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Abstract: The Timed Up and Go (TUG) test has been frequently used to assess the risk of falls in
older adults because it is an easy, fast, and simple method of examining functional mobility and
balance without special equipment. The purpose of this study is to develop a model that predicts the
TUG test using three-dimensional acceleration data collected from wearable sensors during normal
walking. We recruited 37 older adults for an outdoor walking task, and seven inertial measurement
unit (IMU)-based sensors were attached to each participant. The elastic net and ridge regression
methods were used to reduce gait feature sets and build a predictive model. The proposed predictive
model reliably estimated the participants’ TUG scores with a small margin of prediction errors.
Although the prediction accuracies with two foot-sensors were slightly better than those of other
configurations (e.g., MAPE: foot (0.865 s) > foot and pelvis (0.918 s) > pelvis (0.921 s)), we recommend
the use of a single IMU sensor at the pelvis since it would provide wearing comfort while avoiding
the disturbance of daily activities. The proposed predictive model can enable clinicians to assess
older adults’ fall risks remotely through the evaluation of the TUG score during their daily walking.

Keywords: accelerometer; wearable sensor; elastic net; ridge regression; timed up and go (TUG);
gait analysis

1. Introduction

The older adult population worldwide is rapidly increasing due to the advancements
in medical science. Subsequently, health care issues for this population group are also
emerging [1]. The aging of the human body has been shown to reduce one’s balance,
resulting in a decline in walking function, and is highly related to the incidence of injury
in the elderly population [2]. In particular, falls account for a considerable number of
injuries to the elderly population [3]. Walking is the most basic movement in daily life, a
crucial element of quality of life, and a good indicator of health [4]. Many gait analysis
studies have been conducted to identify and prevent the risk of falls for older adults [5–7].
Furthermore, common clinical measures, such as the Timed Up and Go (TUG) test, have
been frequently used to assess not only the performance of walking and balance [8–12] but
also the risk of falling [13–18] in older people since it is an easy, fast, and simple method
of examining functional mobility and balance without special equipment. Typically, the
clinical measures are performed under expensive laboratory settings that are only available
in large urban areas. Therefore, a novel monitoring device is needed to monitor older
adults’ mobility and predict their risk of falls using the TUG test in order to evaluate their
health status.

With the advancement of wireless sensor technologies in the past few years, wearable
sensors have been widely used to analyze human walking performance. These sensors
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offer a lot of practical benefits such as cost-effectiveness, convenience, and potential to
provide health-related information [19]. This is particularly useful when interpreting gait
characteristics and patterns to obtain a clear assessment of the associated health status.
Buisseret et al. implemented an artificial intelligence algorithm to assess the risk of falls
based on an autonomous wearable system [13]. Patel et al. found that the inertial sensors
had a strong correlation with clinical fall risk tests in older adults [14]. Several studies also
aimed to identify the relationship between the TUG test and the risk of falls in fallers or
patient groups [15–18].

In this study, we constructed a model to predict the TUG test based on the ground
walking data from wearable sensors in older adults in order to answer the following main
research question:

• “Can the TUG test be predicted by normal ground walking data?”

Several studies [20–22] identified the different stages of the TUG test using the actual
TUG test or similar settings, but we aimed to estimate the TUG test using normal ground
walking with daily-life settings. Saporito et al. introduced a remote mobility monitor-
ing method by estimating TUG from free-living activities [23]. We compared our TUG
prediction results with Saporito’s TUG estimation.

Furthermore, we investigated which sensor location was better for predicting TUG
based on walking data to address another research question:

• “Which is the optimal sensor location between foot and pelvis placements to collect
data for predicting TUG while walking?”

In many studies, various sensor locations were used for health and mobility assess-
ment [5,12–15,19–24]. Obviously, a wrist type of sensor is less obtrusive and more user
convenient. However, we did not only look for the most comfortable body location for
sensor attachment but an optimal sensor location that provides us with the useful informa-
tion to predict the TUG test. Specifically, for our task of TUG prediction, a foot or a pelvis
sensor provides more accurate information on accelerations compared to other locations.

This study will help us identify and assess the health status based on relationships
between wearable gait data and clinical testing data. Moreover, this could be used to
expand our research to help clinicians make rational decisions by providing adequate
information about the recovery process of older patients.

2. Materials and Methods

The framework in Figure 1 outlines the entire process of this study including data
collection, data processing steps, and prediction model development.
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2.1. Data Collection
2.1.1. Participants

Data sets of 37 participants were used for the study analysis. The descriptive charac-
teristics of the participants are shown in Table 1. The participant sample was pulled from
two larger studies that incorporated the same outdoor walking task. The general inclusion
criterion was being between the ages of 60 and 85 years. Exclusion criteria included a
diagnosis of a neurological disorder (including stroke, traumatic brain injury, Alzheimer’s,
and dementia), a diagnosis of osteoporosis, having underwent a total knee arthroplasty
surgery and/or revision surgery, planning a staged total knee arthroplasty at the time of
data collection, self-reported maximal joint pain of >3/10 (of the hip, knee, or foot), and/or
doctor-diagnosed hip or knee osteoarthritis. All participants signed an informed consent
approved by the University of Nebraska Medical Center Institutional Review Board (IRB
242-18-EP and IRB 654-16-EP).

Table 1. Descriptive characteristics of participants.

Characteristics Mean ± Standard Deviation

Number of participants 37
Female/male 29/8
Age (years) 69.6 ± 4.3
Height (cm) 166.1 ± 11.2
Weight (kg) 75.1 ± 15.0

BMI (kg/m2) 27.1 ± 4.1
TUG (s) 7.1 ± 1.5

2.1.2. Walking Task

Lower extremity accelerations were captured using a wireless inertial measurement
unit (IMU)-based motion capture system (XSENS Awidna, Xsens Technologies B.V., En-
schede, Netherlands). The IMU-based sensors were attached to the posterior pelvis and
bilaterally to the foot segment using elastic Velcro straps as shown in Figure 2. The sam-
pling frequencies of the IMU-based motion capture system were set to 60 Hz. The walking
task was conducted in a neighboring community park across the street from the Biome-
chanics Research Building on the University of Nebraska Omaha campus. Participants
were verbally instructed to walk at a comfortable pace following a circular sidewalk route.
Three minutes of walking data were used for analysis. The outdoor walking condition was
performed when outdoor temperatures were above 32 ◦F and at a minimum of 24 h after
precipitation. The paved sidewalk was also cleared of obstacles prior to data collection.
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2.1.3. Functional Task

The TUG test is performed as a common clinical measure of evaluating fall risks
in older adults [13–18]. Participants were instructed to start in a seated position on a
standard-height chair, stand without using their arms or hands, walk 3 m, and return to a
seated position. The time to complete the TUG test from rising from the seated position to
chair contact was recorded using a standard stopwatch. The best time of two trials was
used for data analysis.

2.2. Step Recognition

To recognize a step event, we used a peak detection method that detects the maximum
peak of acceleration data. Based on our previous study [19], the peak detection method
using two thresholds, a minimum-peak height and a minimum distance, successfully de-
tects each step event with 100% accuracy. The minimum-peak height was set by computing
the mean value of vertical and anterior-posterior accelerations for the pelvis and the foot,
respectively, which was then used to find a peak larger than the minimum-peak height.
The minimum-peak height was automatically determined for each subject. The minimum
distance for all subjects was set by the number of samples that is 0.4 s at 60 Hz, as the
average step time of a healthy person is 0.4 to 0.6 s [19]. Thus, the minimum distances for
the pelvis and foot were 24 and 48, respectively. Since each foot sensor can only detect a
stride event, the minimum distance for the foot was doubled. The minimum distance was
also used to find the peak where the distance between the two peaks was longer than the
minimum distance. For the foot sensor, we utilized an anterior–posterior (AP) acceleration
to detect a heel-strike because the AP directional motion from the lower limbs prevails
over the other dimensions [25]. A vertical acceleration was used for the pelvis sensor, as it
showed more discernable pattern changes and the step-peaks were consistently captured
similar to those from the foot sensor. A step was recognized by detecting a heel strike
to another heel strike. On average, 369 (±27.6) steps were recognized and used for data
analysis. Figure 3 shows recognized steps from both locations.
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2.3. Feature Extraction and Normalization

A set of features was extracted from the raw acceleration data based on the recognized
step events. For the two-foot sensors, once the step recognition was completed from each
foot, we combined the detected peaks from the two sensors and raw acceleration data
together to obtain the step-based features. In this study, we first extracted several features
(i.e., M, M10, LM, VM, AM, LHM, LHS, VHM, VHS, AHM, AHS, and ST) that were used
in our previous study [25], which have been helpful in predicting biomechanics in total
knee arthroplasty patients. We also extracted additional features (i.e., MD, LMD, VMD,
AMD, M30, LM30, VM30, and AM30) to understand the characteristics of mid-stance
and double stance, as the max lateral displacement affecting balance typically occurs at
mid-stance around 30% of the gait cycle [26]. The double stance accounts for about 10%
of the total gait cycle after initial contact in a normal walking [27]. For older adults, since
the double stance time was 15–20% of the entire gait cycle [28], we estimated the double
stance as ±10% from the heel-strike and used such acceleration data. Table 2 provides a
list of the extracted features with a description. The features were averaged from all steps
(expressed by lowercase “a” at the beginning of each feature), and symmetry (expressed
by lowercase “s” at the beginning of each feature) and variability (expressed by lowercase
“v” at the beginning of each feature) were calculated for each stride (e.g., aM, sM, vM). In
total, 60 features for each of the foot and pelvis sensors and 120 features for a combination
of both foot and pelvis sensors were extracted for this study.

Table 2. Description of extracted features.

Feature Description Mathematical Expression

M Whole step vector magnitude
√

L2 + V2 + AP2 for whole step vectors
M10 Initial 10% step vector magnitude

√
L2 + V2 + AP2 for initial 10% of step vectors

LM Lateral vector magnitude during a whole step
√

L2 for whole step vectors
VM Vertical vector magnitude during a whole step

√
V2 for whole step vectors

AM AP vector magnitude during a whole step
√

AP2 for whole step vectors
MD Vector magnitude during double stance

√
L2 + V2 + AP2 for ± 10% vectors from heel-strike

LMD Lateral vector magnitude during double stance
√

L2 for ± 10% vectors from heel-strike
VMD Vertical vector magnitude during double stance

√
V2 for ± 10% vectors from heel-strike

AMD AP vector magnitude during double stance
√

AP2 for ± 10% vectors from heel-strike
M30 Vector magnitude during mid-stance

√
L2 + V2 + AP2 for vectors from 30% of gait cycle

LM30 Lateral vector magnitude during mid-stance
√

L2 for vectors from 30% of gait cycle
VM30 Vertical vector magnitude during mid-stance

√
V2 for vectors from 30% of gait cycle

AM30 AP vector magnitude during mid-stance
√

AP2 for vectors from 30% of gait cycle
LHM Lateral heel-strike magnitude max(L) at heel-strike
LHS Std. of lateral acceleration during initial 10% step std(L) for initial 10% of step vectors

VHM Vertical heel-strike magnitude max(V) at heel-strike
VHS Std. of vertical acceleration during initial 10% step std(V) for initial 10% of step vectors
AHM AP heel-strike magnitude max(AP) at heel-strike
AHS Std. of AP acceleration during initial 10% step std(AP) for initial 10% of step vectors
ST Step Time Time between opposite heel strikes

Std.: Standard Deviation, L: lateral acceleration, V: vertical acceleration, AP: anterior-posterior acceleration.

The extracted gait features from the lower limb and pelvis are subject to different
magnitudes based on the individual features. To minimize the effects of individual feature
differences, we normalized inertial gait features by using mean centering. Features were
rescaled to have a zero mean by subtracting each feature’s mean from all observations on
that feature in the dataset.
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2.4. Data Analysis
2.4.1. Feature Reduction Using Elastic Net

We aimed to build a linear regression model with feature selection that can predict
TUG test scores. The two well-known penalized regression methods are the ridge re-
gression [29] and least absolute shrinkage and selection operator (LASSO) [30] methods.
While the ridge regression is better at adjusting for multi-collinearity among correlated
features but cannot produce a sparse model, the LASSO tends to produce a sparser model
by shrinking the coefficient of the less important variables to zero. To overcome the limi-
tations of ridge regression and LASSO, as well as considering the strong points of both,
the elastic net—a combination of ridge regression and LASSO—was proposed by Zou
and Hastie [31]. The elastic net [31] showed a better performance for variable selection
compared to the LASSO when the number of predictors (p) was much greater than the
number of observations (n) in the presence of the multi-collinearity issue among predictors.

In this paper, therefore, we used the elastic net for a feature reduction method and
this can be achieved by solving the following equation:

minβ

[
1
n

n

∑
i=1

(yi − xT
l β)

2
+ λ

(
(1− α)

||β ||22
2

+ α ||β ||1

)]
(1)

where yi and xT
i =

(
xi1, . . . , xip

)
are the respective outcome and predictors of the ith subject;

λ is a non-negative tuning parameter, β =
(

β1, . . . , βp
)T is a vector of regression coefficients

that needs to be estimated; and ||β ||1 and ||β ||2 are the regularization terms called L1-norm
and L2-norm, respectively:

||β ||1 =
p

∑
j=1

∣∣β j
∣∣ (2)

||β ||2 =

√√√√ p

∑
j=1

β2
j (3)

Here, α represents the elastic net mixing parameter, which lies between 0 and 1 with
α = 0 giving ridge regression and α = 1 giving LASSO. The model was run using alpha
equals 0 to alpha equals 1 with a step of 0.1. We chose the best α using cross-validation
(CV). The optimal penalty tuning parameter of the elastic net λ was chosen to minimize
the mean square error (MSE) based on 10-fold CV. This was repeated 100 times for each
penalty value with training data selected randomly from 70% of the data. The average
prediction errors for test data were computed with the remaining 30% of the data. Based on
the 100 iterations, we derived the top 10 most selected features from each sensor location
(i.e., foot, pelvis, and a combination of both).

2.4.2. Feature Selection and Model Fitting via Ridge Regression

Ridge regression shrinks the coefficients towards zero by minimizing the MSE of
the estimates [29]. This is a regularization method used to analyze all data that have a
multi-collinearity problem [15]. Since some of the top 10 features were highly correlated as
shown in Tables 3 and 4, the ridge regression was applied to build the best model to avoid
multi-collinearity in linear regression.
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Table 3. Correlation matrix of the top 10 features for the foot (* p-value < 0.05).

Feature aM aVM aMD aVMD aAMD sM sST vM vAM vST

aM 1.000
aVM 0.667 * 1.000
aMD 0.690 * 0.289 1.000

aVMD 0.617 * 0.303 0.975 * 1.000
aAMD 0.732 * 0.195 0.727 * 0.622 * 1.000

sM −0.099 −0.139 0.169 0.197 0.069 1.000
sST 0.202 0.303 0.188 0.147 0.221 0.157 1.000
vM 0.088 0.005 0.168 0.205 0.068 −0.096 −0.208 1.000

vAM 0.085 0.004 0.117 0.127 0.071 −0.129 −0.121 0.930 * 1.000
vST −0.134 −0.167 −0.052 0.006 −0.119 0.046 −0.356 * 0.841 * 0.816 * 1.000

Table 4. Correlation matrix of the top 10 features for the pelvis (* p-value < 0.05).

Feature aM aM10 aMD aVHM aVHS aAHS sM10 sM30 sVHS vST

aM 1.000
aM10 0.456 * 1.000
aMD 0.411 * 0.917 * 1.000

aVHM 0.253 0.817 * 0.809 * 1.000
aVHS 0.678 * 0.697 * 0.712 * 0.646 * 1.000
aAHS 0.838 * 0.246 0.177 −0.079 0.515 * 1.000
sM10 −0.317 −0.333 * −0.539 * −0.314 −0.463 * −0.216 1.000
sM30 −0.508 * −0.582 * −0.690 * −0.399 * −0.709 * −0.407 * 0.722 * 1.000
sVHS 0.000 −0.267 −0.196 −0.294 −0.023 0.133 0.025 0.025 1.000
vST −0.365 * −0.087 −0.054 −0.030 −0.150 −0.382 * −0.163 −0.037 −0.083 1.000

The equation of the ridge regression estimator is:

β̂ridge =
(
X′X + kI

)−1X′Y (4)

where X is a design matrix for the predictors, Y is the response variable, k is a ridge tuning
parameter, and I is an identity matrix. The ridge regression depends on the parameter k,
which can affect the performance of the model and give information about the regulariza-
tion [32]. If the parameter k is zero, then the ridge regression is restricted to the ordinary
least squares (OLS) method [29]. Many studies investigated a method for calculating the
optimal value of k. In this study, with k increasing by 0.001 between 0 and 2, the optimal pa-
rameter k was chosen in which the generalized CV (GCV) was the smallest as proposed by
Golub et al. [33]. To determine the best model among the top 10 features, criteria that allow
model comparison are essential. In this study, we used the Akaike Information Criterion
(AIC) [34] and Bayesian Information Criterion (BIC) [35], which have been widely used in
model comparison and model selection. In addition, the corrected AIC (AICc) [36] that has
a correction for small sample sizes was used as another criterion for model selection. AIC,
AICc, and BIC are defined as:

AIC = −2 ln L(
∧
θ) + 2p (5)

AICc = AIC +
2p2 + 2p
n− p− 1

(6)

BIC = −2 ln L(
∧
θ) + p ln(n) (7)

where

L(
∧
θ) the likelihood of the model evaluated at the maximum likelihood estimate (MLE),

p is the total number of parameters, and n is the number of observations. Lower AIC and
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BIC values indicate a better model fit. Thus, we compared the AIC and BIC values of the
ridge regression models by adding features one-by-one among the top 10 features. The
model that corresponded to the lowest AIC and BIC was referred to as “best” among the
candidate models.

2.4.3. Performance Evaluation

To compare the predictive accuracy for our best models constructed by using the
different sensor locations, the following performance measures were calculated for the test
data for each model:

• Mean square prediction error (MSPE)

MSPE =
1
n

n

∑
i=1

[Tp(i)− Tm(i)]2 (8)

• Root mean square prediction error (RMSPE)

RMSPE =

√
1
n

n

∑
i=1

[Tp(i)− Tm(i)]2 (9)

• Mean absolute prediction error (MAPE)

MAPE =
1
n

n

∑
i=1
|Tp(i)− Tm(i)| (10)

where Tp(i) and Tm(i) are the respective predicted and measured TUG (second) of the ith subject.
The performance of our model was evaluated using the following criteria. First, we

split the whole data set (thirty-seven subjects) into a ratio of 7 to 3 such that 25 subjects
were used for training and 12 subjects were used for testing. The penalized regression
coefficients were determined by the TUG test scores for the training set. These coefficients
were then used to predict the TUG test scores for subjects in the test set. This process was
repeated 100 times using a random selection of training and test subjects for each iteration.
In all comparisons, each model for the different sensors was executed using the same set of
random selections, ensuring that the validation dataset was the same across models.

2.4.4. Statistical Analysis and Software

For each prediction error, the predicted TUG test scores in the different models were
compared using analysis of variance (ANOVA) with Tukey’s post hoc test for multiple
comparisons at a 95% confidence level (if a p-value smaller than 0.05 was considered
statistically significant). Bland–Altman analysis [37] was used to compare the estimated
TUG and the measured TUG. Bland–Altman plots allow comparisons between two different
measurements [37]. All analyses were performed using R statistical software (version 4.0.2).
The glmnet package [38] was used to perform elastic net for feature selection. The ridge
regression for model fitting was performed using the lmridge package [39].

3. Results
3.1. Elastic Net Results

The optimal λ over the imputed data sets varied between 0.188 and 14.553 for the
foot model, between 0.064 and 0.166 for the pelvis model, and between 0.2 and 33.674 for
the combination model. Figure 4 illustrates the performance of all 100 penalty values, an
example of the parameter tuning procedure in the elastic net. The averaged optimal λ values
were 4.821, 4.037, and 8.401 for the foot, pelvis, and combination models, respectively.
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foot & pelvis, respectively).

Based on these results, the top 10 most selected features were derived for each model
across the imputed data sets. As there existed a tie in the number of selected features for
the foot–pelvis combination model, we included the top 11 features for the foot–pelvis
combination model. The feature ‘aM’ was the most selected in both foot and pelvis
models (Table 5). The whole-step-related (aM, sM, vM, vST, sST, aVM, and vAM) and
double-stance-related (aVMD, aMD, and aAMD) features were mostly selected for the foot
model. The initial 10% of step-related features (aVHS, aAHS, aM10, sVHS, aVHM, and
sM10) were mostly selected for the pelvis model. The mid-stance-related feature (sM30)
was selected only for the pelvis model. The top 10 features selected for the foot–pelvis
combination model included features selected from both models. This result shows that
the top 10 features were consistently selected in different models.

Table 5. Top 10 most selected features.

Rank
Foot Pelvis Foot & Pelvis

Feature Frequency Feature Frequency Feature Frequency

1 aM 100 aM 98 aMD_Foot 98
2 aVMD 97 aMD 97 aVMD_Foot 98
3 aMD 86 vST 97 aVHS_Pelvis 98
4 sM 78 sM30 91 aM_Pelvis 97
5 vM 78 aVHS 82 aM_Foot 93
6 vST 76 aAHS 79 aMD_Pelvis 93
7 sST 72 aM10 77 sM30_Pelvis 93
8 aAMD 67 sVHS 70 vST_Pelvis 93
9 aVM 65 aVHM 69 aM10_Foot 89

10 vAM 64 sM10 65 aAHS_Pelvis 88
- - - - vST_Foot 88

The column “Frequency” gives the number of times each feature was selected.
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3.2. Feature Selection and Model Fitting

For ridge regression, the optimal parameter k was selected based on the minimum
value of GCV [33]. Figure 5 illustrates the procedure for finding the parameter k. The
results for all models with the top 10 features are summarized in Table 5. In order to choose
the best model, we also calculated the AIC, AICc, and BIC values for each model that are
also summarized in Table 6, and then the values were compared. The best models were
selected with the smallest AIC and BIC values as follows: top five features for the foot
model (AIC: −2.845, BIC: 136.377), top four features for the pelvis model (AIC: −0.864,
BIC: 137.327), and top 10 features for the combination model (AIC: −1.377, BIC: 137.510).
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Table 6. AIC/AICc/BIC Values for Model Selection.

No. of
Features

Foot Pelvis Foot & Pelvis

k AIC AICc BIC k AIC AICc BIC k AIC AICc BIC

2 0.174 6.882 7.235 143.05 0.105 3.468 3.821 139.94 0.166 11.163 11.516 146.46
3 0.275 7.161 7.888 143.35 0.147 −0.090 0.637 137.61 0.253 6.865 7.592 143.14
4 0.204 4.683 5.933 142.31 0.264 −0.864 0.386 137.33 0.379 3.068 4.318 139.97
5 0.154 −2.845 −0.910 136.38 0.366 0.129 2.064 138.56 0.560 3.745 5.680 140.69
6 0.236 −1.897 0.903 137.55 0.440 0.752 3.552 139.46 0.677 3.705 6.505 140.73
7 0.289 −1.722 2.140 138.60 0.560 1.282 5.144 139.96 0.859 3.929 7.791 141.17
8 0.345 −0.372 4.771 140.42 0.523 0.117 5.260 139.92 0.628 -0.938 4.205 137.71
9 0.430 −0.061 6.606 140.61 0.498 −0.762 5.905 139.56 0.681 −0.529 6.138 138.20
10 0.599 0.333 8.795 140.91 0.568 −0.850 7.612 139.83 0.806 −0.449 8.013 138.34
11 - - - - - - - - 0.943 −1.377 9.183 137.51

The name of the selected features for each model is shown in Table 5.

3.3. Prediction and Validation Results

The prediction errors for the selected best models are shown in Figure 6. For com-
parison of the best models among different sensors, the foot model performed better than
others (MAPE: foot (0.865 s) > foot & pelvis (0.918 s) > pelvis (0.921 s), MSPE: foot (1.124 s)
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> pelvis (1.162 s) > foot & pelvis (1.192 s), and RMSPE: foot (1.046 s) > pelvis (1.065 s) > foot
& pelvis (1.075 s)). The result of multiple comparisons between different sensor models
showed that there was no significant difference of prediction errors between them. The
p-values for all cases were greater than 0.05 as shown in Table 7. A comparison between the
estimated TUG and the measured TUG by Bland–Altman analysis [37] is shown in Figure 7.
In addition, the best models were compared with other models that used different numbers
of features to see if the best models gave the best prediction results. The comparison
results summarized in Table 8 showed that the best foot model performed optimally for
all performance criteria, while the best pelvis model performed optimally for MSPE and
RMSPE but not for MAPE, and the performance of the best foot–pelvis combination model
was not optimal for all criteria.
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Figure 6. Result of prediction errors. The distribution of each prediction error for the 100-time
iterations is shown (The mean values for MAPE are foot (0.865 s), pelvis (0.921 s), and foot & pelvis
(0.918 s), for MSPE are: foot (1.124 s), pelvis (1.162 s), and foot & pelvis (1.192 s), and for RMSPE
are foot (1.046 s), pelvis (1.065 s), and foot & pelvis (1.075 s)). There was no significant difference of
prediction errors between different sensor locations.

Table 7. Multiple comparisons between different models.

Error Model 1 Model 2 p-Value

MAPE

Foot Pelvis 0.0507

Foot Foot & Pelvis 0.0655

Pelvis Foot & Pelvis 0.9942

MSPE

Foot Pelvis 0.7674

Foot Foot & Pelvis 0.4444

Pelvis Foot & Pelvis 0.8608

RMSPE

Foot Pelvis 0.7389

Foot Foot & Pelvis 0.4925

Pelvis Foot & Pelvis 0.9181
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Table 8. Comparison of Prediction Errors.

No. of
Features

MSPE RMSPE MAPE

Foot Pelvis Foot & Pelvis Foot Pelvis Foot & Pelvis Foot Pelvis Foot & Pelvis

2 1.386 1.231 1.536 1.165 1.100 1.225 0.954 0.942 1.040
3 1.418 1.180 1.370 1.178 1.073 1.158 0.962 0.931 0.985
4 1.313 1.162 1.232 1.134 1.065 1.100 0.941 0.921 0.926
5 1.124 1.187 1.255 1.046 1.078 1.109 0.865 0.932 0.924
6 1.264 1.218 1.258 1.108 1.091 1.110 0.917 0.932 0.931
7 1.255 1.226 1.262 1.103 1.095 1.112 0.927 0.935 0.933
8 1.309 1.217 1.173 1.126 1.089 1.068 0.951 0.910 0.909
9 1.305 1.232 1.168 1.124 1.094 1.068 0.954 0.915 0.910
10 1.267 1.306 1.168 1.109 1.115 1.067 0.936 0.938 0.905
11 - - 1.192 - - 1.075 - - 0.918

The name of selected features for each model is shown in Table 5.

4. Discussion

The results of this study show that TUG scores can be predicted through walking
data of older adults obtained using wearable sensors. A set of the best gait features and
a ridge regression model were used to develop a TUG prediction model. To check the
reliability of the developed model, we used Bland–Altman analysis, which is a simple and
accurate way to compare different measurements [37]. In Figure 7, the mean difference
for all three plots was on the order of 1 s. This indicates that two different measurements
are not systematically producing different results. In addition, we also compared our
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results with Saporito’s work. The 95% limits of agreement in the Bland–Altman plots were
narrower than those of Saporito’s Bland–Altman plots, which means our estimated TUG
is essentially equivalent to the measured actual TUG. Saporito and colleagues developed
the remote TUG prediction model with 2.1 s of MAPE [23]. Thus, the developed model
demonstrated prediction errors (foot: MSPE = 1.124s, RMSPE = 1.046 s, MAPE = 0.865 s,
pelvis: MSPE = 1.162 s, RMSPE = 1.065 s, MAPE = 0.921 s, foot–pelvis combination: MSPE
= 1.192 s, RMSPE = 1.075 s, MAPE = 0.918 s) that are less than Saporito’s prediction errors.
We also described the advantages and disadvantages of the proposed method compared to
Saporito’s method as shown in Table 9. Furthermore, our results show that the developed
model can be an objective tool used clinically. By predicting TUG scores, this model can
objectively identify changes in function related to fall risk in older adults [40–42].

Table 9. Comparison of the advantages and disadvantages of our study with those of Saporito.

Advantages Disadvantages

• It is difficult to compare the prediction
errors directly because the methods used
between the two studies are different, but
the TUG prediction error of our study was
lower than Saporito’s prediction error.

• Our study estimated the TUG test score
using three minutes of walking data,
whereas Saporito’s needed three days of
activities of daily living. This proves that
3-min walking data are enough to predict
the TUG test.

• Although both studies reasonably
estimated the TUG test in older adults,
the subjects of our study were relatively
healthy. Saporito had a wider range of
TUG values.

• Our study conducted the experiment as
close to a real-life setting as possible,
but it was still semi-realistic. On the
other hand, Saporito experimented in a
free-living environment.

This study also determined the optimal IMU sensor locations and a set of features for
predicting the TUG scores. Our results determined that IMU sensors located on the feet had
the better TUG score prediction. The increased accuracy of the model using the foot sensor
location could be due to the sensor being closer to the ground and therefore experiencing
more changes in acceleration throughout the gait cycle for each step. Nevertheless, the
location of the pelvis sensor is less obtrusive than that of the foot sensor, as the pelvis
sensor can be attached to the waist belt. From a practical point of view, the single pelvis
sensor’s prediction error has no significant difference compared to the foot sensor (Table 7)
and it has less interference in real-life. Moreover, from a clinical point of view, many
researchers have already verified the use of a single pelvis sensor for evaluating the spatio–
temporal parameters of walking in healthy subjects and in patients [43–45]. Since spatial
and temporal parameters are commonly used as major indicators for characterizing gait [46]
and can provide clinically meaningful information related to the patient’s state and the
progression of certain diseases [47], the single pelvis sensor will offer the clinicians not only
the ability to predict TUG but also to obtain data related to spatio-temporal parameters.
Therefore, it can be concluded that the single pelvis sensor is recommended for monitoring
the risk of falls in older adults by TUG estimation. The results also determined that the
best set of features for predicting the TUG score using the foot sensor was aM, sM, vM,
aVMD, and aMD. This feature set provides insight into the characteristics of each step in
the data. The average (aM) whole step vector magnitude characterizes the accelerations of
the foot sensor throughout each whole step, while the variability (vM) characterizes how
much the accelerations change for each whole step. The symmetry (sM) of the whole step
vector magnitude characterizes how similar the left and right foot sensor accelerations are.
These features may have been selected by the model as they provide an overall insight into
how a participant walks. The average vector magnitude (aMD) and average vertical vector
magnitude (aVMD) during double stance features were also selected. The double stance
phase in the gait cycle is also a transition phase when body weight moves from the stance
leg to the swing leg [48–51]. The model may have chosen aMD and aVMD as features, as
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double stance is a phase in which falls are likely to occur due to changes in body weight
from one leg to the other [48–51]. For the pelvis sensor, the best set of features was aM,
aMD, vST, and sM30. Mostly similar features were selected, but the variability of the step
time (vST) was also selected, which can be an obviously effective predictor of TUG. It is
expected that the feature sets will have the potential to be used sufficiently to predict not
only TUG but also other balance evaluation tests.

This study has several limitations. The first limitation is that the setup for the walking
task was not performed in a daily-life setting, which could make subjects’ walking artificial.
The data obtained from a daily-life setting will be the closest to the most natural walking
movement. However, it is not easy to accurately classify walking data without a separate
monitoring device in a typical daily-life setting. Multiple monitoring devices also reduce
the efficiency of data analysis by mass-producing worthless data. Our aim is to predict
the TUG test score by measuring their gait with wearable devices. Therefore, we selected
sidewalk walking that can occur frequently in daily-life and tried to make it as natural
as possible when collecting data. The second limitation is that the data set is small and is
limited to healthy older adults, making it difficult to draw general conclusions about the
results. However, to overcome this limitation, the study repeatedly drew conclusions by
randomly selecting training data and using independent validation sets. In addition, since
this study is an early stage of research to predict the clinical assessments of older adults, it
can serve as a steppingstone for building objective indicators to judge the health of older
adults in the future. Another potential limitation of the dataset is that the smallest AIC and
BIC were produced using 11 features for the foot–pelvis combination model, as the number
of observations was not enough compared to the number of predictors. This can cause
the danger of overfitting the model. In Table 6, our results showed that the foot–pelvis
combination model built with the smallest AICc performed better than the one built with
the smallest AIC and BIC. For future studies, a larger sample size should be used to support
the level of complexity. The other limitation of this study is that participants are relatively
healthy older adults. Experiments with more diverse groups of older adults would have
produced more discriminative results in predicting TUG scores as well as the risk of
falling. Our future research plan is to use more data sets that include patients with balance
issues to investigate the power of our model in predicting various clinical assessments and
mitigating the impact of smaller datasets and to improve predictive models for remotely
monitoring older adults’ mobility by collecting data from actual daily-life settings.

5. Conclusions

This study was conducted to determine if TUG scores, a typical balance assessment,
could be predicted in older adult gait in a community-dwelling environment, not in a
laboratory setting. The proposed prediction model using the ridge regression in this study
showed satisfactory results in predicting the TUG scores. We also conducted experiments
to find out in which position the sensor should be worn to help predict the TUG scores. The
results determined that the sensor attached to the pelvis was recommended for predicting
the TUG scores of older adults due to the simplicity of a single sensor and less obstruction
compared to two feet or foot–pelvis combination sensors, as well as for obtaining data
related to spatio–temporal parameters for clinically meaningful information. Through this
study, we not only developed a model that reliably predicts the TUG scores of older adults,
but also left open the possibility of developing a health monitoring system through the
daily walking of older adults by being able to predict the risk of falls in older adults.
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