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Abstract

To investigate the impact of two CO2 observation datasets obtained from the Korean Penin-

sula on the surface CO2 flux estimation over Asia, the two datasets are assimilated into the

CarbonTracker (CT) inverse modeling system and the estimated surface CO2 fluxes are

analyzed. Anmyeon-do (AMY) and Gosan (GSN) sites in the Korean Peninsula have

observed surface CO2 mole fraction since the late 1990s. To investigate the effect of assimi-

lating the additional Korean observations on the surface CO2 flux estimation over Asia, two

experiments are conducted. The reference experiment (CNTL) only assimilates observa-

tions provided by National Oceanic and Atmospheric Administration (NOAA), while the

other experiment (EXP1) assimilates both NOAA observations and two Korean observation

datasets. The results are analyzed for 9 years from 2003 to 2011 in Asia region because

both AMY and GSN datasets exist almost completely for this period. The annual average of

estimated biosphere CO2 flux of EXP1 shows more flux absorption in summer and less flux

emission from fall to spring compared to CNTL, mainly on Eurasia Temperate and Eurasia

Boreal regions. When comparing model results to independent CO2 concentration data

from surface stations and aircraft, the root mean square error is smaller for EXP1 than

CNTL. The EXP1 yields more reduction on uncertainty of estimated biosphere CO2 flux over

Asia, and the observation impact of AMY, GSN sites on flux estimation is approximately

11%, which is greater than other observation sites around the world. Therefore, the two CO2

observation sets in the Korean Peninsula are useful in reducing uncertainties for regional as

well as global scale CO2 flux estimation.

1. Introduction

The annual mean surface air temperature of the earth has increased since the second industrial

revolution in the late 19th century. Global mean surface temperature (GMST) of the last decade

(2011–2020) was approximately 1.09˚C higher than that of the preindustrial period (1850–

1900) [1]. The Paris Agreement adopted in 2015 aims at limiting the GMST rise below 2˚C, or

1.5˚C if possible, compared to the pre-industrial levels [2]. However, Intergovernmental Panel
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on Climate Change (IPCC) special report has stated that the temperature increase could sur-

pass 1.5˚C at the middle of this century without additional emission decrease, even if the cur-

rent nationally determined contributions (NDCs) are achieved [3]. Therefore, it is important

to estimate the precise sources and sinks of greenhouse gases in order to support the emission

policies based on the scientific information as well as to manage the risks from the climate

change.

CO2 is the most abundant component among the greenhouse gases in the troposphere.

Since [4] attempted to estimate surface CO2 flux by assimilating observed CO2 mole fraction

data in a model, many researchers have studied surface CO2 flux optimization using data

assimilation (DA) approach. Surface CO2 flux estimation is an inverse modeling problem,

known as an under-deterministic problem, which finds the solutions from relatively small

number of observations. Thus, it needs prior surface CO2 flux information and more impor-

tantly observation data accumulated in long time period, so as to estimate the surface CO2

fluxes more precisely. Observations from the surface (i.e., flask observation and in situ obser-

vation) are commonly used in the inverse modeling. The spatial density of the surface CO2

observations is relatively high in North America and Europe, giving more reliable surface CO2

flux information of the two continents [5]. On the other hand, Asia, Africa, and South America

have relatively low observation densities to well enough constrain the surface CO2 fluxes. To

cover the deficiency of observation density in Asia, inverse modeling researches have been

conducted by assimilating tower observations in Siberian region and aircraft observations over

the globe into inverse models [6–9]. Satellite column CO2 (XCO2) data have also been used to

supplement the spatial coverage of surface CO2 observations. The Greenhouse Gases Observ-

ing Satellite (GOSAT; [10, 11]) XCO2 data have been used in various inverse modeling studies

[12–21]. The Orbiting Carbon Observatory-2 satellite (OCO-2; [22, 23]) XCO2 data also have

been used in several studies [19, 15, 24–26]. Despite broad spatial coverage of satellite XCO2

data, the surface CO2 flux estimation using satellite XCO2 data shows large uncertainty

depending on observation coverage, number of data, and retrieval algorithm [15, 17, 19].

Those studies have shown some improvements in optimizing surface CO2 flux in Asia, but

more observation data are required to more precisely estimate the surface CO2 fluxes in terms

of their spatial and temporal patterns as well as total annual budgets in different ecoregions

over Asia.

Meanwhile, each country involved in the Paris agreement is obliged to set up its own contri-

bution to greenhouse gas emission reduction and report its annual emission inventory to

United Nations Framework Convention on Climate Change (UNFCCC) to check how much

reduction is achieved. World Meteorological Organization (WMO) has established Integrated

Global Greenhouse Gas Information System (IG3IS) platform, which combines traditional

inventory reporting and inverse modeling results to support countries to make the inventory

report with less uncertainties. [27] applied CO2 mole fraction data observed from two surface

in situ observatories and shipboard across New Zealand to an inverse model, and revealed that

the modeled CO2 flux absorption from indigenous forests in New Zealand is stronger than the

absorption calculated from the inventory report. In the UK, CO2 observation from the tower

network were assimilated into an inverse model and the estimated CO2 flux from the bio-

sphere seemed to be zero balanced, different from the inventory report [28]. The regional scale

observation networks have been established in Switzerland and Paris, France, in order to assist

regional greenhouse gas emission estimation. As it becomes more important to secure enough

observations for surface CO2 flux optimization, more Asian observations are necessary to be

utilized in inverse modeling.

In this study, CO2 observation data from Anmyeon-do (AMY) and Gosan (GSN), located

in the Korean Peninsula, are assimilated into the CarbonTracker (CT), and the effect of the
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two observation datasets on Asian surface CO2 flux estimation is investigated. AMY and GSN

sites have accumulated observation data over approximately more than 9 years, which could

provide flux information over the Korean Peninsula and its surrounding Asian regions. Model

and observations used are introduced in section 2. In section 3, the estimated CO2 fluxes in

Asia from the 9-year (2003–2011) assimilation experiments using two additional observation

datasets and the effects of assimilating AMY and GSN data into the inverse modeling are dis-

cussed. Finally, section 4 presents the summary and conclusions.

2. Methodology

2.1 Inverse modeling system

CT is a global scale inverse model [29] developed to estimate the surface CO2 fluxes using CO2

observations as a constraint. To assimilate CO2 mole fraction observations, CT adopts an

ensemble Kalman filter (EnKF) DA method. Because the number of observation sites is too

sparse to cover the whole globe, prior flux information needs to be given in advance. First

guess of CO2 flux is presented as a combination of four different prior flux information as

below:

Fðx; y; tÞ ¼ lr � Fbioðx; y; tÞ þ lr � Focnðx; y; tÞ þ Ffireðx; y; tÞ þ Fffðx; y; tÞ; ð1Þ

where Fbio, Focn, Ffire and Fff represent CO2 flux from terrestrial ecosystem activity (CASA

GFED v3.1: [30, 31]), atmosphere-ocean CO2 exchange [32], biomass burning from the forest

fire [30, 31], and fossil fuel combustion (Carbon Dioxide Information and Analysis Center

[CDIAC] database: [33]), respectively. Since CO2 emissions from fossil fuel use and forest fire

are prescribed, it is important to find precise biosphere flux and ocean flux estimates to opti-

mize the total CO2 fluxes. In CT, scaling factor λr is updated through DA and used for optimiz-

ing the two CO2 flux components (i.e., biosphere and ocean fluxes). Each scaling factor

corresponds to the specific ecosystem called ecoregion. The 126 ecoregions in the land among

209 ecoregions that combines Transcom regions (i.e., 11 regions) and ecosystem types (i.e., 19

types), and the 30 ecoregions in the ocean [34] are paired with scaling factors and those scaling

factors update the flux values. These total 156 ecoregions are shown in CarbonTracker website

(https://gml.noaa.gov/ccgg/carbontracker/CT2013B_doc.pdf). Among 209 ecoregions men-

tioned above, the unrealistic combinations of Transcom regions and ecosystem types (e.g.,

mangrove in the Eurasia Boreal) are not included in the 126 ecoregions in the land.

Transport Model 5 (TM5: [35]), an offline atmospheric chemical transport model, converts

surface CO2 flux from Eq (1) into model CO2 concentration (i.e., mole fraction). TM5 then

calculates advection, convection, and vertical diffusion of CO2 using ERA-Interim reanalysis

data from the European Centre for Medium-Range Weather Forecasts (ECMWF). TM5 works

as an observation operator calculating model CO2 concentration corresponding to the

observed CO2 concentration at the time and space of which observation occurs.

The EnKF scheme used in CT is the ensemble square root Kalman filter (EnSRF) adopted

from [36]. EnSRF separately updates ensemble mean and ensemble perturbation, as follows:

�xa ¼ �xb þ Kðyo� H�xbÞ; ð2Þ

x0ai ¼ x0bi � ~kHx0bi ; ð3Þ

where �x is the ensemble mean of the state vector x, which is scaling factor being updated in the

DA system in this study. Subscripts a and b are analysis and background, respectively, and yO

is the observation vector. H is a linear observation operator projecting the model state vector
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onto the observation space, and the TM5 works as H in CT. K and ~k are Kalman gain and

reduced Kalman gain, respectively.

K ¼ ðPbHTÞðHPbHT þ RÞ� 1
; ð4Þ

~k ¼ a � K; ð5Þ

where a ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R
HPbHTþR

q� �� 1

, Pb is the model’s background error covariance, and R is the

observation error covariance. PbHT and HPbHT is calculated using the equations below:

PbHT �
1

N � 1
ðx0

1
; x0

2
; . . . ; x0NÞ � ðHx0

1
;Hx0

2
; . . . ;Hx0NÞ

T
; ð6Þ

HPbHT �
1

N � 1
ðHx0

1
;Hx0

2
; . . . ;Hx0NÞ � ðHx0

1
;Hx0

2
; . . . ;Hx0NÞ

T
; ð7Þ

where N is number of ensemble members.

It is necessary to prevent the sampling error amplification by limited ensemble members.

Covariance localization technique [37] is conducted in CT to exclude the effect of the remote

observations to the surface CO2 flux estimation, as the remote observations from the flux loca-

tion are barely correlated with the flux concerned. Since no physical relationship exists

between scaling factors, the correlations are calculated between scaling factor deviations of

ensemble members and corresponding modeled flux deviations. If the correlation values fail

the significance test, the scaling factor is not updated. Marine Boundary Layer (MBL) observa-

tions are exempt for the localization as MBL sites captures the flux signal from a distance [34].

On each week of the simulation period, the EnKF assimilates observations from the most

recent week to update the scaling factors of the five weeks including the past four weeks as well

as the most recent week. As [38] denoted, the time lag scheme helps to consider that the obser-

vations can contain the signal of sources or sinks away from the observing sites. Previous stud-

ies using a five-week time lag [7, 29, 39–41] showed that the five-week time lag is appropriate

to optimize the surface CO2 flux in North America, Europe, and Asia.

In CT, the scaling factor for the upcoming analysis week is predicted by a simple model as

follows:

l
b
t ¼
ðl

a
t� 2
þ l

a
t� 1
þl

p
Þ

3
; ð8Þ

where l
b
t is a prior scaling factor for the upcoming analysis week t; l

a
t� 2

and l
a
t� 1

are posterior

scaling factors of week t-2 and t-1, respectively. λp is a fixed value 1, so that the scaling factor

returns to 1 when there are no assimilated observations.

2.2 CO2 observation

In this study, two surface CO2 mole fraction observation datasets from AMY (https://gaw.

kishou.go.jp/search/file/0039-2014-1001-01-01-9999) and GSN (https://gaw.kishou.go.jp/

search/file/0052-2025-1001-01-01-9999) sites in the Korean Peninsula are additional observa-

tions that are assimilated in CT. AMY station has been operated by Korea Meteorological

Administration (KMA) since 1998 and a year later has been designated as a regional global

atmospheric watch (GAW) station. GSN station has started observation in 2002 by National

Institute of Environmental Research (NIER), and KMA has taken over the operation since

2012 with new acronym JGS (Jeju Gosan). AMY and GSN data are obtained relatively remote
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from anthropogenic sources such as factories or residential area, which are appropriate to rep-

resent the CO2 concentration in Northeast Asia region. The method used for observing the

two datasets is non-dispersive infrared analyzer (NDIR), which is able to log quasi-continuous

CO2 concentration.

In this study, AMY and GSN data are assimilated together with other observation datasets

from Observation Package (ObsPack) product in CT. The ObsPack product, provided by

National Oceanic and Atmospheric Administration (NOAA) Earth System Research Labora-

tory (ESRL) [42], is a collection of CO2 observations around the world. Diverse research insti-

tutes including NOAA, the Commonwealth Scientific and Industrial Research Organization

(CSIRO), the National Center for Atmospheric Research (NCAR), and Environment and Cli-

mate Change Canada (ECCC) have provided observed data for ObsPack production. Most

ObsPack data are obtained by averaging observed values between 12–16 local standard time

(LST) since the TM5 model shows good performance in simulating well-mixed atmospheric

layer of daytime. For observation sites located at the mountaintops, observations between 00–

04 LST are averaged because there is less chance of local biogenic or anthropogenic CO2 inflow

from the downslope during the nighttime [34]. Daily mean AMY and GSN data are also

obtained by averaging 12–16 LST data, following the ObsPack data.

Model-data mismatch (MDM) (i.e., observation error) for ObsPack is prescribed based on

observation type and geographic characteristics in CT. When assimilated, the observation error

for two datasets needs to be prescribed. MDM of both AMY and GSN is set to 3 ppm based on

several verifications conducted in [43]. Beside AMY and GSN, Tae-ahn Peninsula (TAP) data are

already included in the ObsPack. Note that TAP’s MDM is 5 ppm, following [41].

For verification of the results, independent CO2 observations in Asia that are not assimi-

lated in CT are used. Those independent observations are aircraft observation data from the

National Institute for Environmental Studies (NIES) Japan, called The Comprehensive Obser-

vation Network for Trace gases by Airliners (CONTRAIL) (http://doi.org/10.17595/20180208.

001; [44, 45]), and surface observations from World Data Centre for Greenhouse Gases

(WDCGG, https://gaw.kishou.go.jp/). Tables 1 and 2 and Fig 1 present information of the

observations in Asia, used for assimilation and verification in this study. Note that only Asian

ObsPack stations are depicted here. The CONTRAIL data used for verification shown in Fig 1

is from Nov. 2005 to Dec. 2011. As Fig 1, all figures including map image in this study were

produced using NCL [46].

2.3 Experimental framework

CT2013B version is used in this study, which is able to simulate the surface CO2 flux from 2000 to

2012. Two experiments are conducted to investigate the impact of AMY and GSN observations

on surface CO2 flux estimation. EXP1 experiment assimilates all available observations (AMY,

GSN observations, and ObsPack datasets), while CNTL assimilates only ObsPack data. The TM5

model runs on a two-way nested grid with a 3˚⨯2˚ outer domain on the globe and a 1˚⨯1˚ nesting

domain centered on Asia (Fig 1). The experimental period is from 2002 to 2011 because both

AMY and GSN datasets exist almost completely for this period. The experimental results are ana-

lyzed for 9 years from 2003 to 2011 except for the first year (i.e., 2002) as a spin-up. More details

about the experimental settings are summarized in Table 3.

3. Results

3.1. Characteristics of surface CO2 flux in Asia

3.1.1 9-year average surface CO2 flux distribution. Fig 2 shows the 9-year average sur-

face CO2 flux distribution within the nested domain shown in Fig 1. Fig 2A shows the surface
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CO2 flux calculated by prior fluxes (i.e., with no DA), Fig 2B and 2C are the CNTL and EXP1

results, Fig 2D is the average flux difference between EXP1 and CNTL, and Fig 2E shows the

spatial distribution of the “Mixed forest” ecoregion in Asia where the AMY site is located. DA

enhances the absorption and emission of surface CO2 fluxes compared with prior fluxes (Fig

2A–2C). In particular, there are strong CO2 flux absorptions in the Indochina Peninsula,

inland China, the Korean Peninsula, Japan, and southern Siberia, and strong CO2 flux

Table 1. Information of observation sites in Asia used for assimilation in this study.

Site Location Latitude Longitude Height [m] Laboratory Data period MDM [ppm]

AMY Anmyeon-do, South Korea 36.53˚N 126.32˚E 2002.01~2004.06: 57 KMA/ESRL 2002.01~ 3

2004.07~2011.12: 87 2011.12

GSN Gosan, South Korea 33.15˚N 126.12˚E 72 NIER 2002.01~ 3

2011.05

TAP Tae-ahn Peninsula, South Korea 36.37˚N 136.13˚E 20 ESRL 2002.01~ 5

2011.12

WLG Mt. Waliguan, China 36.29˚N 100.9˚E 3810 CMA/ESRL 2002.01~ 1.5

2011.12

UUM Ulaan Uul, Mongolia 44.45˚N 111.10˚E 914 ESRL 2002.01~ 2.5

2011.12

GMI Mariana Islands, Guam 13.38˚N 144.65˚E 2 ESRL 2002.01~ 1.5

2011.12

BKT Bukit Kototabang, Indonesia 0.20˚S 100.32˚ E 864 ESRL 2004.01~ 7.5

2011.12

KZD Sary Taukum, Kazakhstan 44.45˚N 77.57˚E 412 ESRL 2002.01~ 2.5

2009.08

KZM Assy Plateau, Kazakhstan 43.25˚N 77.88˚E 2519 ESRL 2002.01~ 2.5

2009.08

WIS Sde Boker, Israel 31.13˚N 34.88˚E 400 ESRL 2002.01~ 2.5

2011.12

Note that AMY has two different observation heights for the two periods.

https://doi.org/10.1371/journal.pone.0263925.t001

Table 2. Information of observation sites in Asia used for independent verification in this study.

Site Location Latitude Longitude Height [m] Laboratory Data period

MNM Minamitorishima, Japan 24.29˚N 153.98˚E 8 JMA 2002.01~

2011.12

RYO Ryori, Japan 39.03˚N 141.82˚E 260 JMA 2002.01~

2011.12

YON Yonagunijima, Japan 24.47˚N 123.02˚E 30 JMA 2002.01~

2011.12

COI Cape Ochiishi, Japan 43.16˚N 145.5˚E 96 NIES 2002.01~

2010.12

HAT Hateruma Island, Japan 24.05˚N 123.81˚E 46.5 NIES 2002.01~

2010.12

LLN Lulin, Taiwan 23.47˚N 120.87˚E 2862 ESRL 2006.08~

2011.12

SDZ Shangdianzi, China 40.39˚N 117.07˚E 287 CMA/ESRL 2009.09~

2011.12

https://doi.org/10.1371/journal.pone.0263925.t002
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emissions in inland India and a small part of southern China (Fig 2B and 2C). The average

flux distributions of CNTL and EXP1 show generally similar patterns (Fig 2B and 2C), but

EXP1 shows more absorption than CNTL does in inland southern China, the Korean Penin-

sula, and Japan (Fig 2D). Locations such as the border region between northern Thailand and

China represent greater emissions in EXP1 than in CNTL (Fig 2D). Mixed forest areas coin-

cide well with the areas where the DA effects are obvious (Fig 2B, 2C and 2E), which is due to

background error covariance in the EnKF in CT. As each scaling factor is assigned to respec-

tive ecoregions, the background error covariance matrix shows correlations between ecore-

gions in different Transcom regions. Since the dynamical model in Eq (8) does not include an

Fig 1. Observation sites in Asia, used either in data assimilation (�: NOAA ObsPack sites in Asia; •: AMY and

GSN) or in verification (�: Observation sites of JMA, NIES, and ESRL). CONTRAIL observations are marked as

squares (thick line: locations of ascending/descending mode; thin line: level mode). The dashed box represents the

nested domain in TM5 transport model.

https://doi.org/10.1371/journal.pone.0263925.g001

Table 3. Experimental framework for estimating surface CO2 flux in Asia.

Experiment name CNTL EXP1

Common observation dataset ObsPack CO2 PROTOTYPE v1.0.4b

(2014-2-13 released)

Additional observation site - AMY(3), GSN(3)

(MDM [ppm])

Model domain 3˚⨯2˚ Globe

1˚⨯1˚ 51˚~153˚E, 12˚S~70˚N

Experimental period 2002. 1. 1 ~ 2011. 12. 31 (2002: spin-up)

Weeks of lag 5

Number of ensemble members 150

https://doi.org/10.1371/journal.pone.0263925.t003
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error term, the background error covariance is set to a prior covariance structure and not pre-

dicted with the dynamical model [29]. According to [34], the same ecoregions among five dif-

ferent Transcom regions (North American Boreal, North American Temperate, Eurasia

Boreal (EB), Eurasia Temperate (ET), and Europe) have correlations although those correla-

tions become small for distant ecoregions. These correlations allow observations in a certain

ecoregion to update scaling factors connected to the same ecoregion concerned, through the

DA. It explains how AMY data affects more on the specific areas.

3.1.2 Annual and average surface CO2 flux. Fig 3 shows annual and average surface CO2

fluxes on the globe, the land, and the ocean. Compared to prior flux, global CO2 flux uptake by

land vegetation and ocean in CNTL and EXP1 is approximately 2 Pg C yr-1 greater (Fig 3A).

Most of this CO2 uptake difference between the experiments and prior flux comes from the

CO2 absorption by the terrestrial vegetation (Fig 3B), while CO2 flux absorptions from the

ocean in the CNTL and EXP1 are only slightly different from the prior flux (Fig 3C). When

Fig 2. Average biosphere fluxes (g C m-2 yr -1) for 2003–2011 period over the nested Asian domain: (a) prior, (b)

CNTL, (c) EXP1, and (d) difference between EXP1 and CNTL. (e) Spatial distribution of the “Mixed forest” ecoregion

in Asia, where AMY site is located.

https://doi.org/10.1371/journal.pone.0263925.g002
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comparing CNTL and EXP1 results, EXP1 shows slightly more (less) biogenic (oceanic) CO2

flux absorption than CNTL does. The interannual variation of CNTL and EXP1 during the

analysis period is very similar, indicating that the two Korean observation datasets assimilated

in CT did not interrupt the consistency in the global surface CO2 flux variability. The prior

fluxes show the greatest uncertainties on the globe, the land, and the ocean, followed by CNTL

and EXP1 (Fig 3A–3C). The average uncertainty of the prior flux for 9 years on the globe

decreases by 22.5% in CNTL and 24.2% in EXP1 (Fig 3A). The decreases of uncertainties in

CNTL and EXP1 compared to the prior flux uncertainty are greater on the land than the ocean

(Fig 3B and 3C).

Fig 4 is the same as Fig 3 but for the three Transcom regions in Asia. In the EB and ET

regions, the surface CO2 fluxes from the prior flux are very small, while CNTL and EXP1 result

in absorbing large amounts of surface CO2 fluxes. Compared to CNTL, EXP1 generally esti-

mates more biogenic CO2 flux absorption for every Transcom regions in Asia. CNTL and

Fig 3. Annual and average biosphere and ocean CO2 fluxes (Pg C yr-1) from the prior (black), CNTL (gray), and EXP1

(white) with their uncertainties aggregated over the (a) whole globe, (b) land, and (c) ocean.

https://doi.org/10.1371/journal.pone.0263925.g003
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EXP1 estimate -1.08 Pg C yr-1 and -1.27 Pg C yr-1 of CO2 flux for EB (Fig 4A), while -0.43 Pg C

yr-1 and -0.61 Pg C yr-1 of CO2 flux for ET (Fig 4B). In particular, compared to CNTL, EXP1

shows larger biogenic surface CO2 flux absorption in ET since the added two Korean CO2

observation sites are located in ET. The biogenic CO2 flux absorption in EB is also affected by

the two observation datasets in ET owing to the background error covariance structure

described in section 3.1.1. Assimilation of AMY and GSN datasets results in negative CO2

fluxes greater in Asia, which implies the possibility of the enhanced CO2 absorption as well as

the weakened CO2 respiration. The prior fluxes show the greatest uncertainties in EB, ET, and

Tropical Asia (TA), followed by CNTL and EXP1 (Fig 4A–4C). The average uncertainty of the

prior flux for 9 years in EB decreases by 19.8% in CNTL and 21.8% in EXP1 (Fig 4A), and that

Fig 4. Annual and average biosphere CO2 fluxes (Pg C yr-1) from the prior (black), CNTL (gray), and EXP1 (white)

with their uncertainties aggregated over the (a) Eurasia Boreal, (b) Eurasia Temperate, and (c) Tropical Asia.

https://doi.org/10.1371/journal.pone.0263925.g004
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in ET decreases by 18.7% in CNTL and 23.9% in EXP1 (Fig 4B). In TA, CNTL and EXP1 show

very similar uncertainties (Fig 4C).

In EXP1, the EB region has the lowest flux absorption in 2005 and 2006 and the greatest

flux absorption in 2008 and 2011 (Fig 4A). The ET has the lowest CO2 uptake in 2003 and

2005 and the greatest in 2011 (Fig 4B). This interannual variability of biogenic CO2 flux seems

to be affected by the climate events. It is known that El Nino enhances the CO2 sources while

La Nina intensifies the CO2 sinks [47, 48]. Based on the ENSO ONI index from NCEP (https://

origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php), the strong

La Nina events occurred during 2007–2008 and 2010–2011, and the biogenic CO2 flux absorp-

tion estimated from the CT increased at the same period. Meanwhile, weak El Nino events

occurred during 2004–2005 and late 2009, and the biogenic CO2 flux absorption from CT

weakened during that period. Additionally, extreme drought conditions occurred in 2003 in

all of the northern midlatitudes [49] result in reduced uptake of CO2 [6]. Therefore, assimilat-

ing CO2 observation datasets in Korea reflects the climate effect on the surface CO2 exchange

in EB and ET (Fig 4A and 4B). TA has very small CO2 uptake and emission of less than 0.3 Pg

C yr-1, irrespective of the experiments (Fig 4C). Surface CO2 flux estimates over the TA region

have been known to have high uncertainty because there are little observations for the inverse

modeling to represent the signal of source and sink [39, 50, 51]. [52, 53] showed that the near-

neutral CO2 flux in tropical region is due to the balance between the CO2 release from defores-

tation and the CO2 uptake by the intact tropical forests. [48] showed that the carbon budget in

South Asia and Southeast Asia is close to neutral, with weak signs of carbon sink.

3.1.3 Monthly and weekly aggregated surface CO2 flux. Fig 5 shows the time series of

monthly surface CO2 fluxes averaged in the analysis period (i.e., 2003–2011) for the individual

Transcom regions in Asia. In both CNTL and EXP1, a distinct seasonal variation pattern is

found in the EB and ET regions (Fig 5A and 5B), in which flux absorption occurs in summer

and flux emission occurs from autumn to spring.

Over the EB region, where vegetation activity is very active, approximately -12 Pg C yr-1 is

estimated to be absorbed to the surface every summer with a large surface CO2 flux uncertainty

(Fig 5A). Compared to CNTL, CO2 flux emission in spring in EXP1 decreases in the EB region.

The ET region shows large difference between CNTL and EXP1 (Fig 5B). Compared to CNTL,

EXP1 shows stronger flux absorption in the summer and weakened flux emission in winter

and spring. In particular, CO2 flux emission in spring in EXP1 is reduced to less than half of

CNTL. The uncertainties of surface CO2 flux estimation in CNTL and EXP1 are the greatest in

summer. In the TA region, there is little difference between CNTL and EXP1 and there is no

distinct seasonal variation although there are CO2 flux absorption in spring and fall and release

in summer (Fig 5C).

Therefore, the assimilation of AMY and GSN observations in CT enhances the monthly

surface CO2 flux absorption in summer in Asia region (especially EB and ET), and decreases

the CO2 emission in spring and winter season. The seasonal surface CO2 fluxes would be

changed if the seasonal and diurnal variations of MDM are considered. The effect of MDM

variations in estimating the surface CO2 fluxes over Asia would be a future study.

Figs 6 and 7 show the weekly cumulative fluxes of each year and their differences from 9-year

average values calculated for EB and ET, respectively. The EB region shows seasonal variation

every year, absorbing CO2 strongly in summer and emitting CO2 in spring and winter (Fig 6A

and 6C). CNTL shows a decrease in summer CO2 flux absorption in 2003, 2004, 2006, and 2007,

whereas shows strong above average CO2 flux absorption in summer of 2008, 2009, and 2011

(Fig 6B). In EXP1, the flux absorption is much more active during the whole analysis period

since averaged weekly cumulative flux is shifted to the negative direction (Fig 6C). From 2007 to

2011, the flux absorption in EXP1 is similar to or greater than the 9-year averaged flux (Fig 6D).
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The ET region shows seasonal variation similar to the EB region, but its magnitude

decreases by half (Fig 7A and 7C). In CNTL, the flux absorption is weaker than the 9-year aver-

aged flux absorption in 2003, 2005, and 2010, whereas the flux absorption is stronger and

Fig 5. Monthly biosphere CO2 fluxes (Pg C yr-1) of the prior (black), CNTL (blue), and EXP1 (red), averaged for

2003–2011 period, with their uncertainties over the (a) Eurasia Boreal, (b) Eurasia Temperate, and (c) Tropical Asia.

https://doi.org/10.1371/journal.pone.0263925.g005
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emission is weaker in 2006, 2007, and 2009 (Fig 7B). The average cumulative CO2 flux for

EXP1 is lower than the CNTL, indicating EXP1 uptakes more CO2 flux than CNTL does (Fig

7D). In EXP1, strong spring CO2 uptake occurred in 2007 and from 2009 to 2011, which made

the average cumulative flux in spring period close to zero. In 2010, CO2 uptake in EXP1

decreased from summer to fall, which is similar to the CNTL result, but EXP1 showed more

CO2 flux absorption in spring and early winter.

Overall, more weekly cumulative CO2 absorption is simulated for the terrestrial biosphere

in Asia, and the flux differences are more diverse when assimilating the two Korean observa-

tion datasets in CT.

3.2 Verification with independent observations

3.2.1 Verification with surface observations. Table 4 summarizes bias and RMSE of

model CO2 concentrations with respect to observed CO2 concentrations, and correlation coef-

ficient between model CO2 concentrations and observed CO2 concentrations, for seven inde-

pendent surface CO2 observation sites in Asia. CNTL shows positive bias for every site except

RYO, implying that the CNTL generally overestimates observed CO2 concentration at evalua-

tion sites. EXP1 also shows positive bias for all sites, but their absolute values are smaller than

those of CNTL except RYO, which indicates that EXP1 estimates more accurate CO2 concen-

trations than CNTL.

Fig 6. Weekly cumulative biosphere CO2 fluxes (Pg C) of each year over Eurasia Boreal region: (a) CNTL and (c)

EXP1. Weekly cumulative biosphere CO2 flux differences (Pg C) in each year from the 9-year average for 2003–2011

period over Eurasia Boreal region: (b) CNTL and (d) EXP1.

https://doi.org/10.1371/journal.pone.0263925.g006
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The monthly model CO2 concentrations in CNTL and EXP1 are mostly overestimated

compared to the monthly observed CO2 concentrations and the biases are relatively smaller in

winter than in summer, indicating better performance of CT in winter (not shown). EXP1

shows smaller biases than CNTL during November to April period except January.

The RMSE of CNTL is smaller than that of EXP1 for COI, HAT, RYO, MNM, and YON

sites, which are located on islands or seaside. In contrast, the RMSE of EXP1 is smaller than

that of CNTL for LLN and SDZ sites which are located inland. Averaging over all sites, the

Fig 7. Same with Fig 6 except for Eurasia Temperate (ET) region.

https://doi.org/10.1371/journal.pone.0263925.g007

Table 4. Bias (ppm), RMSE (ppm), and correlation coefficient of model CO2 concentrations of CNTL and EXP1 with respect to observed CO2 concentrations at

seven independent surface observation sites in Asia.

Site Bias [ppm] RMSE [ppm] Correlation coefficient

CNTL EXP1 CNTL EXP1 CNTL EXP1

COI 0.161 0.125 2.747 2.830 0.926 0.917

HAT 0.447 0.421 1.392 1.460 0.972 0.968

RYO -0.082 0.107 2.916 3.386 0.919 0.889

MNM 0.600 0.592 0.959 0.970 0.992 0.991

YON 0.853 0.779 2.131 2.152 0.949 0.945

LLN 4.064 3.964 5.699 5.617 0.750 0.755

SDZ 1.059 0.861 7.285 6.535 0.645 0.701

Average 1.015 0.978 3.304 3.279 0.879 0.881

https://doi.org/10.1371/journal.pone.0263925.t004
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RMSE of EXP1 (3.279 ppm) is slightly less than that of CNTL (3.304 ppm). Pearson correlation

coefficient shows similar results to the RMSE results. SDZ and LLN have higher correlation

values in EXP1 than CNTL, while the other sites have higher correlation coefficient values in

CNTL than EXP1.

The evaluation with the independent surface CO2 observations indicates that, by assimilat-

ing AMY and GSN site observations into CT, the bias of model CO2 concentration could be

reduced and the model CO2 concentration with DA could be more accurate than that without

DA, particularly over inland vegetation region. In terms of monthly verification, the bias of

monthly model CO2 concentration could be reduced for the winter to early spring seasons, by

assimilating AMY and GSN site observations into CT.

3.2.2 Verification with CONTRAIL aircraft observations. In this section, the model

CO2 concentrations for each experiment are verified with respect to the independent CON-

TRAIL observations, which are not assimilated in any of the experiments. CONTRAIL obser-

vations are categorized with two types of observation mode: ascending/descending mode and

level mode (Fig 8). The vertical observation (ascending/descending mode) is conducted while

ascending from/descending to the airport. Bin numbers 3 to 8 represent the ascending/

descending mode where the observations are conducted at four different levels (level 1: 625–

575 hPa, level 2: 525–475 hPa, level 3: 425–375 hPa, and level 4: 275–225 hPa). The 6 bins

drawn with thick boundaries represent ascending/descending mode, and their locations are

New Delhi (bin 3), Bangkok (bin 4), Singapore (bin 5), Jakarta (bin 6), Incheon (bin 7), and

Tokyo (bin 8). The other bins (bin numbers 17 to 35) contain the observations from the upper

atmospheric layer of 275–225 hPa (level mode). The observations in the stratosphere are

Fig 8. CONTRAIL bins filled with dark gray represent that RMSEs of CNTL are smaller than those of EXP1, while

bins filled with dots represent that RMSEs of EXP1 are smaller than those of CNTL. The numbers are assigned on

bins to identify the observational regions of CONTRAIL data.

https://doi.org/10.1371/journal.pone.0263925.g008
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excluded from the analysis. The method of separating CONTRAIL data into several bins fol-

lows [7].

Table 5 shows RMSE of model CO2 concentrations for each experiment with respect to the

CONTRAIL observations. The average RMSEs for total CONTRAIL data are smaller in EXP1

(1.506 ppm) than in CNTL (1.545 ppm), and those for the ascending/descending mode are

also smaller in EXP1 (1.581 ppm) than in CNTL (1.643 ppm). At bins 3, 4, 7 and 8, EXP1

shows smaller RMSEs than CNTL does at each level. At bin 5, EXP1 shows smaller RMSE than

CNTL does only at level 4. At bin 6, CNTL shows smaller RMSEs than EXP1 does at level 1, 2

and 4. In case of the level mode, the RMSE of EXP1 (1.414 ppm) is also smaller than that of

CNTL (1.424 ppm).

When considering the whole levels for the ascending/descending mode observation, the

bins 3, 4, 5, 7 and 8 have the smaller RMSEs in EXP1, while the bin 6 has the smaller RMSE in

CNTL (Fig 8). For the level mode observation, bins 24–27 and 29–35 have the smaller RMSEs

in EXP1, and the other level mode bins (i.e., 17–23 and 28) have the smaller RMSEs in CNTL.

The bins showing smaller RMSEs in EXP1 are located over ET regions including Korea and

Japan, TA regions, and Northwest Pacific Ocean. The bins showing smaller RMSEs in CNTL

are located over the Siberian regions (EB) and near the equator.

Table 5. RMSE (ppm) of model CO2 concentrations of CNTL and EXP1 with respect to observed CO2 concentrations at the CONTRAIL bins in the nested domain.

Ascending/Descending mode Level mode

Bin Level CNTL EXP1 Bin CNTL EXP1

3 1 2.632 2.523 17 1.650 1.660

2 2.573 2.447 18 1.683 1.717

3 3.057 2.914 19 1.652 1.675

4 3.065 2.936 20 1.658 1.691

4 1 1.321 1.270 21 1.707 1.713

2 1.319 1.242 22 1.685 1.709

3 1.319 1.253 23 1.757 1.777

4 1.501 1.454 24 1.793 1.758

5 1 0.936 0.959 25 2.306 2.287

2 0.956 0.976 26 1.134 1.111

3 0.913 0.918 27 1.247 1.224

4 0.906 0.886 28 1.125 1.137

6 1 0.835 0.851 29 0.847 0.838

2 0.881 0.882 30 0.914 0.897

3 0.879 0.878 31 1.322 1.288

4 1.087 1.111 32 1.030 0.972

7 1 1.599 1.560 33 0.756 0.697

2 1.637 1.571 34 0.673 0.637

3 1.752 1.683 35 0.705 0.696

4 1.638 1.570

8 1 1.642 1.615 Mode CNTL EXP1

2 1.564 1.504 Ascending/Descending 1.643 1.581

3 1.575 1.497 Level 1.424 1.414

4 1.649 1.591 Total 1.545 1.506

Bin numbers from 3 to 8 represent the ascending/descending mode, while bin numbers from 17 to 35 represent the level mode. The gray shaded table denotes the

average RMSEs for each observation mode.

https://doi.org/10.1371/journal.pone.0263925.t005
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Overall, the evaluation with the independent CONTRAIL observations shows that assimi-

lating additional Korean observations into the CT led to more accurate surface CO2 flux esti-

mations over Asia.

3.3 Uncertainty reduction

Fig 9 shows the uncertainty reduction rate of each experiment for the estimated posterior sur-

face CO2 flux compared to the prior surface CO2 flux, averaged over the analysis period. The

area of maximum uncertainty reduction in CNTL appears on parts of inner China, Mongolia,

and central Asia regions, showing approximately 40% of reduction. It is followed by Siberian

region near 60˚N latitude, showing approximately 28% of uncertainty reduction after the opti-

mization (Fig 9A). For EXP1, the uncertainty reduction is approximately 59% on Eastern

China, Korea, and Japan, where the location coincides with the mixed forest ecoregion of ET

(Fig 9B). Uncertainty reduction rate around 60˚N Siberian region is still relatively high in

EXP1 compared to CNTL, nearly 35% of uncertainty decreases. Some parts of India show 27%

uncertainty reduction in EXP1.

The difference of the uncertainty reduction between EXP1 and CNTL is shown in Fig 9C.

Compared to CNTL, EXP1 shows more uncertainty reduction over Eastern China, Korea,

Japan, and India, located in ET region. In Siberia, there is no distinct difference in uncertainty

reduction between CNTL and EXP1. EB and TA regions also show little differences between

EXP1 and CNTL. Therefore, the uncertainties in the estimated surface CO2 flux over ET are

reduced by adding the two Korean observation datasets in CT.

3.4 Influence matrix

An influence matrix is used to measure the influence of assimilated observation data on the

model result. [6, 41, 54] calculated the influence of surface CO2 observation data assimilated

on the estimated surface CO2 flux in CT. The diagonal component of the influence matrix,

known as self-sensitivity or observation impact, represents the impact of the observation on

model value on each observation site.

Fig 10 shows the self-sensitivities of the surface CO2 observations assimilated in EXP1, aver-

aged over the analysis period 2003–2011. AMY, GSN, and some overlapped sites are marked

as circles with different size and color. The spatial density of observation sites is high in the

North America and the Europe. The number of observation sites is relatively smaller in Asia,

Australia, other continents, and oceans. Large self-sensitivities are found around observation-

sparse regions. The self-sensitivities are fairly evenly distributed where observation sites are

dense, although some sites in Alaska, Western America, and Northern Europe show large self-

sensitivities. The global average self-sensitivity in EXP1 is 6.14%. The self-sensitivities of AMY

and GSN are 11.71% and 11.38%, respectively, which are larger than the global average. Given

that the self-sensitivity of TAP is 2.7%, the relatively large self-sensitivities in AMY and GSN

imply that AMY and GSN observations play a more important role in producing the optimized

surface CO2 flux. AMY and GSN observations also help estimate surface CO2 flux in Asia with

low observation density.

4. Summary and conclusion

In this study, two CO2 observation datasets from AMY and GSN sites in the Korean peninsula

are introduced in CT DA system and the effect of the observations on surface CO2 flux estima-

tion in Asia is investigated for the 9-year period from 2003 to 2011. The annual average surface

CO2 flux uptake on the East Asia is enhanced in EXP1 experiment in which AMY and GSN

observations are assimilated. By assimilating observations from the AMY and GSN, ET regions
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Fig 9. Average uncertainty reduction (%) for 2003–2011 period: (a) CNTL, (b) EXP1, and (c) the difference between

EXP1 and CNTL.

https://doi.org/10.1371/journal.pone.0263925.g009
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including the Korean peninsula, Japan, and inland China show stronger CO2 absorption in

summer, while weakened CO2 emission in spring and autumn. EB regions also show the simi-

lar pattern.

Independent surface and aircraft CO2 observations are used for the verification of the

experimental results. Assimilating two additional observation datasets into CT reduced the

root mean square error of modeled CO2 concentration with respect to independent CO2

observation concentration, and enhanced uncertainty reduction when optimizing surface CO2

flux in Asia region. The regions with small RMSEs are consistent with the regions with signifi-

cant uncertainty reduction, which include the Korean Peninsula, southern inland China, east-

ern China, and Japan.

Self-sensitivities at AMY and GSN are relatively high, which indicates that the two observa-

tion sites in Korea (AMY, GSN) are considerably important in estimating surface CO2 flux in

Asia. The use of CO2 observations in the Korean Peninsula is expected to greatly contribute

not only to the estimation of surface CO2 flux in Asia at various scales, but also to the elabora-

tion of the national emission inventory.
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