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Abstract 

Background:  The human landing catch (HLC) is the gold standard method for sampling host-seeking malaria vec-
tors. However, the HLC is ethically questionable because it requires exposure of humans to potentially infectious 
mosquito bites.

Methods:  Two exposure-free methods for sampling host-seeking mosquitoes were evaluated using electrocut-
ing surfaces as potential replacements for HLC: (1) a previously evaluated, commercially available electrocuting grid 
(CA-EG) designed for killing flies, and (2) a custom-made mosquito electrocuting trap (MET) designed to kill African 
malaria vectors. The MET and the CA-EG were evaluated relative to the HLC in a Latin Square experiment conducted in 
the Kilombero Valley, Tanzania. The sampling consistency of the traps across the night and at varying mosquito densi-
ties was investigated. Estimates of the proportion of mosquitoes caught indoors (Pi), proportion of human exposure 
occurring indoors (πi), and proportion of mosquitoes caught when most people are likely to be indoors (Pfl) were 
compared for all traps.

Results:  Whereas the CA-EG performed poorly (<10 % of catch of HLC), sampling efficiency of the MET for sampling 
Anopheles funestus s.l. was indistinguishable from HLC indoors and outdoors. For Anopheles gambiae s.l., sampling 
sensitivity of MET was 20.9 % (95 % CI 10.3–42.2) indoors and 58.5 % (95 % CI 32.2–106.2) outdoors relative to HLC. 
There was no evidence of density-dependent sampling by the MET or CA-EG. Similar estimates of Pi were obtained 
for An. gambiae s.l. and An. funestus s.l. from all trapping methods. The proportion of mosquitoes caught when people 
are usually indoors (Pfl) was underestimated by the CA-EG and MET for An. gambiae s.l., but similar to the HLC for An. 
funestus. Estimates of the proportion of human exposure occurring indoors (πi) obtained from the CA-EG and MET 
were similar to the HLC for An. gambiae s.l., but overestimated for An. funestus.

Conclusions:  The MET showed promise as an outdoor sampling tool for malaria vectors where it achieved >50 % 
sampling sensitivity relative to the HLC. The CA-EG had poor sampling sensitivity outdoors and inside. With further 
modification, the MET could provide an efficient and safer alternative to the HLC for the surveillance of mosquito vec-
tors outdoors.
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Background
Efforts to control malaria rely heavily on the applica-
tion of long-lasting insecticidal nets (LLINs) which are 
the major strategy to protect humans against bites from 
mosquito vectors in African homes [1]. Rapid increases 
in the coverage of LLINs over the past decade have been 
associated with substantial declines in major African 
vector species [2]. A parallel decline in malaria infection 
rates in people has been reported in several places, as 
has a decrease in malaria mortality in infants and adults 
[3]. However, the widespread use of these vector control 
measures may be triggering changes in the ecology and 
genetics of mosquito populations that could threaten 
their continued effectiveness [4–7].

Insecticide resistance is increasingly reported in areas 
where LLINs are widely used [8–11]. There are also 
concerns that LLINs may be selecting for behavioural 
changes within malaria vectors that allow them to shift 
their biting to times and places where people are not 
protected, which can be defined as ‘behavioural avoid-
ance’ [7, 12–16]. These changes in feeding behaviours 
could arise either due to shifts in malaria vector species 
composition from dominance by highly endophilic and 
anthropophilic species (e.g., An. gambiae s.s.) towards 
those with more exophilic and zoophilic tendencies such 
as Anopheles arabiensis [17]. Additionally, it has been 
hypothesized that selection from LLINs could gener-
ate within-species behavioural adaptations [13, 15, 18, 
19]. The ability to monitor if and how rapidly mosquito 
behaviour is changing in response to control measures 
is crucial for assessment of the continued effectiveness 
of LLINs and indoor residual spraying (IRS) strategies 
[20–23].

One of the most important and widely used techniques 
to study the host-seeking behaviour of mosquitoes is the 
human landing catch (HLC)  technique. This technique 
is regarded as the gold standard tool for sampling host-
seeking malaria vectors [24, 25]. The HLC is widely used 
for a range of purposes, including estimation of entomo-
logical exposure rates [26–29], evaluation of vector con-
trol measures [30, 31] and for studying mosquito vector 
behaviour and ecology [16, 26–28, 32, 33]. Although the 
HLC provides a realistic estimate of the number of mos-
quito bites that humans are exposed to, this technique 
has numerous drawbacks. The most notable is ethical 
concerns raised by requiring the participating human 
subjects to expose their legs to attract mosquitoes. The 
aim is for participants to capture mosquitoes landing on 
them before they bite, but this is not always possible and 
could generate some risk of exposure to infection [26, 34, 
35]. To minimize exposure risk it is recommended that 
HLC participants use malaria prophylaxis [36]. Whilst it 
has been shown this precautionary measure can reduce 

infection risk in HLC participants to below that expe-
rienced in the community in some settings [36], it is 
unlikely to be effective in areas of high drug resistance, 
and/or where mosquitoes carry other pathogens (e.g., 
dengue, filariasis) that pose infection risks [37]. These 
problems highlight the need for a more efficient, repre-
sentative and ethical alternative sampling method for 
investigation of mosquito biting densities and behaviour.

Previous attempts have been made to develop expo-
sure-free sampling tools for collecting indoor or outdoor 
biting mosquitoes. These techniques include but are not 
limited to the bed net trap [38], tent traps [39–41], the 
CDC light traps [42], and the mosquito magnet (MM) 
trap [43–45]. While these methods have shown promise 
in some settings, most have limitations that restrict their 
large-scale application, and/or bias collection towards 
mosquito species with particular phenotypes that may 
misrepresent the community of mosquitoes attracted to 
people [46]. Recently, there has been renewed interest 
in exploring the use of electrocuting surfaces as a means 
of sampling malaria vectors [47–49]. This approach was 
originally developed for trapping tsetse flies outdoors 
[50], but later adapted to sample mosquitoes drawn 
towards a host odour source [51, 52]. This trap works by 
placing a live host in a sealed tent and piping their odour 
out to an electrocuting net (E-Net) approximately 10 m 
away that kills mosquitoes on contact. Such E-Nets have 
already shown promise when used to investigate host 
species’ preferences and odour responses of the Afri-
can vector species [51, 52]. As a potential improvement, 
the use of commercially available ‘bug-zapping’ devices, 
which can sample insects in the immediate proximity of 
a host has been explored with some promise, indicating 
they can achieve a relative sampling efficiency of up to 
50 % of the HLC in one study [49]. However, given these 
devices were developed for large flies, their suitability for 
trapping African malaria vectors is unclear. Further work 
is required to develop an electrocuting trap that is opti-
mized for malaria vectors, can meet the performance of 
the HLC, is suitable for use inside and outdoors, can be 
used safely in close proximity of humans, and is durable 
under field conditions. Here, a mosquito electrocuting 
trap (MET) was designed, developed and field-tested. 
This trap was custom designed to sample host-seeking 
African malaria vectors, with the aim of meeting all per-
formance targets defined above.

Methods
Study site
Field experiments were conducted at Lupiro village 
(−8.38 S, 36.67 E) located in the Kilombero Valley of 
southern Tanzania. This village is situated in a malaria-
endemic region where the most recent estimate of 
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entomological inoculation rate (EIR) was 33.9 infectious 
bites per person per year [53]. Historically An. gambiae 
s.s. was the most abundant member of the An. gambiae 
s.l. species complex in the Kilombero Valley [54]. How-
ever in conjunction with the increasing coverage of 
insecticide-treated bed nets (ITNs) in this area over the 
last decade [55, 56], An. gambiae s.s. has almost virtually 
disappeared and its sibling species An. arabiensis now 
constitutes >98  % of the species complex in most areas 
[57–59]. Anopheles funestus is the only other important 
vector species in the area [60].

Trapping methods
Three different trapping methods were used in this 
experiment: the HLC, a MET developed in collabora-
tion between the Ifakara Health Institute (IHI) and the 
University of Glasgow, and a commercially available ‘bug 
zapper’ device (PlusZap™ model ZE107 PZ40W [61]; 
defined as the CA-EG in this study) which is sold for 
domestic electrocution of insects [49]. The MET consists 
of four 30 ×  30  cm panels connected together to make 
a square trapping box. On each panel, a mesh grid was 

made by placing ~1 mm thick (stainless steel) wires par-
allel to one another, at a spacing of 5 mm. Adjacent wires 
were supplied with opposite electric charge (positive next 
to negative) from a common positive or negative electric 
terminal. Wires were fixed into a wooden frame, with the 
four wooden frames being attached together to make the 
trap (Fig. 1a). The space between adjacent wires was set 
at 5 mm because this was deemed to be sufficiently small 
to prevent a mosquito from flying through, but ensure a 
mosquito made contact with both a negative and positive 
grid resulting in electrocution. Anopheles gambiae s.l. 
wing size, which was used to decide the spacing between 
the grids, was estimated from [62]. To collect mosquitoes 
using a MET, a person sits with their lower legs posi-
tioned inside the trapping box (Fig. 1b). This set-up imi-
tates the HLC with the intention of making the MET as 
closely efficient to the HLC as possible. The CA-EG trap, 
with one of its four panels having surface dimensions of 
68 × 24 cm (Fig. 1c), electrocutes flying insects on con-
tact with the electrified surface, which is made up of grid 
wires placed about 8 mm apart. The adjacent wires of the 
electrocuting grid are connected to positive and negative 

Fig. 1  Deployment of traps. a The MET, b the MET with a person sitting with his legs in the trap, c a person sitting within the CA-EG trap and d a 
person performing a human landing catch
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terminals at ~800 V alternating current (AC). Four pan-
els of the CA-EG were joined to form a square structure 
(Fig.  1c) into which a human sitting on a chair placed 
their legs. Mosquitoes which were attracted to bite the 
person on the legs were electrocuted on contact with the 
electrified grids. In both MET and CA-EG, the remaining 
part of the catchers were not surrounded by the electric 
grid but were protected by netting.

This experiment was conducted using a series of experi-
mental huts designed to imitate the typical design of local 
houses in the study area [63]. Experimental huts dimen-
sions were 6.5 m long × 3.5 m wide × 2 m high, with a 
20-cm wide gap between the top of walls and roof to sim-
ulate the open eaves found in most local houses. Trapping 
stations were set up inside each hut and at an associated 
outdoor point approximately 10 m away. For outdoor sta-
tions, tents were used to provide roofing that protected 
the traps and collectors from rain (Fig. 1). A 3 × 3 Latin 
square design was used in which each of the three trap-
ping methods was randomly assigned to one of three 
experimental huts on each night. On each night, collec-
tions were conducted at paired indoor and outdoor trap-
ping stations. Over consecutive nights, the three trapping 
methods were trialled at each hut to complete a full rota-
tion in 3 days. Seven rounds of trapping were conducted 
over 21 trapping nights between March and May 2012. 
The first two rounds were conducted in a group of three 
experimental huts defined as A, B and C (at site 1), and 
the remaining five rounds were conducted in a different 
group of experimental huts (defined D, E and F) which 
were situated approximately 200 m from the first.

Trapping was conducted from 19.00 to 07.00  hours. 
During each hour, volunteers spent 45 min passively sit-
ting in a trap (MET or CA-EG) or actively collecting mos-
quitoes (HLC, Fig.  1d), with the remaining 15  min used 
as a break. Collectors moved to a different trap or posi-
tion every hour throughout the night to minimize bias 
due to variation in their relative attractiveness to mosqui-
toes. At the end of each hour, MET and CA-EG traps were 
checked and trapped mosquitoes were removed by mouth 
aspirators or forceps and placed in labelled cups. On the 
following morning, mosquitoes from all the three trap-
ping methods were sorted using morphological keys to 
identify their genera and gender. Female mosquitoes visu-
ally identified as belonging to a malaria vector group (An. 
gambiae s.l. or An. funestus s.l.) were individually stored 
in Eppendorf tubes with silica gel. Anopheles gambiae s.l. 
were later analysed using the polymerase chain reaction 
(PCR) technique to identify their species identity [64].

Statistical analysis
All statistical analyses were carried out using the R sta-
tistical software version 2.15. Generalized linear mixed 

models (GLMMs) [65] were used to assess variation in 
mosquito vector abundance between trap types. Mos-
quito abundance data were highly overdispersed and thus 
modelled as following a negative binomial distribution 
using the generalized linear mixed model automatic dif-
ferentiation model builder (glmmADMB) package [66]. 
Here, trap type was fitted as the primary main effect of 
interest, and experimental night and hut as random 
effects. The relative sampling efficiency of the novel trap 
types relative to the HLC was estimated by computing 
the ratio of the predicted nightly abundance of vectors 
from these statistical models.

To test whether there was any systematic increase or 
decrease in the sampling efficiency of the CA-EG or MET 
relative to the HLC over the course of a night (e.g., per-
haps due to battery decline), a model was constructed in 
which the fraction of the hourly catch occurring either in 
CA-EG or MET (e.g., ‘novel trap’/(‘novel trap +  HLC’) 
was defined as the response variable, and trapping 
hour (defined as being ‘1’ on the first hour, and increas-
ing through the night to 12 as the last hour) fitted as a 
continuous fixed effect, with experimental night added 
as a random effect. Here, the proportion of mosquitoes 
caught by a novel method (CA-EG or MET) out of the 
total caught from this method and the HLC, was mod-
elled using a GLMM using a logit link function.

Additional analysis was conducted to test whether the 
relative performance of the novel trap types was density 
dependent. Density dependence was investigated using 
the Bland–Altman method which assesses the reliabil-
ity of two measures via regression analysis of the rela-
tionship between their difference and their mean [67], 
where non-linearity in this relationship indicates density 
dependence (see Additional file 1). Values of R2

adj obtained 
from these analyses can be interpreted as an estimate of 
the proportion of deviation from perfect linear correla-
tion due to density dependence rather than random error 
(with a high value indicating support for density depend-
ence). The precision of the R2

adj estimate was gauged by 
estimating its 95  % confidence interval as the 2.5th and 
97.5th centiles from 10,000 bootstrap replicates.

Finally, analyses were conducted to assess if the three 
focal trapping methods varied in their prediction of key 
mosquito vector behaviours and their related human 
exposure outcomes [68]. The predictors of malaria vec-
tor type of behaviour that were analysed here are the pro-
portion of mosquitoes that were caught feeding indoors 
(Pi), the proportion of mosquitoes that were caught feed-
ing when most people were indoors (Pfl), and the pro-
portion of human exposure that occurs indoors (πi) [49, 
68–70]. The proportion of mosquitoes that were caught 
indoors (Pi) was calculated by dividing the total number 
of mosquitoes caught indoors by the total number caught 
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outdoors and indoors over 12  h of the night: I19→07  h/
(I19→07  h +  O19→07  h) [70], where I and O, respectively, 
represent mosquitoes collected indoors and outdoors, 
and subscripts indicate the start and the end time of the 
sampling period. The calculation of Pfl and πi requires 
definition of the period of the night when most people 
(>50  %) are expected to be indoors and sleeping. This 
time period was previously estimated for the community 
living in Lupiro village as 21.00–05.00 [71]. Therefore, 
the proportion of mosquitoes caught when most people 
were likely to be indoors (Pfl) was calculated as follows: 
(I21→05 h + O21→05 h)/(I19→06 h + O19→06 h) [70]. The pro-
portion of human exposure that occurs indoors (πi) was 
calculated by dividing the number of mosquitoes caught 
indoors during the period that most people are inside 
(21.00–05.00) by itself plus the number of mosquito 
caught outdoors outside of the sleeping hours (I21→05 h)/
(I21→05 h + O19,20,06 h) [70]. Binary estimates of Pi, Pfl and 
πi were estimated using GLMMs with a binomial distri-
bution and a logit link function [65]. In these models, 
trap type was fitted as a fixed effect, and experimental 
night as a random effect.

Ethical procedures
Ethical approval was obtained from the Institutional 
Review Board of the Ifakara Health Institute (Reference 
number IHI/IRB/A.50) and the Medical Research Coor-
dination Committee of the National Institute for Medical 
Research, Tanzania (Reference number NIMR/HQ/R.8a/
Vol. IX/801.) All volunteers recruited in this work were 
given informed consent forms with details of the proce-
dures, explanation of their right to withdraw at any time, 
potential risks, and mitigation plan. All participants read 

and signed the forms before taking part in the work. All 
participants were provided with malaria prophylaxis, 
Malarone (250  mg atovaquone and 100  mg proguanil 
hydrochloride, GlaxoSmithKline) before and during the 
experiments to prevent malaria infection.

Results
Over all 21 nights of experiments, 18,497 mosquitoes 
were collected representing five genera comprising 
Anopheles, Culex, Mansonia, Aedes, and Coquillettidia 
(Table 1). Seven Anopheles species were sampled of which 
An. gambiae s.l. was the most abundant. Four-hundred 
of the 5559 An. gambiae s.l. sampled were individually 
tested using PCR, and all were found to be An. arabien-
sis. This observation matches other recent reports indi-
cating An. arabiensis constitutes more than 98  % of the 
An. gambiae s.l. species complex in Lupiro [57–59]. As 
malaria vectors were the prime focus of interest in this 
study, all further analyses are restricted to female An. 
gambiae s.l. and An. funestus s.l. 

Sampling sensitivity
Approximately 3.5 times more An. gambiae s.l. 
(N  =  5559) were collected than An. funestus s.l. 
(N  =  1543, Table  1), with more of both species being 
sampled outdoors than indoors (Fig.  2). The sampling 
sensitivity of traps varied between indoor and outdoor 
environments for both An. gambiae s.l. (trap  ×  loca-
tion interaction: χ2

2 = 253.4, p < 0.001) and An. funestus 
s.l. (trap ×  location: χ2

2 =  9.0, p =  0.003). Regardless of 
location (indoor vs out), the HLC consistently sam-
pled significantly more An. gambiae s.l. than either the 
MET (outdoors: z =  4.10, p  <  0.001; indoors: z =  7.89, 

Table 1  A summary of the total number of mosquito genera and species caught by different sampling methods in this 
study

HLC human landing catch, MET mosquito electrocuting trap, CA-EG commercially available electric grid trap

Taxon Total per trapping method Female Male Total % Composition

HLC MET CA-EG

An. gambiae s.l. 3443 1786 330 5559 5 5564 30.08

An. funestus s.l. 772 650 121 1543 13 1556 8.41

An. coustani 664 49 26 739 0 739 4.00

An. pharaoensis 10 4 3 17 0 17 0.09

An. squamosus 46 19 14 79 0 79 0.43

An. wellcomei 5 1 1 7 0 7 0.04

An. ziemani 353 32 6 391 0 391 2.11

Culex 1815 829 383 3027 129 3156 17.06

Mansonia 3829 1429 1603 6861 64 6925 37.44

Aedes 10 1 0 11 0 11 0.06

Coquillettidia 30 12 5 47 2 49 0.26

Grand total 10,977 4812 2492 18,284 213 18,497 100.00
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p < 0.001) or the CA-EG (outdoors: z = 16.00, p < 0.001, 
indoors: z = 11.99, p < 0.001, Fig. 3a, b). There was signif-
icant variation between the electrocuting traps, with the 
MET catching significantly more An. gambiae s.l. than 
the CA-EG both indoors (z =  4.89, p  <  0.001, Fig.  3a) 
and outdoors (z  =  12.4, p  <  0.001, Fig.  3b). Based on 
these results, the sampling efficiency of the MET rela-
tive to HLC for An. gambiae s.l. was estimated to be 59 % 
outdoors, and 21 % indoors (Table 2). The sampling effi-
ciency of the CA-EG achieved <10 % of the HLC indoors 
and out (Table 2). The number of An. funestus s.l. caught 
per night by the HLC and MET was not significantly 
different either when used indoors (z =  1.71, p =  0.09, 
Fig. 3c) or outdoors (z = 0.58, p = 0.56, Fig. 3d). In con-
trast, the CA-EG caught significantly fewer An. funestus 
s.l. than either the HLC or MET (p  <  0.001 for indoors 

and outdoors, Fig. 3c, d). Overall, the CA-EG had a sam-
pling efficiency of <30  % for An. funestus s.l. relative to 
both HLC and MET (Table 2).  

Sampling consistency across the night
The sampling efficiency of the MET relative to the HLC 
remained constant across the hours of the night when 
used for An. gambiae s.l. indoors (χ1

2 = 0.001, p = 0.98), 
however there was evidence of a moderate decline 
through time when used outdoors (χ1

2 = 52.11, p < 0.001, 
Fig.  4a). This trend was reversed for An. funestus s.l. 
where the sampling efficiency of the MET relative to the 
HLC was observed to decline somewhat over the sam-
pling night indoors (χ1

2 =  12.42, p  <  0.001, Fig.  3b), but 
remained stable outdoors (χ1

2 = 0.76, p = 0.38). The sam-
pling efficiency of the CA-EG relative to the HLC showed 
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some increase across the night when used to sample 
An. gambiae s.l. indoors (χ1

2 = 10.36, p = 0.001, Fig. 4c), 
but declined outdoors (χ1

2  =  17.42, p  <  0.001, Fig.  4c). 
The sampling efficiency of the CA-EG relative to the 
HLC for An. funestus s.l. was constant across the night 
both indoors (χ1

2 = 0.39, p = 0.54, Fig. 4d) and outdoors 
(χ1

2 = 2.31, p = 0.13, Fig. 4d).

Sampling consistency across varying mosquito densities
In general, there was a positive association between the 
number of malaria vectors caught per night in the MET 
and the HLC, although the Pearson linear correlation 

coefficients were not statistically significant in all cases 
(Additional file  2: Table S2). A similar pattern of posi-
tive, but not always statistically significant, correlations 
between CA-EG and HLC catches was observed (Addi-
tional file  2: Table S2). Nightly catches were log(x +  1) 
transformed and plotted for further investigation of 
potential density dependence as evidenced by devia-
tion from linearity. In all cases, there was much stronger 
support for a linear relationship between the log-trans-
formed values of nightly catches than a curvilinear asso-
ciation (Fig.  5). All of the estimates of the strength of 
density dependency (adjusted R2) were close to zero, but 
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often with a wide confidence interval ranging from below 
zero to above 40  % in some cases (Table  3), suggesting 
that power to detect low-to-moderate levels of density 
dependence was limited. However, based on the range 
of mosquito densities encountered in this trial, there is 
no evidence to indicate the relative performance of the 
CA-EG or MET is density dependent when used indoors 
or outside.

Metrics of mosquito behaviour and human biting exposure 
distribution
Mosquito hourly biting activity was quite variable 
between nights, and revealed no obvious peaks in bit-
ing times for either An. gambiae s.l. or An. funestus s.l. 
(Fig.  6). All traps indicated that An. gambiae s.l. was 

Table 2  Predicted sampling efficiency of  the novel traps 
(per night) relative to the HLC gold standard

Asterisks are placed in cases where the upper limit of the 95 % confidence 
interval includes 100 %, indicating no significant difference between the 
performance of a novel trap compared to the HLC

Species Location Trap Relative sampling 
efficiency (95 % CI)

p value

An. gambiae s.l. Indoors MET 20.9 (10.3–42.2) <0.001

CA-EG 6.1 (2.8–13.1) <0.001

Outdoors MET 58.5 (32.2–106.2)* 0.55

CA-EG 9.9 (5.3–18.4) 0.023

An. funestus s.l. Indoors MET 74.2 (37.0–148.9)* 0.12

CA-EG 28.7 (13.9–59.6) <0.001

Outdoors MET 93.5 (43.9–199.3)* 0.86

CA-EG 9.6 (4.0–22.7) 0.90

Fig. 4  The sampling efficiency of the two novel trap types (CA-EG and MET) relative to the HLC gold standard across the hours of a sampling 
night. Points indicate the proportion of the total catch (new trap + HLC) that was captured by the new trap over each hour of a sampling night 
(19.00–07.00). Triangle symbols are for collections made indoors, and round dots for outdoors. Dotted-red and solid-blue lines represent predicted 
relationship between the relative sampling efficiency across the hours of a sampling night, indoors and outdoors, respectively, (lines only shown 
when there was a statistically significant change through time)
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significantly exophilic (>60  % of bites taking outdoors), 
while An. funestus s.l. was estimated to bite indoors and 
outdoors at similar rates (~50:50 split between indoor 
and outdoor biting, Table 4). Estimates of the proportion 
of An. gambiae s.l. that feed indoors (Pi) obtained from 
the HLC and MET were similar (z = −1.15, p =  0.25, 
Table  4), as were those obtained from the HLC and 
CA-EG (z = −1.77, p = 0.08, Table 4). Estimates of the 
proportion of indoor biting in An. funestus s.l. were also 
similar between the HLC and MET (z = 1.65, p = 0.10, 
Table 4), and the HLC and CA-EG (z = 1.95, p = 0.051, 
Table 4).

The electrocuting traps were less consistent with the 
HLC when used to estimate other human exposure indi-
cators. The HLC predicted that approximately 98  % of 
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of linear relationship between the numbers of mosquitoes collected by a novel trap relative to HLC, while dotted lines were obtained from non-
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Table 3  Quantification of  density dependence using the 
Bland–Altman method

Adjusted R2   values show estimates of the proportion of deviation from 
perfect linear correlation that is likely to be due to density dependence rather 
than random error. As adjusted R2 values are penalized for model complexity, 
negative estimates are possible, but should be interpreted as zero

Taxon Location Method Adjusted R2 (95 % CI) p value

An. gambiae s.l. Indoors MET −9 (−11, 35) 0.55

CA-EG −6 (−11, 27) 0.36

Outdoors MET −1 (−9, 44) 0.20

CA-EG −3 (−9, 36) 0.25

An. funestus s.l. Indoors MET −11 (−11, 16) 0.95

CA-EG −9 (−11, 34) 0.64

Outdoors MET −1 (−9, 62) 0.20

CA-EG −11 (−11, 40) 0.95
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An. gambiae s.l. attempted to feed during hours when 
most people would be indoors (Pfl, Table  4), which was 
underestimated at 68 % (z = 9.27, p < 0.001, Table 4) and 
40  % (z = −12.91, p  <  0.001, Table  4) by the MET and 
CA-EG, respectively. Predictions were less variable for 
An. funestus s.l., where Pfl was estimated to be ~70–75 % 
by the MET and HLC, respectively (z = −1.34, p = 0.18, 
Table  4), but underestimated as 65  % by the CA-EG 
(z = −2.62, p = 0.009, Table 4). It is noted that values of 
Pfl were underestimated in all scenarios where the novel 
trap type (CA-EG or MET) had a lower sampling sensi-
tivity inside than outside. The MET somewhat underes-
timated the proportion of human exposure occurring 
indoors (πi =  36  %) in comparison to the HLC for An. 

gambiae s.l. (43  %), a difference of borderline statistical 
significance (z = −2.04, p = 0.04). Estimates of πi for An. 
gambiae s.l. as obtained from the CA-EG and HLC were 
indistinguishable (43–46 %, z = 0.77, p = 0.44, Table 4). 
Both the MET (z = 4.21, p < 0.001) and CA-EG (z = 5.23, 
p < 0.001) overestimated πi for An. funestus s.l. (73–80 % 
Table 4) compared to the HLC (55 %, Table 4).

Discussion
In this study, the potential of two electrocuting traps, the 
MET and CA-EG, to provide exposure-free alternatives 
to the HLC technique for sampling African malaria vec-
tors was evaluated. The HLC generally collected more 
An. gambiae s.l. than the MET, but capture rates of An. 
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funestus s.l. were similar between these methods. The 
relative sampling efficiency of the MET was reason-
ably high (~59  %) when used for An. gambiae s.l. out-
doors, but fell to ~20 % relative to the HLC when applied 
indoors. In contrast, the CA-EG performed poorly rela-
tive to the HLC in both indoor and outdoor settings, for 
An. gambiae s.l. and An. funestus. No evidence of den-
sity-dependent sampling was observed in either electro-
cuting trap. Both the MET and CA-EG tended to have 
higher performance relative to the HLC outdoors com-
pared to indoors, which contributed to these traps pro-
ducing somewhat biased estimates of human exposure 
indices. While estimation of the proportion of mosqui-
toes caught indoors (Pi) by the electrocuting traps were 
similar to those estimated by HLC, there was tendency 
of the MET and CA-EG to underestimate (Pfl) when sam-
pling An. gambiae s.l., and overestimate the proportion of 
human exposure that occurs indoors (πi) when sampling 
An. funestus s.l. On balance, the sampling sensitivity of 
the CA-EG was judged too low to merit further consid-
eration as an alternative to the HLC. However, the MET 
showed strong promise as an alternative method for 
exposure-free surveillance of African malaria outdoors 
outside of houses.

The sampling efficiency of the MET was consistently 
higher for An. funestus s.l. than for An. gambiae s.l. Pos-
sible explanations for this include differential sensitivity 
of these species to electrocution. Several biological fac-
tors are known to influence the electrical conductivity 
of insects, including their cuticular hydrocarbon com-
position [72], body size and water content. Differential 
electrical conductivity between mosquito species could 
be expected to be less consequential at higher voltages 
say 50,000 V as used in [51] because this voltage would 
be used with lower currents. The voltage and current 

combination used in the MET were optimized in labo-
ratory studies to produce a high instant kill rate (>80 %) 
using An. gambiae s.s. as a model, but may be more effi-
cient at killing An. funestus s.l. A previous study using the 
CA-EG found that sampling efficiency varied between 
An. gambiae s.s. and An. arabiensis [49], thus vector-spe-
cific sampling may be a common feature of electrocuting 
traps as has been documented with other methods, such 
as CDC light traps [73].

Both electrocuting traps had higher sampling efficiency 
when used outside than indoors. The reasons underly-
ing this are unknown but could be due to microclimatic 
variation [74] which could modify the functioning of 
electrocuting traps in outdoor and indoor settings, and/
or differences in how vectors host seek in outdoor versus 
indoor location. For example, factors such as the direc-
tion and concentration of host odours and wind move-
ment vary between indoor and outdoor settings [74], 
and could lead to differential attractiveness of the traps 
when used in different places. Humans conducting HLC 
usually bend to collect mosquitoes landing on their legs 
as shown in Fig.  1d, blowing carbon dioxide to the legs 
therefore attracting more mosquitoes when doing HLC 
compared to MET and CA-EG in which carbon dioxide 
is blown away (Fig. 1b, c). This phenomenon is expected 
more pronounced indoors than outdoors where wind 
may blow away the carbon dioxide and may there-
fore explain a poorer performance of MET and CA-EG 
indoors relative to the HLC. HLC may not therefore be 
a perfect indicator of mosquito-biting activities as the 
stated phenomenon above may bias its function. Further 
investigation of the performance of electrocuting traps in 
a broader range of ecological settings is required, includ-
ing experiments that involve mechanisms to control the 
breath of the catchers sitting on the HLC as well as on the 

Table 4  Indicators of malaria vector biting behaviour and human exposure metrics (Pi, Pfl and πi) as estimated by each 
of the three traps for Anopheles gambiae s.l. and Anopheles funestus s.l.

Estimates of the proportion of mosquitoes caught when most people are indoors (Pfl) and the proportion of human exposure occurring indoors (πi) were calculated 
based on mosquito numbers collected during times when most people are indoors (21.00–05.00)

The p values listed are tests of the comparison of the estimates obtained from the electrocuting traps and those from the HLC (as the reference trap)
a  Reference trap

Taxon Method Proportion caught indoors (Pi) Proportion caught when most  
people are indoors (Pfl)

Proportion of human exposure 
occurring indoors (πi)

Estimate (95 % CI) p Estimate (95 % CI) p Estimate (95 % CI) p

An. gambiae s.l. HLCa 0.37 (0.34–0.40) N/A 0.93 (0.89–0.96) N/A 0.43 (0.37–0.50) N/A

MET 0.35 (0.32–0.38) 0.25 0.68 (0.56–0.79) <0.001 0.36 (0.31–0.42) 0.042

CA-EG 0.34 (0.31–0.37) 0.08 0.40 (0.28–0.54) <0.001 0.47 (0.40–0.53) 0.44

An. funestus s.l. HLCa 0.51 (0.47–0.56) N/A 0.76 (0.68–0.82) N/A 0.55 (0.48–0.63) N/A

MET 0.51 (0.46–0.55) 0.10 0.70 (0.62–0.77) 0.18 0.74 (0.68–0.80) <0.001

CA-EG 0.55 (0.47–0.64) 0.51 0.63 (0.53–0.71) 0.009 0.81 (0.74–0.86) <0.001
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MET, perhaps by using a breathing tube which directs the 
carbon dioxide away from traps or towards the traps to 
increase sensitivity of both methodologies.

There were differences in the relative sampling sensi-
tivity of CA-EG as estimated in this study compared to 
that reported by Majambere et al. [49]. Whereas [49] esti-
mated the sampling efficiency of the CA-EG to be ~50 % 
relative to the HLC in indoor and outdoor locations, it 
was only 6–29 % in this study. One explanation could be 
variation in how human participants were positioned. In 
[49] the human bait lay down and were covered by bed 
nets which were surrounded by six grid units, in this cur-
rent study the humans were positioned in a sitting posi-
tion using four grid units, specifically to replicate the 
human subject’s position in the HLC technique and thus 
avoid bias due to differential positioning of the hosts. 
Enclosing the whole human in the trap as was done by 
[49] may have contributed to their higher reported per-
formance of the CA-EG in their study compared to this 
study. Another difference was that the study by [49] was 
conducted in Dar es Salaam where An. gambiae s.s. is 
the dominant species, compared to An. arabiensis in the 
Kilombero Valley where this study was set. During pre-
liminary laboratory optimization tests conducted during 
the development of the MET, An. gambiae s.s. was shown 
to be somewhat more sensitive to electrocution than An. 
arabiensis. Thus, the lower performance of the CA-EG 
in the current study may also be due to differences in 
malaria vector species composition between sites.

One of the ways to make MET smaller and therefore 
easy to carry around would be to replace the human bait 
with an artificial odour delivery system. This step would 
additionally remove human safety concerns and signifi-
cantly decrease labour. However, to be able to obtain an 
alternative trapping tool with sampling efficiency close 
to the gold standard HLC, this study tried to imitate as 
much as possible some of the features which make HLC 
superior to other host-seeking traps. Theoretically, a 
good host-seeking trap should represent as much as pos-
sible human exposure rates to host-seeking mosquitoes 
that happen in real environment. This can be most real-
istically achieved with the physical presence of a human 
close to or within the trap. Therefore, replacing the 
human bait from the MET would reduce accuracy of the 
trap because other factors than the human odour, such as 
visual cues and body heat, are involved in attracting host-
seeking mosquitoes [75, 76].

On a few occasions there was evidence of decreasing 
sensitivity of MET and CA-EG over the sampling night 
relative to the HLC, but this effect was not consistent 
between vector species, nor between indoor and out-
door settings. A reduction in the sampling efficiency of 
CA-EG relative to the HLC over the course of a night was 

reported in [49]. This was interpreted as a sign of bat-
tery drainage through time, which reduced the electri-
cal output. Given that a decline in the relative sensitivity 
of electrocuting traps was not consistently reported in 
this study, it is difficult to interpret the patterns of time-
dependent trap performance observed here. In addition 
to battery drainage, other factors, such as a build-up of 
moisture on traps (especially as occurred in outdoor sta-
tions) may have contributed  to MET’s low relative per-
formance. The MET output voltage was checked every 
hour and in some cases it was shown to drop below 
optimal levels, especially in the later hours of the night. 
Additionally, there were a few occasions where traps 
temporarily short-circuited during experiments because 
opposing wires came into contact, and/or the wooden 
frames became moist and mildly conductive. Experi-
ments were stopped when there was an obvious cessation 
of current flow, however, there could have been more 
minor dips occurring during sampling night that went 
undetected. Use of a higher-capacity battery coupled to 
an alarm system to notify if and when there is any dip in 
electrical output could resolve any issues of variable volt-
age output through time.

This study shows no strong evidence of density-
dependent sampling in either the MET or the CA-EG. 
However, this study was conducted over 21 consecutive 
nights in the rainy season when mosquito densities were 
generally high. Thus, it was not possible to assess density 
dependence across the full range of mosquito densities 
that occurs between wet and dry seasons. Additionally, it 
is noted that the detection of density dependence in trap-
ping studies is sensitive to the type of analysis method 
used [77]. Several previous studies have assessed density 
dependency based on analysis of how the proportional 
catch rate varies with differing mosquito densities across 
nights [39, 78], whereas others, including the present 
study, use the Bland–Altman method [67]. The Bland–
Altman method was chosen because its use of regres-
sion analysis to assess the reliability of two measures is 
not subject to bias inherent in the binomial, proportional 
catch approach. It is recommended that future studies to 
evaluate these trapping methods adopt a similar method 
so that estimations of density dependence are standard-
ized and comparable.

For any mosquito-sampling tool to successfully replace 
the HLC, it must be able to give meaningful representa-
tion of key mosquito behaviours and associated human 
exposure risk factors. Here, three such measures were 
investigated that have been widely used in a number of 
other studies to assess both human risk and likely degree 
of protection from LLINs [15, 68–70, 79]. One of the 
most direct measures of indoor exposure is the pro-
portion of mosquitoes that bite indoors (Pi), for which 
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comparable estimates were obtained from both elec-
trocuting traps and the HLC. However, the proportion 
of mosquitoes caught when people are usually indoors 
(Pfl) was underestimated by the CA-EG and MET for 
An. gambiae s.l., but similar to the HLC for An. funestus. 
Estimates of the proportion of human exposure occur-
ring indoors (πi) obtained from the CA-EG and MET 
were similar to the HLC for An. gambiae s.l., but over-
estimated for An. funestus. This is consistent with results 
from a previous study [49] where the CA-EG produced 
a similar estimate of Pi, but underestimated Pfl for An. 
arabiensis relative to the HLC. The likely explanation 
for this bias is the differential sampling efficiency of the 
electrocuting traps when used indoors versus out. This 
location-dependent performance would be expected to 
generate biased estimates of Pfl and the proportion of 
human exposure predicted to occur indoors.

Historical data for the Kilombero Valley (1999) where 
this study took place indicates the proportion of An. 
gambiae s.l. caught indoors (Pi) estimated by HLC was 
0.58  ±  0.01 [15], which is higher than the values of 
0.37 ± 0.03 (HLC) and 0.35 ± 0.03 (MET) reported here. 
These differences may be due to concurrent changes 
within the An. gambiae s.l. complex that have occurred 
over this time. Whereas most An. gambiae s.l. were found 
to be An. gambiae s.s. in 1999 [54] to <1 % in 2009 [15], 
this species represents <1 % of the An. gambiae s.l. com-
plex now with the remaining fraction being the more 
exophilic An. arabiensis. The proportion of human expo-
sure occurring indoors that would otherwise be directly 
preventable with bed net use (πi) was estimated as 0.43 
and 0.55 for An. gambiae s.l. and An. funestus s.l., respec-
tively, using HLC in this study. Assuming that all An. 
gambiae s.l. in this study were An. arabiensis (based on 
PCR results of 400 samples which showed all of them 
were An. arabiensis), these estimates of πi are low com-
pared to that reported in western Kenya [79], where 
values of 0.87 and 0.86 were obtained for An. arabiensis 
and An. funestus s.l., respectively. A more recent study in 
western Kenya [80] reported πi values of ~0.64 for major 
vectors An. gambiae s.l. and An. funestus, which are still 
higher but closer to the values reported in this setting. 
Another study in Dar es Salaam estimated πi obtained 
for An. arabiensis to be 0.53 [49] which is also higher 
than found in this study. The consistently smaller values 
of πi reported for both An. gambiae s.l. and An. funes-
tus s.l. here indicates that a lower proportion of human 
exposure to malaria may be occurring indoors in the 
Kilombero Valley than in other parts of East Africa, and 
highlights the particular need for interventions that can 
control outdoor-biting mosquitoes in this setting.

As the MET applies high voltage electricity to elec-
trocute mosquitoes, human safety in using this trap is a 

priority. Two measures were taken to ensure no risk of 
harm to humans using these traps. First, although the 
MET used relatively high pulsed DC voltage (600 V DC), 
resistors were incorporated to limit the current to no 
more than 10  mA which generates a low power output 
insufficient to cause harm to a human who momentarily 
touches them [81]. Similarly, although the CA-EG used 
higher voltages (800 V AC), resistors were used to limit 
current flow in this trap to 15 mA. A second measure can 
be incorporated into future versions of MET to remove 
even this mild risk of minor electrical sensation on con-
tact by placing a protective barrier of non-conductive 
material in the inner side of the grids.

Conclusions
This study has demonstrated proof-of-principle that the 
MET can be used with reasonable efficiency to sample 
malaria vectors outdoors. The CA-EG performance did 
not merit further consideration because of its low sam-
pling sensitivity. Whereas the current version of MET 
may misrepresent some aspects of mosquito behaviour, 
such as the proportion of human exposure to biting that 
occurs indoors, it is hypothesized that the sampling sen-
sitivity of MET can be improved specifically by ensur-
ing generation of stable voltage across the night, and 
by avoiding short circuiting which can be achieved by 
replacing the semi-conducting wooden frames with non-
conducting polyvinyl chloride (PVC). It is recommended 
further testing of the improved MET in a range of eco-
logical settings to explore its ability to be used as an alter-
native to the HLC.
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