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Abstract
Increasing damage of pests in agriculture and forestry can arise both as a conse-
quence of changes in local species and through the introduction of alien species. In 
this study, we used population genetics approaches to examine population processes 
of two pests of the tree-of-heaven trunk weevil (TTW), Eucryptorrhynchus brandti 
(Harold) and the tree-of-heaven root weevil (TRW), E. scrobiculatus (Motschulsky) on 
the tree-of-heaven across their native range of China. We analyzed the population 
genetics of the two weevils based on ten highly polymorphic microsatellite markers. 
Population genetic diversity analysis showed strong population differentiation among 
populations of each species, with FST ranges from 0.0197 to 0.6650 and from −0.0724 
to 0.6845, respectively. Populations from the same geographic areas can be divided 
into different genetic clusters, and the same genetic cluster contained populations 
from different geographic populations, pointing to dispersal of the weevils possibly 
being human-mediated. Redundancy analysis showed that the independent effects of 
environment and geography could account for 93.94% and 29.70% of the explained 
genetic variance in TTW, and 41.90% and 55.73% of the explained genetic variance in 
TRW, respectively, indicating possible impacts of local climates on population genetic 
differentiation. Our study helps to uncover population genetic processes of these 
local pest species with relevance to control methods.
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1  |  INTRODUC TION

In recent years, many new pests have damaged agricultural produc-
tion and forestry operations (Riegler, 2018). These pests can be local 
species or introduced species from other distribution ranges. The 
local pests show increases in damage due to changes in the envi-
ronment and management procedures or genetic adaption to local 
environments (Hoffmann & Sgro, 2011; Riegler, 2018); these include 
the direct effects of climate changes and management responses to 
them as well as the evolution of pesticide resistance (Bergé & Ricroch, 
2010; Elbert et al., 2019). The spread of species is often facilitated by 
human activities (Bradshaw et al., 2016; Simberloff et al., 2013). In 
the past decade, human trade has increasingly promoted the move-
ment of species beyond their historical distribution (Campagnaro 
et al., 2018; Gippet et al., 2019; Liebhold & Tobin, 2008). Identifying 
the possible sources of a new pest can provide essential information 
on developing control methods (Kirk et al., 2013a).

Population genetics approaches can help to reveal the popula-
tion history of species and then infer whether the species is local 
or introduced outside of their native range (Antoine et al., 2017; 
Boissin et al., 2012b; Fraimout et al., 2017). For a pest species in 
its native range, genetic differentiation of populations is usually 
aligned to geographic distance (Wei et al., 2015), although the same 
pattern can be found in introduced species with stepping-stone ex-
pansion (Cao et al., 2016; Lundhagen et al., 2013). For a newly intro-
duced species, there is usually a lack of population differentiation 
or genetic isolation by geographic distance (Cao et al., 2017). The 
introduced populations usually share the same genetic cluster with 
their source populations (Beichman et al., 2018; Kirk et al., 2013b). 
Multiple introductions in different source populations can all lead 
to structured populations in the introduced area (Cao et al., 2017). 
Thus, based on patterns of population genetic differentiation and 
the connectivity among populations, it is possible to infer the popu-
lation history of a species and provide insights into our understand-
ing of newly outbreaking pests.

The tree-of-heaven trunk weevil (TTW), Eucryptorrhynchus 
brandti (Harold) and the tree-of-heaven root weevil (TRW), E. scro-
biculatus (Motschulsky), are the only two wood-boring species of 
Eucryptorrhynchus in China (Liu, 2016). The two species both only 
feed on the tree-of-heaven, Ailanthus altissima (Mill.) Swingle and its 
varieties A. altissima Qiantouchun in China and cause serious dam-
age. They spend their larvae stage in the trunk (TTW) or root (TRW) 
of the host tree. There is a strict reproductive isolation between 
these two species of weevil. TRW lay eggs in the soil near the roots 
of Ailanthus altissima, while TTW lay eggs in the trunk of Ailanthus al-
tissima (Zhang et al., 2019). In the past decades, TTW and TRW have 
caused increasing damage to A. altissima and become important 
pests in northern China (Wu et al., 2016) especially the Ningxia Hui 
Autonomous Region. This phenomenon is coincident with the wide-
spread use of A. altissima as an ornamental tree planted along the 
sides of roads in northern China. In North America, TTW was used 
as a potential biological control agent to control A. altissima where it 
is an invasive plant (Herrick et al., 2012). Identifying the population 

evolutionary processes of these weevils may provide insights into 
local and more widespread movement of the two weevil pests, help-
ing the development of control methods where these weevils are 
considered pests and ways of promoting their dispersal where the 
weevils are considered as biological control agents.

In this study, we examined the population genetic diversity 
and structure of the two weevils to infer their population history. 
Comparative study of the two weevils allows us to check if the two 
co-occurring pests show similar population genetic processes. We 
hypothesized that the increasing damage by the two species in China 
is related to human-mediated dispersal of seedings, based on the low 
flight ability of the two species and their life cycle. We also tested 
whether local climate can have an impact on the population genetic 
structure of the two species.

2  |  MATERIAL S AND METHODS

2.1  |  Sample collection and genotyping

We collected 13 TTW and 11 TRW populations across their native 
range of China (Table 1, Figure 1). The two weevils are the primary 
pests of the tree-of-heaven, and we sampled sites separated by vari-
able distances (30–2100 km). To avoid the collection of siblings, one 
adult individual was collected from each tree. The samples were kept 
in 100% ethanol and stored at −80°C before DNA extraction. Total 
genomic DNA was extracted from the legs of each adult using the 
DNeasy Blood & Tissue Kit (Qiagen, Hilden, Germany) according to 
the manufacturer's instructions.

Ten microsatellite loci from Zhang et al. (2021) were used in our 
study (Table S1) and genotyped using the same methods. The size of 
amplified PCR products was determined using an ABI 3730xl DNA 
Analyzer with GeneScan 500 LIZ size standard. Alleles were identi-
fied with GENEMAPPER v 4.0 (Applied Biosystems, USA).

2.2  |  Population genetic diversity analysis

The number of alleles, observed heterozygosity (HO), and polymor-
phism information content (PIC) were analyzed by the macros in 
Microsatellite Tools (Park, 2001). The null allele frequencies were 
estimated using the software FreeNA (Chapuis & Estoup, 2007). 
Deviation from Hardy–Weinberg equilibrium (HWE) for each loci/
population combination, linkage disequilibrium (LD) among loci 
within each population, pairwise mean population differentiation 
(FST), and inbreeding coefficients (FIS) were estimated in GENEPOP 
v4.0.11 (Rousset, 2008). We used the HP-RARE v1.1 (Kalinowski, 
2005) to test allelic richness (AR) and allelic richness of private al-
leles (PAR) of each site. We used GENCLONE v2.0 (Sophie & Khalid, 
2006) to estimate the total number of alleles (AT) and the unbiased 
expected heterozygosity (HE). We compared the number of alleles 
(AS) and heterozygosity (HES) among samples with different sample 
sizes in GENCLONE.
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2.3  |  Population genetic structure analysis

First, population genetic structure was investigated using 
STRUCTURE v2.3.4 (Earl & vonHoldt, 2012). We used 30 replicates 
of each K value from 1 to 10, with 200,000 Markov chain Monte 
Carlo iterations and a burn-in of 100,000 iterations. The results 
were submitted to the online software Structure Harvester v0.6.94 
(Earl & vonHoldt, 2012) to determine the optimal K value by a Delta 

K method. Membership coefficient matrices (Q-matrices) associated 
with the optimal K were processed using CLUMPP v1.12 (Jakobsson 
& Rosenberg, 2007), and then visualized using DISTRUCT v1.1 
(Taubert et al., 2019).

Second, discriminant analysis of principal component (DAPC) 
was used to analyze population genetic structure under default set-
tings (Jombart et al., 2008), complementing the STRUCTURE analy-
sis. This analysis was run using an R package adegenet v1.4-2.

TA B L E  1 Collection information for specimens of Eucryptorrhynchus brandti (TTW) and E. scrobiculatus (TRW) used in the study

Code Collection location Longitude (E) Latitude (N) Collection date
No. (TTW/
TRW) Species

BJCY Beijing, Chaoyang district 116.37 40.00 May−2018 0/5 TRW

BJHD Beijing, Haidian district 116.22 40.04 July−2018 13/13 TTW and TRW

BJHR Beijing, Huairou district 116.66 40.41 June−2018 12/13 TTW and TRW

BJSY Beijing, Shunyi district 116.77 40.10 May−2020 20/10 TTW and TRW

BJYQ Beijing, Yanqing district 115.89 40.51 June−2018 20/0 TTW

HBJZ Hubei Province, Jingzhou 112.89 30.01 September−2020 5/0 TTW

HNZZ Henan Province, Zhengzhou 113.56 34.67 June−2021 20/0 TTW

LNDL Liaoning Province, Dalian 122.96 39.97 September−2019 10/7 TTW and TRW

NXLW Ningxia Hui Autonomous 
Region, Lingwu

106.26 38.12 April−2018 12/12 TTW and TRW

NXPL Ningxia Hui Autonomous 
Region, Pingluo

106.48 38.86 April−2018 13/13 TTW and TRW

NXZW Ningxia Hui Autonomous 
Region, Zhongwei

105.12 37.50 April−2018 13/13 TTW and TRW

SDRZ Shandong Province, Rizhao 118.95 35.66 July−2018 16/15 TTW and TRW

SDTA Shandong Province, Taian 116.72 36.27 August−2018 12/0 TTW

SXYC Shanxi Province, Yuncheng 111.48 35.29 July−2018 0/5 TRW

SXYL Shanxi Province, Yangling 108.07 34.26 July−2018 0/12 TRW

TJTJ Tianjin 117.20 39.13 September−2020 14/0 TTW

F I G U R E  1 Collection sites for samples of Eucryptorrhynchus brandti (TTW, red) and E. scrobiculatus (TRW, green). Codes for collection 
sites are same as shown in Table 1. *Populations used for developing microsatellites of TTW and TRW
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2.4  |  Gene flow analysis

We used the BAYESASS v3.0.4 (Wilson & Rannala, 2003) to estimate 
the recent migration rates among populations of the two species. 
First, we conducted preliminary runs (10,000,000  steps) to adjust 
mixing parameters for allele frequencies and inbreeding coefficients. 
Then, we carried on ten longer runs of 100,000,000 steps using dif-
ferent start seeds with a sampling frequency of every 1000 steps. 
The trace files of 10  longer runs were combined using Tracer v1.6 
(Rambaut et al., 2018) to calculate mean migration with a burn-in of 
50,000. We used the migration rates of the two weevils as measures 
of gene flow.

2.5  |  Analysis of the influence of geographic and 
climatic factors on genetic variation

Geographic and climatic effects on population genetic variation 
were examined with two methods. First, the Mantel test was used 
to test the presence of isolation by distance (IBD) and isolation by 
environment (IBE) by correlating pairwise genetic differentiation 
(estimated as FST/(1−FST)) with geographic distance (km) and climate 
data using the R package ade4 v 1.7-15, with 10,000 permutations 
(Figure S1). Nineteen climate variables for each collection site of the 
two species were obtained from the WorldClim database (https://
world​clim.org/, last accessed on 28, December 2020). The standard 
(19) WorldClim Bioclimatic variables for WorldClim v2 at a 10-min 
spatial resolution were used.

Second, multivariate redundancy analysis (RDA) was used to 
examine the variance of microsatellite genotypes which can be ex-
plained by climate and geography and their collinear part (spatial 
autocorrelation climate change). RDA is the PCA analysis of the 
fitted value matrix of the multiple linear regression between the 

variable matrix and the explanatory variable matrix (Forester et al., 
2018). Nineteen climate variables were downloaded as described 
above. We converted the matrices of pairwise geographic distances 
into principal components of neighborhood matrices (PCNM) using 
the R package function pcnm in vegan v2.5-6 (https://github.com/
vegan​devs/vegan, last accessed on 28, December 2020). The first 
half of the positive feature vector as the explanatory variable of the 
population structure was kept. To avoid high linearity among the 
PCNM and climate variables, we excluded variables with a variance 
inflation factor (VIF) exceeding 15 calculated in vegan v2.5-6. We 
used the R package vegan v2.5-6 to analyze the full model (envi-
ronment and geography) and partial model (environment or geogra-
phy) of RDA. The independent environmental effect was calculated 
by constraining the effect of geography, while the independent 
geographic effect was calculated by constraining the effect of the 
environment in a partial RDA analysis. The collinearity effect was 
calculated by subtracting the independent effects of environment 
and geography from the total variance explained in the full RDA 
analysis.

3  |  RESULTS

3.1  |  Population genetic diversity

The null allele frequency and Hardy–Weinberg equilibrium (HWE) 
of loci scored for TTW and TRW are shown in Tables S2 and S3. For 
TTW, the observed heterozygosity (HO) for each population ranged 
from 0.15 to 0.36. The inbreeding coefficient (FIS) ranged from −0.24 
to 0.31, with an average value of 0.06; the polymorphism informa-
tion content of each population (PIC) ranged from 0.15 to 0.30; the 
allelic richnesses (AR) of six populations were not quite significantly 
different, varying from 1.50 in LNDL to 2.47 in SDRZ. The private 

Population N AT AS AR PAR HO HET HES FIS

BJHD 13 45 28.46 1.57 0.07 0.15 0.43 0.42 0.18

BJHR 12 42 32.15 1.74 0.14 0.22 0.57 0.57 0.13

BJSY 20 35 21.87 1.57 0.00 0.16 0.29 0.28 0.08

BJYQ 20 54 29.36 1.75 0.10 0.23 0.47 0.46 0.01

HBJZ 5 35 35.00 1.97 0.27 0.24 0.59 0.59 0.20

HNZZ 20 39 26.19 1.72 0.03 0.30 0.40 0.40 −0.24

LNDL 10 39 32.03 1.50 0.02 0.18 0.56 0.56 0.01

NXLW 12 24 20.70 1.97 0.24 0.35 0.31 0.31 −0.13

NXPL 13 27 21.08 1.80 0.15 0.22 0.32 0.32 0.14

NXZW 13 45 33.15 2.02 0.19 0.22 0.58 0.57 0.31

SDRZ 16 68 42.03 2.47 0.36 0.29 0.71 0.70 0.25

SDTA 12 39 25.63 1.72 0.02 0.26 0.36 0.35 −0.18

TJTJ 14 63 40.88 2.28 0.45 0.36 0.69 0.69 −0.06

Abbreviations: AR, average allelic richness (for 5 specimens); AS, standardized total number of 
alleles for 5 specimens per sample. HET, expected heterozygosity; AT, total number of alleles; FIS, 
inbreeding coefficient; HES, standardized expected heterozygosity (for 5 specimens); N, Sample 
size; PAR, private allelic richness (for 5 specimens).

TA B L E  2 Parameters of 
genetic diversity in populations of 
Eucryptorrhynchus brandti (TTW)

https://worldclim.org/
https://worldclim.org/
https://github.com/vegandevs/vegan
https://github.com/vegandevs/vegan


    |  5 of 11ZHANG et al.

allelic richness was also low for the 13 populations. The standardized 
total number of alleles (AS) ranged from 20.70 in NXLW to 42.03 in 
SDRZ. The standardized expected heterozygosity (HES) varied from 
0.28 in BJSY to 0.69 in TJTJ (Table 2). Population differentiation (as 
measured by FST) ranged from 0.0197 to 0.6650 (Table 3).

For TRW, the observed heterozygosity (HO) for each population 
ranged from 0 to 0.17. The inbreeding coefficient (FIS) ranged from 
−0.14 to 0.78, with an average value of 0.43; the polymorphism 
information content of each population (PIC) ranged from 0.10 to 
0.23; the allelic richness (AR) of 11 populations was not significantly 
different, varying from 1.30 in BJCY to 1.84 in SDRZ. Private allelic 
richness was also low for the 11 populations. The standardized total 
number of alleles (AS) ranged from 14.00 in SXYC to 35.51 in BJSY. 
The standardized expected heterozygosity (HES) varied from 0.13 in 
SXYC to 0.67 in BJSY (Table 4). The FST values between populations 
ranged from −0.0724 to 0.6845 (Table 5).

3.2  |  Population genetic structure

Structure analysis showed that the optimal K was two for TTW and 
three for TRW. For TTW, one cluster is composed of individuals from 
three geographically distant provinces and include BJHD, BJHR, 
NXLW, NXPL, NXZW, and SDTA (Figure 2a). Individuals from four 
geographically distant provinces and including BJSY, BJYQ, HBJZ, 
HNZZ, and LNDL were all assigned to the second cluster. Individuals 
of SDRZ and TJTJ showed an admixture of the two clusters, with 
the second cluster as the dominant one. When the number of clus-
ters increased to 4, the level of admixture increased mainly in TJTJ, 
SDRZ, NXZW, and genetic differentiation of the overall population 
remained consistent (Figure 2a).

For TRW, genetic mixing in populations was detected; this was 
the case for individuals from BJHR, NXPL, and NXZW (Figure 2a). 
In addition, the other TRW populations were divided into three 
clusters. One cluster was composed of individuals from BJHD. The 

second cluster was composed of individuals from two provinces 
with a smaller distance between SXYL and NXLW. The last cluster 
was found in populations of BJSY, BJCY, LNDL, SDRZ, and SXYC 
from four provinces. One individual from BJSY showed an obvious 
effect of gene flow. When the number of clusters increased to 4, a 
higher level of mixing was evident among the geographic popula-
tions (Figure 2a).

Discriminant analysis of principal component showed similar pat-
terns of population differentiation, with two geographically distant 
population clusters for both TTW and TRW although the second 
cluster was more diffused (Figure 2b and c). Individuals from differ-
ent geographic regions were genetically divided into clusters similar 
to those identified from the STRUCTURE analysis.

Overall, population genetic structure analysis showed that some 
populations from different geographic locations could be assigned 
to the same genetic cluster (e.g., BJHD, BJHR, NXLW, NXPL, NXZW, 
and SDTA in TTW, see Figure 1), while some populations collected 
from the same area could be assigned to different groups (e.g., BJHR 
and BJHD in TRW, see Figure 1). Additionally, individuals from the 
same population could be assigned to different clusters (e.g., TJTJ in 
TTW and NXZW in TRW).

3.3  |  Gene flow and demographic history

Gene flow estimates in the two weevils ranged from 0.0097 to 
0.0170 (95% confidence intervals) in TTW (Figure 3a, Table S4) and 
from 0.0123 to 0.0389 (95% C.I.s) in TRW (Figure 3b, Table S5). For 
TTW, low gene flow was detected between HBJZ and other popula-
tions. High levels of gene flow were found between BJHD and BJPL, 
BJHR and NXLW, LNDL and BJSY, NXZW and NXLW, and SDTA and 
NXLW. For TRW, BJCY, SXYC, and LNDL had low gene flow with 
other populations. High levels of gene flow were found between 
BJCY, BJSY, LNDL and SDRZ, BJHR, NXLW, and NXPL, and between 
NXLW and SXYL.

TA B L E  3 Pairwise FST among 13 populations of Eucryptorrhynchus brandti (TTW)

Populations BJHD BJHR BJSY BJYQ HBJZ HNZZ LNDL NXLW NXPL NXZW SDRZ SDTA

BJHR 0.3445

BJSY 0.6170 0.6034

BJYQ 0.5628 0.5456 0.5054

HBJZ 0.4981 0.4551 0.4013 0.2560

HNZZ 0.5333 0.5186 0.3740 0.2679 0.1276

LNDL 0.5972 0.5586 0.0417 0.4989 0.3958 0.3747

NXLW 0.3886 0.1114 0.6256 0.5629 0.4671 0.5417 0.5723

NXPL 0.0233 0.3132 0.5463 0.5104 0.4069 0.4483 0.5041 0.3614

NXZW 0.2859 0.1357 0.5563 0.5066 0.3996 0.4669 0.5105 0.1431 0.2666

SDRZ 0.3997 0.3745 0.3216 0.1234 0.0197 0.1184 0.2876 0.3918 0.3274 0.3496

SDTA 0.4532 0.0499 0.6650 0.5969 0.5271 0.5791 0.6173 0.0783 0.4148 0.2052 0.4212

TJTJ 0.3476 0.3616 0.2645 0.2243 0.0820 0.1008 0.2587 0.3936 0.2849 0.3123 0.0658 0.4356

Note: All values are different significantly.
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3.4  |  Geographic and climate impacts on 
genetic variation

Mantel tests showed that there was no significant correlation be-
tween genetic distance and geographic distance (TTW, p = .47, 
r = −0.01; TRW, p = .15, r = 0.14), or environmental conditions (TTW, 
p = .67, r = −0.05; TRW, p = .27, r = 0.09; Figure S1).

For TTW, effects of environmental conditions and geography 
accounted for 93.94% and 29.70% of the explained genetic variance, 
respectively, while however, there is no collinear component be-
tween them (Table S6). When considering both environmental and 
geographic effects in the RDA analysis, five climatic variables (the 
highest temperature of the warmest month [bio5], Min Temperature 
of Coldest Month [bio6], Precipitation of Wettest Month [bio13], 
Precipitation of Driest Month [bio14] and Precipitation Seasonality 
(Coefficient of Variation) [bio15]) and two geographic variables 
(PCNM1 and PCNM2) were related with genetic distance (Figure 4a). 
When geographic variables were controlled in the RDA analysis, 
bio5, bio6, bio13, bio14, and bio15 were correlated with genetic dis-
tance (Figure 4c).

For TRW, effects of environmental conditions and geography ac-
counted for 41.90% and 55.73% of the explained genetic variance, 
respectively, while their collinear component accounted for 2.38% 
(Table S6). When considering both environmental and geographic 
impacts in the RDA analysis, five climatic variables (Min Temperature 
of Coldest Month [bio6], Temperature Annual Range [bio7], 
Precipitation of Wettest Month [bio13], Precipitation Seasonality 
(Coefficient of Variation) [bio15] and Precipitation of Wettest 
Quarter[bio16]) and two geographic variables (PCNM1 and PCNM2) 
were related to genetic distance (Figure 4b). When geographic vari-
ables were restricted in the RDA analysis, bio6, bio7, bio13, bio15, 
and bio16 were correlated with genetic distance (Figure 4d).

4  |  DISCUSSION

4.1  |  Dispersal of TTW and TRW in China

The distribution range of A. altissima matches the current distribu-
tion range of the two weevils, with all three taxa mainly distributed 

Population N AT AS AR PAR HO HET HES FIS

BJCY 5 24 24.00 1.30 0.03 0.04 0.35 0.35 0.77

BJHD 13 21 17.21 1.75 0.41 0.17 0.28 0.27 0.40

BJHR 13 25 19.53 1.43 0.09 0.16 0.30 0.29 0.02

BJSY 10 44 35.51 1.82 0.25 0.06 0.68 0.67 0.78

LNDL 7 37 32.76 1.65 0.19 0.07 0.64 0.63 0.69

NXLW 12 23 16.86 1.35 0.04 0.16 0.20 0.20 −0.11

NXPL 13 45 30.89 1.49 0.10 0.12 0.54 0.52 0.22

NXZW 13 20 14.46 1.39 0.08 0.00 0.15 0.14 1.00

SDRZ 15 46 31.98 1.84 0.33 0.10 0.63 0.60 0.63

SXYC 5 14 14.00 1.36 0.03 0.08 0.13 0.13 0.41

SXYL 12 20 16.56 1.36 0.03 0.17 0.24 0.23 −0.14

Abbreviations: AR, average allelic richness (for 5 specimens); AT, total number of alleles; AS, 
standardized total number of alleles for 5 specimens per sample; FIS, inbreeding coefficient; HET, 
expected heterozygosity; HES, standardized expected heterozygosity (for 5 specimens); N, Sample 
size; PAR, private allelic richness (for 5 specimens).

TA B L E  4 Parameters of 
genetic diversity in populations of 
Eucryptorrhynchus scrobiculatus (TRW)

TA B L E  5 Pairwise FST among 11 populations of Eucryptorrhynchus scrobiculatus (TRW)

Population BJCY BJHD BJHR BJSY LNDL NXLW NXPL NXZW SDRZ SXYC

BJHD 0.5886

BJHR 0.6359 0.5803

BJSY 0.2108 0.4959 0.5167

LNDL 0.1069 0.5074 0.5424 −0.0724

NXLW 0.6462 0.6240 0.6068 0.5121 0.5613

NXPL 0.5125 0.5406 0.4079 0.3910 0.3963 0.4482

NXZW 0.7476 0.6034 0.5333 0.6629 0.7035 0.6551 0.6732

SDRZ 0.1713 0.5189 0.5020 0.0262 −0.0442 0.5082 0.3697 0.6723

SXYC 0.1927 0.5864 0.6789 0.2406 0.2261 0.6783 0.5620 0.7548 0.3196

SXYL 0.6681 0.6234 0.6176 0.5073 0.5677 −0.0127 0.4637 0.6639 0.5179 0.6845

Note: All values are different significantly.
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in Northeast, North, Northwest, and Central South China. However, 
in some southern provinces, such as Hubei and Sichuan, A. altissima 
trees grow sporadically in rural areas, and their density is extremely 
low. For regions in Northeast, North China, and Northwest China, 
such as Shandong, Ningxia, and Henan, A. altissima is typically planted 
as a street tree, with reductions in vigor due to the transplanting pro-
cess contributing to particularly high levels of damage from the two 
weevils.

Ailanthus altissima may have originated from the Indian subcon-
tinent, first spreading to Tibet with the collision of plates, and then 
spreading to other regions such as East Asia, Europe, and even North 
America via Tibet (Su et al., 2021). In addition, the humid and sub-
humid areas of the Qinghai-Tibet Plateau provide a suitable climate for 
A. altissima (Yan, 2019). Perhaps this climate region provides a source 

location for the two weevils, although samples were unavailable from 
this region.

Population genetics analysis can provide new ideas for routes of 
spread of species (Boissin et al., 2012a; Estoup & Guillemaud, 2010). 
Based on the STRUCTURE and DAPC analyses, the two weevils show 
a clear population genetic structure across China. The populations of 
TTW and TRW can be divided into two and three clusters, respec-
tively, while there is evidence of admixture in both weevils (Figures 
2 and S2). Some geographically distant populations were grouped 
and there was no IBD in either TTW or TRW, with results also in-
dicating that high levels of genetic diversity and gene flow were ev-
ident in well-separated populations. According to information from 
the China Forestry and Grassland Administration (http://www.fores​
try.gov.cn/), TTW and TRW can be spread through seedling transfer. 

F I G U R E  2 Genetic structure of Eucryptorrhynchus brandti (TTW) and E. scrobiculatus (TRW) populations. (a) Genetic structure inferred 
from STRUCTURE with k = 2, 3, 4. Genetic structure of TTW (b) and TRW (c) populations based on 10 markers using DAPC. Codes for the 
populations are shown in Figure 1
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This suggests migration of TTW and TRW mainly passively through 
human activities due to seedling transfer. Similar passive and human-
assisted ways of spread occur in other pests, such as the Frankliniella 
occidentalis (Cao et al., 2017) and Aedes aegypti (Eugenio et al., 2015).

In our study, TTW and TRW provide a pattern of cross-diffusion 
between the northeast and southwest regions. According to the 
2014–2017 National Forestry Pest Survey Results (Song, 2020), TTW 
and TRW are distributed in northeast, northwest, and southeast 
China. However, we found that population diversity in some southeast 
distribution areas is lower than that of northwest and north China. 
This might be caused by a lower population density in some southern 
populations which could account for sampling difficulties at some of 
our locations (e.g., we only collected five TTW individuals in HBJZ).

4.2  |  The influence of climate and geographic 
factors on population genetic variation

The results of IBD and IBE suggest that the genetic distance of two 
species has no strong association with geographic distance or cli-
mate factors. Since the IBE analysis considered the correlation be-
tween two matrices using a Mantel test and reduced the dimensions 
of the original data, we conducted a multivariate RDA analysis. The 
results showed that the variation in genetic distance between sam-
ples may have some association to climate factors in both the TTW 
and TRW populations. Among these, temperature and precipitation 
may affect patterns of genetic variation in the two weevils. The im-
portance of these variables has previously been noted for another 
pest, the melon thrips Thrips palmi (Cao et al., 2019).

4.3  |  Implications for pest management and usage 
in biological control of invasive plant

The integration of DNA data and pest risk assessment offers im-
portant monitoring tools for evaluating the relative success of 

pest invasions (Stepien et al., 2005). Northwest China (including 
the Ningxia Hui Autonomous Region, Qinghai, Shanxi Province, 
etc.) has classified TTW and TRW as key prevention and quaran-
tine targets in recent years. The host plant of TTW and TRW, the 
tree-of-heaven, is a plant that tolerates a wide range of climatic 
conditions and can be used when planted as seedlings to construct 
shelterbelts in northern and northwestern China (Hu, 1979). Our 
results point to high levels of differentiation among some popu-
lations but low genetic diversity, consistent with spread through 
human activities and a buildup of the pest from low initial numbers. 
Due to the weak dispersal capacity of TTW and TRW, quarantine 
measures and disinfestation should be effective and used to limit 
transmission during seedling transfer between Chinese provinces 
and cities. Such measures should prevent the two species of weevil 
from spreading further.

In the United States, A. altissima has been listed as an invasive 
weed because it has destroyed the landscape of urban areas in re-
cent years. The two weevils studied here are monophagous wood-
boring pests which only feed on A. altissima. The latitude and climatic 
conditions of the United States and China are similar, and there is a 
substantial area suitable for these two weevils in the United States 
(Ji et al., 2017). We propose that these two weevils could be spread 
through humans to act as biological control agents in controlling this 
tree.

5  |  CONCLUSION

In our study, we used microsatellite markers to explore the popu-
lation genetic diversity and structure of two Eucryptorrhynchus 
weevils. We found that populations of both TTW and TRW have 
high levels of differentiation but low genetic diversity. The pat-
terns of genetic structure and intraspecific admixture point to 
the human-mediated dispersal in these two weevils. We found 
that temperature and precipitation may indirectly associate with 
genetic differentiation in the two weevils. The results provide 

F I G U R E  3 Recent gene flow among populations of Eucryptorrhynchus brandti (TTW) (a) and E. scrobiculatus (TRW) (b) inferred from 
BAYESASS. Migration rate (M value) of TTW ranges from 0.0100–0.8782; migration rate of TRW ranges from 0.0128–0.8710
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information for integrated pest management of these two pest 
weevils in China and their use as biological control agents in other 
continents.
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