) [32,33]. Although the incorporation of novel targeted therapies has
improved patient survival, the response rates to both cetuximab and pembrolizumab are
quite low [34,35]. Chemotherapeutic drugs lack selectivity, thus inducing important off-
target toxicities in non-tumor-bearing organs, compromising patients life quality [36,37].
Moreover, therapy resistance, both to chemotherapy and to molecular therapies, is an
important drawback of current treatments, preventing complete remission and leading to
recurrence [38,39]. In this framework, the T22-DITOX-H6 nanotoxin represents a promising
approach for HNSCC treatment, as it aims to deliver cytotoxic compounds exclusively
to CXCR4+ cancer cells. Our previous work demonstrated the selective accumulation
of nanoparticles in CXCR4-overexpressing tumor tissues [21], together with a CXCR4-
dependent cytotoxic effect and a potent antitumor effect in vivo [22]. Here, we demonstrate,
for the first time, that the T22-DITOX-H6 nanotoxin induces potent anti-invasive and
antimetastatic effects in vivo. Other targeted drug delivery strategies have also been
explored for HNSCC treatment. Different immunotoxins, such as VB4-845 and SS1P, both
including the Pseudomonas aeruginosa exotoxin fused to anti-EpCAM or mesothelin targeting
moieties, have undergone clinical trials for the treatment of HNSCC. However, none of
them has yet reached the market, due to immunogenicity, off-target toxicity concerns, and
a lack of antitumor effect due to poor tumor uptake [40,41]. By contrast, our T22-based
nanotoxin presents interesting features, including efficient single-step production and
purification in recombinant bacteria, easy production scale-up, biocompatibility, and a lack
of off-target toxicity [19]. Moreover, while immunotoxins display only one targeting moiety
per molecule and a low cytotoxic payload [42,43], this T22-based nanotoxin is produced
by the self-assembly of multiple monomers, conferring superselectivity derived from the
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display of multiple T22 ligands [44]. However, it is relevant to take into consideration that
the antineoplasic effect of T22-DITOX-H6 has only been evaluated in immunodeficient
mice displaying a compromised immune system. Since immunogenicity represents a
major drawback of immunotoxins, a thorough evaluation of T22-DITOX-H6’s effect on the
immune system is key to its further clinical translation. In addition, different immune cells,
such as lymphocytes, constitutively express CXCR4; they thus represent potential targets
for nanotoxin treatment. To assess these questions, our group is currently developing
syngeneic mouse models for different cancer types, including HNSCC, to study the effect of
nanotoxin treatment on immunocompetent animals. Nonetheless, the potent anti-invasive
and anti-metastatic effect demonstrated in the present article clearly supports the relevance
of T22-DITOX-H6 as a promising treatment for HNSCC patients. Altogether, T22-DITOX-
H6 holds great promise for future clinical translation.

5. Conclusions

In conclusion, CXCR4 expression in the invasive front of HNSCC primary tumors
supports the previously reported implication of the receptor in the invasive and metastatic
processes. Moreover, CXCR4 overexpression in HNSCC cancer cells compared to healthy
tissue makes it an ideal entryway for targeted drug delivery. Thus, T22-DITOX-H6’s ability
to eliminate CXCR4+ cancer cells presenting a more invasive and metastatic phenotype
blocks HNSCC’s invasiveness and its metastatic dissemination to the cervical lymph nodes,
lungs, and liver, in the absence of histopathological alterations. Altogether, the T22-DITOX-
H6 nanotoxin represents a promising alternative treatment for HNSCC patients that are still
at risk of developing metastatic disease and recurrence, which significantly compromise
their clinical outcome and survival.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/pharmaceutics14040887/s1. Figure S1: CXCR4 expression in 74B-
Luci primary-tumor samples in the orthotopic mouse model; Figure S2: Schematic representation of
the experimental design followed in the studies; Figure S3: Tumor-size assessment in the experiment
that evaluated T22-DITOX-H6’s anti-invasive effect; Figure S4: Ex vivo bioluminescence evaluation
in the metastatic organs; Figure S5: Evaluation of the primary tumor size in buffer- and nanotoxin-
treated animals in the experiment that evaluated T22-DITOX-H6’s antimetastatic effect.

Author Contributions: Conceptualization, E.V., R.M., L.A.-C. and X.L.; methodology, E.R.-B., I.A.-S.,
P.Á., U.U., N.S. and L.S.-G.; validation, E.R.-B., I.A.-S., P.Á., U.U., N.S. and L.S.-G.; formal analysis,
E.R.-B. and A.G.; investigation, E.R.-B. and A.G.; data curation, E.R.-B. and A.G.; writing—original
draft preparation, E.R.-B.; writing—review and editing, I.C., U.U., M.Q., A.V., E.V., X.L., L.A.-C.
and R.M.; supervision, E.V., L.A.-C. and R.M.; project administration, L.A.-C. and R.M.; funding
acquisition, U.U., M.Q., A.V., E.V., X.L. and R.M. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by Instituto de Salud Carlos III (ISCIII, co-funding from FEDER,
Spain) (grant numbers PI21/00150, PI21/00232, PI20/00400, PI18/00650, PIE15/00028, PI15/00378,
EU COST Action CA 17140, PI19/01661, PI17/00584, and CP19/00028); Agencia Estatal de Investi-
gación (AEI) and Fondo Europeo de Desarrollo Regional (FEDER) (Spain) (grant numbers BIO2016-
76063-R and PID2019-105416RB-I00/AEI/10.13039/501100011033); CIBER-BBN (Spain) [grant num-
bers CB06/01/1031, 4NanoMets, VENOM4CANCER, NANOREMOTE, and NANOSCAPE]; AGAUR
co-funded by European Social Fund (ESF: Investing in Your Future) (grant numbers 2017-SGR-865,
2017-SGR-229, 2020FI_B2 00168, and 2018FI_B2_00051); Josep Carreras Leukemia Research Institute
(Spain); AECC (Spanish Association of Cancer Research, Spain); Generalitat de Catalunya (Spain)
(grant number PERIS SLT006/17/00093). Toxicity was assessed in the ICTS-141007 Nanbiosis Plat-
form, part of the CIBER-BBN Nanotoxicology Unit. Available online: http://www.nanbiosis.es/
portfolio/u18-nanotoxicology-unit/ (accessed on 14 April 2022). Protein production was partially
performed by the ICTS “NANBIOSIS”, more specifically on the Protein Production Platform of CIBER-
BBN/IBB. Available online: http://www.nanbiosis.es/unit/u1-protein-production-platform-ppp/
(accessed on 14 April 2022).

https://www.mdpi.com/article/10.3390/pharmaceutics14040887/s1
https://www.mdpi.com/article/10.3390/pharmaceutics14040887/s1
http://www.nanbiosis.es/portfolio/u18-nanotoxicology-unit/
http://www.nanbiosis.es/portfolio/u18-nanotoxicology-unit/
http://www.nanbiosis.es/unit/u1-protein-production-platform-ppp/


Pharmaceutics 2022, 14, 887 13 of 15

Institutional Review Board Statement: The animal study protocol was approved by the Ethics
Comitee of Institut de Recerca Hospital de la Santa Creu i Sant Pau, Barcelona (protocol code 9721,
date of approval 20 February 2018).

Informed Consent Statement: Not applicable.

Data Availability Statement: Data is available from the corresponding author upon justified demand.

Conflicts of Interest: Antonio Villaverde, Esther Vázquez, Ugutz Unzueta, Ramon Mangues, and
Isolda Casanova are included as authors in the patent PCT/EP2012/050513 related to the targeted
delivery of therapeutic molecules to CXCR4 cells, and Antonio Villaverde, Esther Vázquez, Ugutz
Unzueta, Ramon Mangues, Isolda Casanova, Naroa Serna, and Laura Sánchez-García are included in
PCT/EP2018/061732, covering therapeutic nanostructured proteins. All other authors declare no
conflict of interest.

References
1. Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN

Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [CrossRef]
[PubMed]

2. Sacco, A.G.; Cohen, E.E. Current Treatment Options for Recurrent or Metastatic Head and Neck Squamous Cell Carcinoma. J.
Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2015, 33, 3305–3313. [CrossRef]

3. Wang, Y.; Wu, C.; Zhang, C.; Li, Z.; Zhu, T.; Chen, J.; Ren, Y.; Wang, X.; Zhang, L.; Zhou, X. TGF-β-Induced STAT3 Overexpression
Promotes Human Head and Neck Squamous Cell Carcinoma Invasion and Metastasis through Malat1/MiR-30a Interactions.
Cancer Lett. 2018, 436, 52–62. [CrossRef] [PubMed]

4. Pang, X.; Tang, Y.L.; Liang, X.H. Transforming Growth Factor-β Signaling in Head and Neck Squamous Cell Carcinoma: Insights
into Cellular Responses. Oncol. Lett. 2018, 16, 4799–4806. [CrossRef] [PubMed]

5. Huang, T.; Huang, W.; Lu, H.; Zhang, B.; Ma, J.; Zhao, D.; Wang, Y.; Yu, D.; He, X. Identification and Validation a TGF-β-Associated
Long Non-Coding RNA of Head and Neck Squamous Cell Carcinoma by Bioinformatics Method. J. Transl. Med. 2018, 16, 46.
[CrossRef] [PubMed]

6. Ileana Dumbrava, E.; Alfattal, R.; Miller, V.A.; Tsimberidou, A.M. Complete Response to a Fibroblast Growth Factor Receptor
Inhibitor in a Patient With Head and Neck Squamous Cell Carcinoma Harboring FGF Amplifications. JCO Precis. Oncol. 2018, 2,
1–7. [CrossRef]

7. Chen, Q.; Chu, L.; Li, X.; Li, H.; Zhang, Y.; Cao, Q.; Zhuang, Q. Investigation of an FGFR-Signaling-Related Prognostic Model and
Immune Landscape in Head and Neck Squamous Cell Carcinoma. Front. Cell Dev. Biol. 2022, 9, 801715. [CrossRef]

8. Pernas, S.; Martin, M.; Kaufman, P.A.; Gil-Martin, M.; Gomez Pardo, P.; Lopez-Tarruella, S.; Manso, L.; Ciruelos, E.;
Perez-Fidalgo, J.A.; Hernando, C.; et al. Balixafortide plus Eribulin in HER2-Negative Metastatic Breast Cancer: A Phase 1,
Single-Arm, Dose-Escalation Trial. Lancet Oncol. 2018, 19, 812–824. [CrossRef]

9. León, X.; Diez, S.; García, J.; Lop, J.; Sumarroca, A.; Quer, M.; Camacho, M. Expression of the CXCL12/CXCR4 Chemokine Axis
Predicts Regional Control in Head and Neck Squamous Cell Carcinoma. Eur. Arch. Oto-Rhino-Laryngol. 2016, 273, 4525–4533.
[CrossRef]

10. De-Colle, C.; Menegakis, A.; Mönnich, D.; Welz, S.; Boeke, S.; Sipos, B.; Fend, F.; Mauz, P.-S.; Tinhofer, I.; Budach, V.; et al.
SDF-1/CXCR4 Expression Is an Independent Negative Prognostic Biomarker in Patients with Head and Neck Cancer after
Primary Radiochemotherapy. Radiother. Oncol. J. Eur. Soc. Ther. Radiol. Oncol. 2018, 126, 125–131. [CrossRef]

11. Albert, S.; Hourseau, M.; Halimi, C.; Serova, M.; Descatoire, V.; Barry, B.; Couvelard, A.; Riveiro, M.E.; Tijeras-Raballand, A.; De
Gramont, A.; et al. Prognostic Value of the Chemokine Receptor CXCR4 and Epithelial-to-Mesenchymal Transition in Patients
with Squamous Cell Carcinoma of the Mobile Tongue. Oral Oncol. 2012, 48, 1263–1271. [CrossRef] [PubMed]

12. Luker, G.D.; Yang, J.; Richmond, A.; Scala, S.; Festuccia, C.; Schottelius, M.; Wester, H.J.; Zimmermann, J. At the Bench: Pre-Clinical
Evidence for Multiple Functions of CXCR4 in Cancer. J. Leukoc. Biol. 2021, 109, 969–989. [CrossRef] [PubMed]

13. Li, J.; Oupický, D. Effect of Biodegradability on CXCR4 Antagonism, Transfection Efficacy and Antimetastatic Activity of
Polymeric Plerixafor. Biomaterials 2014, 35, 5572–5579. [CrossRef] [PubMed]

14. Li, J.; Zhu, Y.; Hazeldine, S.T.; Li, C.; Oupický, D. Dual-Function CXCR4 Antagonist Polyplexes to Deliver Gene Therapy and
Inhibit Cancer Cell Invasion. Angew. Chemie-Int. Ed. 2012, 51, 8740–8743. [CrossRef]

15. Albert, S.; Riveiro, M.E.; Halimi, C.; Hourseau, M.; Couvelard, A.; Serova, M.; Barry, B.; Raymond, E.; Faivre, S. Focus on the Role
of the CXCL12/CXCR4 Chemokine Axis in Head and Neck Squamous Cell Carcinoma. Head Neck 2013, 35, 1819–1828. [CrossRef]

16. Domanska, U.M.; Kruizinga, R.C.; Nagengast, W.B.; Timmer-Bosscha, H.; Huls, G.; De Vries, E.G.E.; Walenkamp, A.M.E. A
Review on CXCR4/CXCL12 Axis in Oncology: No Place to Hide. Eur. J. Cancer 2013, 49, 219–230. [CrossRef] [PubMed]

17. Shi, J.; Kantoff, P.W.; Wooster, R.; Farokhzad, O.C. Cancer Nanomedicine: Progress, Challenges and Opportunities. Nat. Rev.
Cancer 2017, 17, 20–37. [CrossRef]

http://doi.org/10.3322/caac.21660
http://www.ncbi.nlm.nih.gov/pubmed/33538338
http://doi.org/10.1200/JCO.2015.62.0963
http://doi.org/10.1016/j.canlet.2018.08.009
http://www.ncbi.nlm.nih.gov/pubmed/30118844
http://doi.org/10.3892/ol.2018.9319
http://www.ncbi.nlm.nih.gov/pubmed/30250544
http://doi.org/10.1186/s12967-018-1418-6
http://www.ncbi.nlm.nih.gov/pubmed/29490660
http://doi.org/10.1200/PO.18.00100
http://doi.org/10.3389/fcell.2021.801715
http://doi.org/10.1016/S1470-2045(18)30147-5
http://doi.org/10.1007/s00405-016-4144-9
http://doi.org/10.1016/j.radonc.2017.10.008
http://doi.org/10.1016/j.oraloncology.2012.06.010
http://www.ncbi.nlm.nih.gov/pubmed/22776129
http://doi.org/10.1002/JLB.2BT1018-715RR
http://www.ncbi.nlm.nih.gov/pubmed/33104270
http://doi.org/10.1016/j.biomaterials.2014.03.047
http://www.ncbi.nlm.nih.gov/pubmed/24726746
http://doi.org/10.1002/anie.201203463
http://doi.org/10.1002/hed.23217
http://doi.org/10.1016/j.ejca.2012.05.005
http://www.ncbi.nlm.nih.gov/pubmed/22683307
http://doi.org/10.1038/nrc.2016.108


Pharmaceutics 2022, 14, 887 14 of 15

18. Mangues, R.; Vázquez, E.; Villaverde, A. Targeting in Cancer Therapies. Med. Sci. 2016, 4, 6. [CrossRef]
19. Sánchez-García, L.; Serna, N.; Álamo, P.; Sala, R.; Céspedes, M.V.; Roldan, M.; Sánchez-Chardi, A.; Unzueta, U.; Casanova, I.;

Mangues, R.; et al. Self-Assembling Toxin-Based Nanoparticles as Self-Delivered Antitumoral Drugs. J. Control. Release 2018, 274,
81–92. [CrossRef]

20. Brenner, J.C.; Graham, M.P.; Kumar, B.; Saunders, L.M.; Kupfer, R.; Lyons, R.H.; Bradford, C.R.; Carey, T.E. Genotyping of 73
UM-SCC Head and Neck Squamous Cell Carcinoma Cell Lines. Head Neck 2010, 32, 417–426. [CrossRef]

21. Rioja-Blanco, E.; Arroyo-Solera, I.; Álamo, P.; Casanova, I.; Gallardo, A.; Unzueta, U.; Serna, N.; Sánchez-García, L.; Quer, M.;
Villaverde, A.; et al. Self-Assembling Protein Nanocarrier for Selective Delivery of Cytotoxic Polypeptides to CXCR4+ Head and
Neck Squamous Cell Carcinoma Tumors. Acta Pharm. Sin. B 2021, 12, 2595–2608. [CrossRef]

22. Rioja-Blanco, E.; Arroyo-Solera, I.; Álamo, P.; Casanova, I.; Gallardo, A.; Unzueta, U.; Serna, N.; Sánchez-García, L.; Quer, M.;
Villaverde, A.; et al. CXCR4-Targeted Nanotoxins Induce GSDME-Dependent Pyroptosis in Head and Neck Squamous Cell
Carcinoma. J. Exp. Clin. Cancer Res. 2022, 41, 49. [CrossRef] [PubMed]

23. Pontes, F.; Garcia, A.R.; Domingues, I.; João Sousa, M.; Felix, R.; Amorim, C.; Salgueiro, F.; Mariano, M.; Teixeira, M. Survival
Predictors and Outcomes of Patients with Recurrent and/or Metastatic Head and Neck Cancer Treated with Chemotherapy plus
Cetuximab as First-Line Therapy: A Real-World Retrospective Study. Cancer Treat. Res. Commun. 2021, 27, 100375. [CrossRef]
[PubMed]

24. Beckham, T.H.; Leeman, J.E.; Xie, P.; Li, X.; Goldman, D.A.; Zhang, Z.; Sherman, E.; McBride, S.; Riaz, N.; Lee, N.; et al. Long-Term
Survival in Patients with Metastatic Head and Neck Squamous Cell Carcinoma Treated with Metastasis-Directed Therapy. Br. J.
Cancer 2019, 121, 897–903. [CrossRef] [PubMed]

25. Bhave, S.L.; Teknos, T.N.; Pan, Q. Molecular Parameters of Head and Neck Cancer Metastasis. Crit. Rev. Eukaryot. Gene Expr.
2011, 21, 143–153. [CrossRef] [PubMed]

26. Hermann, P.C.; Huber, S.L.; Herrler, T.; Aicher, A.; Ellwart, J.W.; Guba, M.; Bruns, C.J.; Heeschen, C. Distinct Populations of
Cancer Stem Cells Determine Tumor Growth and Metastatic Activity in Human Pancreatic Cancer. Cell Stem Cell 2007, 1, 313–323.
[CrossRef] [PubMed]

27. Cioffi, M.; D’Alterio, C.; Camerlingo, R.; Tirino, V.; Consales, C.; Riccio, A.; Ieranò, C.; Cecere, S.C.; Losito, N.S.; Greggi, S.; et al.
Identification of a Distinct Population of CD133+CXCR4+ Cancer Stem Cells in Ovarian Cancer. Sci. Rep. 2015, 5, 10357. [CrossRef]

28. Li, X.; Bu, W.; Meng, L.; Liu, X.; Wang, S.; Jiang, L.; Ren, M.; Fan, Y.; Sun, H. CXCL12/CXCR4 Pathway Orchestrates CSC-like
Properties by CAF Recruited Tumor Associated Macrophage in OSCC. Exp. Cell Res. 2019, 378, 131–138. [CrossRef]

29. Vandergaast, R.; Khongwichit, S.; Jiang, H.; DeGrado, T.R.; Peng, K.-W.; Smith, D.R.; Russell, S.J.; Suksanpaisan, L. Enhanced
Noninvasive Imaging of Oncology Models Using the NIS Reporter Gene and Bioluminescence Imaging. Cancer Gene Ther. 2020,
27, 179–188. [CrossRef]

30. Marcu, S.D.E.-L.G. Local Metastasis in Head and Neck Cancer-an Overview. In Contemporary Issues in Head and Neck Cancer
Management; IntechOpen: London, UK, 2015; p. 6.

31. Sproll, C.; Freund, A.K.; Hassel, A.; Hölbling, M.; Aust, V.; Storb, S.H.; Handschel, J.; Teichmann, C.; Depprich, R.; Behrens, B.;
et al. Immunohistochemical Detection of Lymph Node-DTCs in Patients with Node-Negative HNSCC. Int. J. Cancer 2017, 140,
2112–2124. [CrossRef]

32. Borcoman, E.; Marret, G.; Le Tourneau, C. Paradigm Change in First-Line Treatment of Recurrent and/or Metastatic Head and
Neck Squamous Cell Carcinoma. Cancers 2021, 13, 2573. [CrossRef] [PubMed]

33. Lau, A.; Yang, W.; Li, K.-Y.; Su, Y. Systemic Therapy in Recurrent or Metastatic Head and Neck Squamous Cell Carcinoma-A
Systematic Review and Meta-Analysis. Crit. Rev. Oncol. Hematol. 2020, 153, 102984. [CrossRef] [PubMed]

34. Tejani, M.A.; Cohen, R.B.; Mehra, R. The Contribution of Cetuximab in the Treatment of Recurrent and/or Metastatic Head and
Neck Cancer. Biologics 2010, 4, 173–185. [CrossRef] [PubMed]

35. Mehra, R.; Seiwert, T.Y.; Gupta, S.; Weiss, J.; Gluck, I.; Eder, J.P.; Burtness, B.; Tahara, M.; Keam, B.; Kang, H.; et al. Efficacy and
Safety of Pembrolizumab in Recurrent/Metastatic Head and Neck Squamous Cell Carcinoma: Pooled Analyses after Long-Term
Follow-up in KEYNOTE-012. Br. J. Cancer 2018, 119, 153–159. [CrossRef]

36. Lin, A.; Giuliano, C.J.; Palladino, A.; John, K.M.; Abramowicz, C.; Yuan, M.L.; Sausville, E.L.; Lukow, D.A.; Liu, L.;
Chait, A.R.; et al. Off-Target Toxicity Is a Common Mechanism of Action of Cancer Drugs Undergoing Clinical Trials. Sci. Transl.
Med. 2019, 11, eaaw8412. [CrossRef]

37. Livshits, Z.; Rao, R.B.; Smith, S.W. An Approach to Chemotherapy-Associated Toxicity. Emerg. Med. Clin. N. Am. 2014, 32,
167–203. [CrossRef]

38. Picon, H.; Guddati, A.K. Mechanisms of Resistance in Head and Neck Cancer. Am. J. Cancer Res. 2020, 10, 2742–2751.
39. López-Verdín, S.; Lavalle-Carrasco, J.; Carreón-Burciaga, R.G.; Serafín-Higuera, N.; Molina-Frechero, N.; González-González, R.;

Bologna-Molina, R. Molecular Markers of Anticancer Drug Resistance in Head and Neck Squamous Cell Carcinoma: A Literature
Review. Cancers 2018, 10, 376. [CrossRef]

40. Wu, T.; Zhu, J. Recent Development and Optimization of Pseudomonas Aeruginosa Exotoxin Immunotoxins in Cancer Therapeutic
Applications. Int. Immunopharmacol. 2021, 96, 107759. [CrossRef]

http://doi.org/10.3390/medsci4010006
http://doi.org/10.1016/j.jconrel.2018.01.031
http://doi.org/10.1002/hed.21198
http://doi.org/10.1016/j.apsb.2021.09.030
http://doi.org/10.1186/s13046-022-02267-8
http://www.ncbi.nlm.nih.gov/pubmed/35120582
http://doi.org/10.1016/j.ctarc.2021.100375
http://www.ncbi.nlm.nih.gov/pubmed/33882378
http://doi.org/10.1038/s41416-019-0601-8
http://www.ncbi.nlm.nih.gov/pubmed/31649318
http://doi.org/10.1615/CritRevEukarGeneExpr.v21.i2.40
http://www.ncbi.nlm.nih.gov/pubmed/22077153
http://doi.org/10.1016/j.stem.2007.06.002
http://www.ncbi.nlm.nih.gov/pubmed/18371365
http://doi.org/10.1038/srep10357
http://doi.org/10.1016/j.yexcr.2019.03.013
http://doi.org/10.1038/s41417-019-0081-2
http://doi.org/10.1002/ijc.30617
http://doi.org/10.3390/cancers13112573
http://www.ncbi.nlm.nih.gov/pubmed/34073885
http://doi.org/10.1016/j.critrevonc.2020.102984
http://www.ncbi.nlm.nih.gov/pubmed/32569853
http://doi.org/10.2147/btt.s3050
http://www.ncbi.nlm.nih.gov/pubmed/20714355
http://doi.org/10.1038/s41416-018-0131-9
http://doi.org/10.1126/scitranslmed.aaw8412
http://doi.org/10.1016/j.emc.2013.09.002
http://doi.org/10.3390/cancers10100376
http://doi.org/10.1016/j.intimp.2021.107759


Pharmaceutics 2022, 14, 887 15 of 15

41. Havaei, S.M.; Aucoin, M.G.; Jahanian-Najafabadi, A. Pseudomonas Exotoxin-Based Immunotoxins: Over Three Decades of
Efforts on Targeting Cancer Cells with the Toxin. Front. Oncol. 2021, 11, 1–17. [CrossRef]

42. Vallera, D.A.; Kreitman, R.J. Immunotoxins Targeting B Cell Malignancy-Progress and Problems with Immunogenicity.
Biomedicines 2018, 7, 1. [CrossRef] [PubMed]

43. Kim, J.-S.; Jun, S.-Y.; Kim, Y.-S. Critical Issues in the Development of Immunotoxins for Anticancer Therapy. J. Pharm. Sci. 2020,
109, 104–115. [CrossRef] [PubMed]

44. Liu, M.; Apriceno, A.; Sipin, M.; Scarpa, E.; Rodriguez-Arco, L.; Poma, A.; Marchello, G.; Battaglia, G.; Angioletti-Uberti, S.
Combinatorial Entropy Behaviour Leads to Range Selective Binding in Ligand-Receptor Interactions. Nat. Commun. 2020, 11, 4836.
[CrossRef] [PubMed]

http://doi.org/10.3389/fonc.2021.781800
http://doi.org/10.3390/biomedicines7010001
http://www.ncbi.nlm.nih.gov/pubmed/30577664
http://doi.org/10.1016/j.xphs.2019.10.037
http://www.ncbi.nlm.nih.gov/pubmed/31669121
http://doi.org/10.1038/s41467-020-18603-5
http://www.ncbi.nlm.nih.gov/pubmed/32973157

	Introduction 
	Materials and Methods 
	Production, Purification, and Characterization of Nanoparticles 
	Cell Lines and Culture 
	In Vivo Experiments 
	Histopathology, Immunofluorescence, and Immunohistochemical Analysis 
	Statistical Analysis 

	Results 
	CXCR4+ Tumor Cells Are Enriched in the Tumor Budding in a HNSCC Mouse Model 
	T22-DITOX-H6 Nanotoxin Treatment Abrogates Tumor-Cell Invasion In Vivo 
	T22-DITOX-H6 Repeated Dosage Inhibits Metastatic Dissemination in a HNSCC Orthotopic Mouse Model in the Absence of Systemic Toxicity 

	Discussion 
	Conclusions 
	References

